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Abstract

For the problem of allocating resources among multi-
ple strategic agents, the well-known Vickrey-Clarke-Groves
(VCG) mechanism is efficient, strategy-proof, and it never
incurs a deficit. However, in general, under the VCG mech-
anism, payments flow out of the system of agents, which re-
duces the agents’ utilities. VCG redistribution mechanisms
aim to return as much of the VCG payments as possible back
to the agents, without affecting the desirable properties of
the VCG mechanism. Most previous research on VCG re-
distribution mechanisms has focused on settings with homo-
geneous items and/or settings with unit-demand agents. In
this paper, we study VCG redistribution mechanisms in the
more general setting of combinatorial auctions. We show that
when the gross substitutes condition holds, we are able to de-
sigh mechanisms that guarantee to redistribute a large fraction
of the VCG payments.

Introduction

For the problem of allocating resources among multiple
strategic agents, the well-known Vickrey-Clarke-Groves
(VCG) mechanism (also known as the Clarke mechanism)
satisfies the following properties:

o Efficiency: The allocation maximizes the agents’ total
valuation.

e Strategy-proofness: For any agent, reporting truthfidly i

also implies that the combined mechanism is still efficient.
A feasibleredistribution scheme is a strategy-proof redis-
tribution scheme that also maintains individual ratiotyali
and the non-deficit constraint. We call the combination of
the VCG mechanism and a feasible redistribution scheme a
VCG redistribution mechanisim

(Cavallo 2006) proposed a specific VCG redistribution
mechanism for general combinatorial auctions, which we
call the Cavallo mechanism. The Cavallo mechanism gen-
erally performs well, in the sense that, for many problem
settings, the Cavallo redistribution scheme can succssfu
redistribute most of the VCG payment for many type pro-
files. Inspired by the Cavallo mechanism, (Guo and Conitzer
2009) characterized a VCG redistribution mechanism that
maximizes the worst-case redistribution fraction (fractof
total VCG payment redistributed in the worst case) in the
setting of multi-unit auctions with non-increasing magjin
values. Independently, in the more restricted setting of
multi-unit auctions with unit demand, the same mecha-
nism was characterized by (Moulin 2009) for a different de-
sign objective. Compared with settings wilbmogeneous
items, it is much more difficult to design good redistributio
schemes in settings witheterogeneouitems. In the setting
of heterogeneous-item auctions with unit demand, (Gujar
and Narahari 2008) conjectured a redistribution schemnte tha
maximizes the worst-case redistribution fraction. Howgve
the feasibility of the conjectured scheme is unknown. Aside

always a dominant strategy no matter how the other agents ,om the conjecture, the authors later showed in (Gujar and

report.

¢ Individual Rationality: Every agent’s final utility is al-
ways non-negative.

e Non-deficit: No external subsidy is ever needed.
However, in general, under the VCG mechanism, pay-

Narahari 2009) that, in the unit demand setting, the Cavallo
redistribution scheme’s worst-case redistribution facis
at least’=2, wheren andm are the number of agents and
the number of items, respectively.

In this paper, we continue the search for redistribution
schemes with high worst-case redistribution fraction®ta s

ments flow out of the system of agents, which reduces the ings with heterogeneous items. (Guo and Conitzer 2008b)

agents’ utilities. One way to increase the agents’ utdlife

to redistribute (return) the VCG payments back to the agents
(Cavallo 2006) proposed the idea of strategy-proof radistr
bution, which is that as long as every agent’s redistrilutio

showed that in general combinatorial auctions, all feasi-
ble redistribution schemes’ worst-case redistributicec{r
tions are0. This implies that positive worst-case redistri-
bution fractions are only possible in settings with certain

(amount received) is independent of her own type, then the regirictions. In this paper, we focus our attention to com-
agents’ incentives are not affected — the combined mecha- pinatorial auction settings where the gross substitutedieo

nism (VCG plus redistribution) is still strategy-proof, ish
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WCG redistribution mechanisms are special cases of Groves
mechanisms.



tion (Kelso and Crawford 1982) holds. For the objective
of maximizing worst-case redistribution fraction, the-set
ting studied in this paper is the most general s@ fé&oth
multi-unit auctions with non-increasing marginal valuesla

won by agent' An efficient allocation is an allocation that
maximizes) .-, v;(B;) (total valuation). Similarly, when
we only consider a subset of agemtgremoving the other
agents from the auction), then an allocation of the items to

heterogeneous-item auctions with unit demand are special the agents irb correspond toS| disjoint bundles, wher;

cases of combinatorial auctions with gross substitutes con
dition.) We first show that in combinatorial auctions with
gross substitutes condition, the Cavallo mechanism’stwors
case redistribution fraction is exact#ly‘m—1 Since our re-
sult is derived in a more general settlng, it actually implie
that in the more restricted setting of heterogeneous-itgrn a
tions with unit demand, the Cavallo mechanism’s worst-case
redistribution fraction is also exactl%%‘l. That is, the

lower bound% derived earlier in (Gujar and Narahari
2009) is now known to be not strict. Incidentally, our re-
sult also implies that in combinatorial auctions with gross
substitutes condition, whem = m + 2, the Cavallo mech-
anism is worst-case optimal among all VCG redistribution
mechanism$.Then, with the help of automated mechanism
design, we solve for redistribution schemes that signiflgan
outperform the Cavallo redistribution scheme in cases @/her
n is much larger thamn. For example, when there ab@
agents an@ items, we find a redistribution scheme whose
worst-case redistribution fraction is around99999, while

the Cavallo redistribution scheme’s worst-case redistidin
fraction is only0.94 (the worst-case fractions of waste differ
by several magnitudes).

Problem Description

There aren agents [ = {1,2,...,n}) andm (m > 1)
heterogeneousitemd & {1,2,...,m}). We only consider
cases where > m + 1.4

An agent has different valuations for different bundles of
items. We use;(B) to denote agents valuation for win-
ning bundleB. We assume that;(§) = 0 for all 7. We
further assuméree disposalfor any B O B’ and anyi, we
havev;(B) > v;(B’). An agent’s utility equals her valua-
tion minus her payment.

An allocation of the items to the agents correspond to
n disjoint bundlesB,, Bs, ..., B,,, whereB; is the bundle

2pside from the objective of this paper, other objectives have
also been studied (Guo and Conitzer 2008a; de Clippel, Naro-
ditskiy, and Greenwald 2009; Guo and Conitzer 2010b; 2008b;
Apt et al. 2008). Most of the proposed mechanisms are only de-
fined for settings with homogeneous items. One exception is (Guo
and Conitzer 2008b), which gives two numerical algorithms for
finding undominatededistribution schemes in general combinato-
rial auctions. Both numerical algorithms are based on discretiza-
tion of the agents’ type spaces, which makes these two algorithms
inapplicable to the worst-case objective discussed in this paper.

3(Guo and Conitzer 2009) showed that even in the more re-
stricted setting of multi-unit auctions with unit demand, no feasi-
ble redistribution scheme’s worst-case redistribution fraction can
be more thart-=2==% whenn = m + 2.

4(Guo and Conitzer 2009) showed that in multi-unit auctions
with non-increasing marginal values, when<= m + 1, the orig-
inal VCG mechanism is worst-case optimal. Since the setting stud-
ied in this paper is more general, we have that in our setting, when
n <=m+ 1, VCG is still worst-case optimal.

is the bundle won by agentfor i € S. An efficient alloca-
tion of the items to the agents #is then an allocation that
maximizes) .. ; v;(B;). We uselU(S) to denote the total
valuation of the agents i§ when we allocate the items to
them efficiently.

To avoid dealing with tie-breaking, we assume that the set
of possible type profiles contains only those that are ge:fr
for any set of agents, the efficient allocation of the items
to the agents it§ is unique>

The VCG mechanism allocates the items to the agents ef-
ficiently. If an agent does not win anything, then she pays
nothing. If an agent wins something, then she pays “how
much she hurts the other agents as a result of her presence”.
Let X be the set of winners when we allocate the items to
all the agents efficiently. For every winnee X, we denote
her bundle byB;. Winneri's VCG payment is defined to be
U(I —i) — (U(I) — v;(B;)).5 The total VCG payment is
thend .. (U(I—i)=U(I)+vi(B;)) = >, e x (U —1)—
UD)+UI) = ,ex U —=i)—(|X[-1)U(I). Since re-
moving a loser does not changé!), we have that the total
VCG payment can also be written g3, _ U (1 —4)—(|X |-
DUI) =3 iex U —=i)+(n—|X)UI) = (n—1)U(I) =
Yoict U —i) — (n—1)U(I). We useV CG([) to denote
the total VCG payment when every agent participates in the
auction. Similarly, we us& CG(S) to denote the total VCG
payment when we use the VCG mechanism to allocate the
items to only the agents ifi.

Our objective is to design a feasible redistribution scheme
that always redistributes a large fraction of the total VCG
payment even in the worst case.

Gross Substitutes

(Guo and Conitzer 2008b) showed that in general combina-
torial auctions, when there are at least two items and at leas
three agents, the worst-case redistribution fraction gf an
feasible redistribution scheme(is Despite this negative re-
sult, we are able to achieve positive worst-case redigtobu
fraction in more restricted settings. (Guo and Conitzel®00
and (Gujar and Narahari 2009) are two examples. These
two papers studied multi-unit auctions with non-incregsin
marginal values and heterogeneous-item auctions with unit

SWe cannot simply assume that a consistent tie-breaking rule
exists, because we need the tie-breaking rule to satisfy Proposi-
tion 2, which is that, winners still win after we remove some other
agents. Our conjecture is that such a tie-breaking rule exists, but
we do not know how to construct one (without additional technical
assumptions). Alternatively, we could drop this tie-free assump-
tion. We allow all possible type profiles, but when we redistribute,
we perturb any type profile that is not tie-free infinitesimally so that
it becomes tie-free. This way we avoid dealing with tie-breaking,
but certain mechanism properties may be violated infinitesimally
due to perturbation.

1 —iis short forl — {i}.



demand, respectively. In this paper, we show that positive 1)U(S) > > .cs ; U(S—i—j)—(|S|-1)U(S—i). Accord-
worst-case redistribution fraction is achievable in a more ing to submodularity in agents, we have for ghg S — 1,
general setting — combinatorial auctions with gross substi /(S — j) — U(S) > U(S —i — j) — U(S — 7). That s,
tutes condition. Dies—iUS =3) = 35— U(S) =2 Y ies i U(S —i—
The gross substitutes condition was first proposed in D= o . U(S—i). Thatis,> .« . U(S—j)—(|S|—
: jeES—1i LajeS—i
(Kelso and Crawford 1982). For completeness, we include DUS) >, US—i—j)— (S| - 1)U —i). O
its definition below. The terminology and notation are due = fejeS—i J '
to (Lehmann, Lehmann, and Nisan 2003).
We associate each item with a price. Under price vec-
tor p = (p1,p2,...,pm), itemj is priced atp;. Agent
i's surplus of winning bundleB under price vectop' is
vi(B) — >_,cp pj- Agenti’s preferred bundles undgrare
the bundles that maximize her surplus.

Definition 1. Agenti's type satisfies thgross substitutes
condition if for any itemj, any two price vector$ and g,
with ¢ > p (element-wise comparison) and = g¢;, we
have that if itemyj is in a preferred bundle of agehtinder
P, then there exists a preferred bundle of agentderq that

also contains itenj.
In words, agent’s type satisfies the gross substitutes con- PFQOf'- Let B; be Fhe bundle won by when the set of par-
dition if her’dgmand ¥gr an item does gnot decrease when the ticipating agents i. We have that; (B;) > G(J,5 —4) —
G(J — B;, S — i) for the following reasonsw;(B;) is i's

prices of the other items increase. : " valuation for winningB;. G(J, S —i) —G(J — B;, S —1i)is
Combinatorial auctions with gross substitutes condition #'s VCG payment for winning;. The first expression must
are combinatorial auctions in which every agent’s type sat- be as large as the second oné. Otherwiigéll not win B,
isfies the gross substitutes condition. (Gul and Stacchetti ¢ o 1o expressions are the éame thenay or may r;é)t
1999) listed several example settings of combinatoriat auc win B, depending on how we break ties. Since we only

:lt:)ns fW'th gr(;ss sgbstlrytes.tconﬂ!tlon. _ﬁ}mong_ them are o, hgjder type profiles that never result in ties, we have that
e aforementioned multi-unit auctions with non-incregsi 5 ¥ic crrichy larger.

marginal values and heterogeneous-item auctions with unit .
demand. A third example is combinatorial auctions with ad- ; fx\)/renog |)2 ?Seig”toasvr;ior\]/\r/]g:at:f{teerr g;gevrx]oyetgnxiﬁggﬁt
ditive valuations. Other example settings are omitted. ' needs 1o ay?(J, S — i - V= G(J - Bg]S i 3

We use(G(B, S) to denote the total valuation of the agents ! P ’ J v J)-
in S, when we allocate the items iB to them efficiently.
G(J,8) = U(S). It was pointed out in (Yokoo, Sakurai,
and Matsubara 2004) that when every agent’s type satisfies
the gross substitutes condition, the following two projesrt
hold:

Submodularity in items: For any set of agent§, for

Proposition 2. Let S be any set of agents. Given that the
gross substitutes condition holds, if an agért S is a win-

ner when we allocate the items to the agents§ imccording

to the VCG mechanism, then for afy C S withi € 57, ¢

is still a winner when we allocate the items to the agents in
S’ according to the VCG mechanism.

The above proposition says that a winner still wins after
we remove some other agents from the auction. Lerhma
of (Gujar and Narahari 2009) showed the same result for
heterogeneous-item auctions with unit demand.

We prove that it is less than or equal to the original amount
i needs to pay to wi;. This implies that is still a winner
(she can at least wiB; to gain some positive utility, though
her most preferable bundle may change). Let us construct an
agentz, who is not inS. Letz’s valuation be additive, and
she values every item iB; extremely high, and she does not
. value the other items at all. The point is to make sure that
any two item bundlesB; and Bz, we haveG(By, 5) + z wins B; when facing both agent sét — i and agent set
G(gjéri)o(?uggi% ig aBQQéft)sngr(frl]yUtﬁé’s?t;s of agens S —1i—j. Letz’s valuation forB; be X. As we mentioned,
: we n rov —i—j)— —-B;,S—i—j) <

andSs, we havel/ (Sy)+U(S,) > U(S1NS2)+U (S1USs). G‘(e I geftg EOG?}J; ‘S;B_ P )Z.)_ %&g Om;’n‘geed’ tojgrgve

Submodularity in agents leads to the following two propo- G(J7 S—i—j)—G(J —“B- S—i—j) - X <G(J,S—
sitions, which are needed for deriving our results. i) —7G(J — By, S —i) — X.”That is, we only need to prove
Proposition 1. When every agent’s type satisfies the gross U(S —i—j) - U(S—i—j+a) <U(S —1i) -U(S —
substitutes condition, we have that for any set of agéhts  i+z). According to submodularity in agents, this inequality
and anyi € S, VCG(S) > VCG(S — ). That is, the VCG holds. O
mechanism isevenue monotonic

Proof. If S contains only one agent, theWCG(S) = Cavallo Redistribution Scheme

VOG(S — i) = 0. We then consider cases whe& > 2. In this section, we show that, in combinatorial auctions

Asiillustrated earlierV CG(S) = -, U(S —j) — (|S| - with gross substitutes condition, the worst-case redisiri

HU(S) andVOG(S —i) =3 g ) US—i—j)— (S| - tion fraction of the Cavallo redistribution scheme (Cawall
J —1

H —m—17
2)U(S —i). Thatis, we need to shol s U(S — j) — 2006) is exactly*==.
(|S| - 1)U(S) > Zjesfi U(S—Z—J) - (|S‘._ Q)U(S_Z.)' "As we mentioned earlier, we only consider cases whete
We haved . U(S —j) = c5-, U(S =) +U(S —i). m + 1, because when <= m + 1, one optimal redistribution

That is, we only need to shoW. s, U(S — j) — (S| — scheme for our objective is simply redistributing nothing.



In revenue monotonic settings, the Cavallo redistribution
scheme is identical to the Bailey redistribution schemé-(Ba
ley 1997). Under it, agent’s redistribution is equal to
VCG(I —i)/n (1/n times the total VCG payment after re-
movings herself). We see thas redistribution does not de-
pend on her own type. Thus, the Cavallo scheme is strategy-
proof and efficient. Individual rationality and the non-@éfi
constraint were proven to be satisfied in (Cavallo 2006).

First of all, (Guo and Conitzer 2009) showed that in the
more restricted setting of multi-unit auctions with unit-de
mand, the Cavallo redistribution scheme’s worst-casesredi
tribution fraction is exactly>="=L. Since we are dealing
with a more general setting, we automatically have that in
our setting, the Cavallo redistribution scheme’s worsteca
redistribution fraction isat most”fT’”*l. Next, we show
that the Cavallo redistribution scheme’s worst-case tedis
bution fraction is also at Iea&%/‘l.

Theorem 1. In combinatorial auctions with gross substi-
tutes condition, the Cavallo redistribution scheme’s wors
case redistribution fraction is exact@%‘l.

Proof. Let X be the set of winners when we allocate the
items to the agents using the VCG mechanism. The total
VCG payment is the total payment from the agentsXin

We usep; to denote the VCG payment by winnere X.

The total VCG payment iy, _  p;.

VCG(I — j) is the total VCG payment when we allo-
cate the items to the agents other thartWhen calculating
VCG(I — j) for j € I — X, the winners are still those in
X, but their payments may be different from the For
i€ X andj € I — X, we usep] to denote winnef’s pay-
ment when we allocate the items to the agents other than
j. Forj e I — X, VCG(I - j) = > ,cxpi. The to-
tal redistribution received by the agentsiin- X are then
%Eiex;jekx p] (less than the total redistribution). To

show that the total redistribution is at ledst2=1 vV C'G(I),

it suffices to showt >°, ., pl > 2=2=L 37 pi.
Then, to show the above inequality, it suffices to show that
forallie X,3°c; xpl > (n—m—1)p.

Let us consider an arbitrary winneri € X). Let B;
be the bundle that wins when we allocate all the items
to the agents using the VCG mechanism. We have that
pi = UI —i) — (U{I) — vi(B;)). Let X’ be the set of
winners when we allocate the items to the agents other than
1. According to Proposition 2, we hav€ — : C X'’ (the
other winners still win when is removed from the auction).
Therefore, X' UX = X’ U {i}. Since|X’| < m (at mostm
winners), we havéX’ U X| <m+1. Foranyj ¢ X' U X,
when we allocate all the items to the agents other than
using the VCG mechanism, still wins B;, but her pay-
ment is nowp? (I—i—3)— (U -j) —v(By)).
Sincej ¢ X' (j is not a winner even afteris removed),
we haveU(I — i — j) U(I —4). Similarly, since
j ¢ X, we haveU(I — j) = U(I). That is, for all
j¢ X'UX,pl =UI—14)— (UI)~-v(B)) = pi
That ISijGI—ng 2 ngZX’Ung = Zjexwxpi 2
(n —m — 1)p;. This completes the proof.

O

(Gujar and Narahari 2009) showed that the Cavallo re-
distribution scheme’s worst-case redistribution frattie
at Ieast% in heterogeneous-item auctions with unit
demand. Since our setting is more general, our theo-
rem implies that Cavallo redistribution scheme’s worst-
case redistribution fraction is actually at IeeiSTm—l in
heterogeneous-item auctions with unit demand. Then since
heterogeneous-item auctions with unit demand is more gen-
eral than multi-unit auctions with unit demand, we also have
that the Cavallo redistribution scheme’s worst-case redis
tribution fraction is at mosi%’sif1 in heterogeneous-item
auctions with unit demand. That is, Cavallo redistribution
scheme’s worst-case redistribution fraction is also dyxact
z=m—1 in heterogeneous-item auctions with unit demand.

Gadgets for Constructing Better
Redistribution Schemes

In this section, we define a series of functions and show their
properties. The motivation behind these functions may not
be clear initially, but we will see later that they are useful
gadgets for constructing better redistribution schemes.

Definition 2. For any set of agentS, we define thek-th
winner set inS as follows:

The first winner set it$, denoted by (S, 1), is the set of
winners inS when we use the VCG mechanism to allocate
the items to only the agents »

Fork > 1, thek-th winner set inS, denoted by (S, k),
is the set of winners it when use the VCG mechanism to
allocate the items to the agentsin- W (S, < k—1). Here,
W(S,<k—1) =Uigj<p—1W(5,)).

The meaning of the first winner set is clear. The second
winner set is the set of new winners after we remove all the
agents in the first winner set. Then, the third winner set is
the set of new winners after we also remove all the agents
in the second winner set. Theth winner set is the set of
new winners after we remove all the agents in the first1
winner sets. The first several winner sets are non-empty.
However, eventually, all agents are removed. That is, for
large k, the k-th winner set is empty. We use’ to denote
the largest satisfying that theé-th winner set is non-empty.

S is divided intok® disjoint winner sets.

We make the following observation. After we remove an
arbitrary agent in thé-th winner set ofS, the earlier winner
sets (-th winner set withj < ¢) do not change. The later
winner sets may change, but they only change as follows:
After removing one agent from thieth winner set, the-th
winner set may be incomplete (some winner is gone). Some
agents in théi + 1)-th winner set may be promoted to the
i-th winner set. Only agents in ti{é+ 1)-th winner set can
possibly be promoted to fulfill theth winner set, according
to Proposition 2. (If an agent is promoted to thih winner
set, then consider removing all the agents in thefinshner
sets, except the promoted agent. The promoted agent is now
a winner, which means that she must be originally from the
(i + 1)-th winner set.) Next, thé + 1)-th winner set may
be incomplete because some of its agents may have been
promoted. That is, some agents in thier 2)-th winner set
may be promoted to th@ + 1)-th winner set. Finally, the



(k¥ —1)-th winner set may be incomplete, and some agents
in the &°-th winner set may be promoted to ttie® — 1)-th
winner set. The observation is summarized in the following
lemma.

Lemma 1. Let S be any set witk® > 1. Foranyl < i <
k% — 1, foranyx € W (S, i), we have the following:

Forj < i, W(S —z,j) = W(S,j).

Forjwithi < j < k° — 1, W(S — x,j) C W(S,j)U
W(S,j+1).

Foranyjwithl < j < k-1, W(S—=,< j) C W(S, <
j+1)andW(S -z, < j)U{z} 2 W(S, < j).

Next, we define another functiai based oriV'.

Definition 3. For any set of agentS, we define functiorR
as follows:

R(S,1) = VCG(S). Thatis, R(S,1) is just the total

VCG payment when we use the VCG mechanism to allocate

the items to the agents i1
Fork > 2, R(S,k) = 7 (X cws,<r) R(S —
1) + (km — [W(S, < k) R( S k—1)).

The meaning oR(S, 1) is clear. Here, we give some intu-
ition on the meaning oR(S, 2). WhenS is the set of partic-
ipating agents, the total VCG paymenti€'G(S). Under
the Cavallo mechanism, the redistribution received by fagen
jes equalsﬁVCG(S — Jj). As was discussed in the
proof of Theorem 1, the VCG payments only depend on the
agents in the first two winner sets. That is, for any agent
not in W (S, < 2), her Cavallo redistribution is exact

times the correct total VCG payment. That s, her redistribu
tion is in some sense “correct/V (.9, < 2)| is at most2m,
since any winner set contains at mestwinners. There-
fore, there are (at mos®)n agents whose redistributions are
“incorrect”. R(S, 1) is defined as the average of the redistri-
butions received by thegen agents.R(S, 1) in some sense
captures the “error” of the Cavallo mechanisR\.S, k) for
largerk are defined recursively.

R satisfies the following properties:

Lemma 2. For any S and anyk, if S — W(S,< k+ 1)
is nonempty, then we hav®(S, k) = R(S — z, k) for any
xreS—-W(S,<k+1).

This lemma says thak (.S, k) only depends on the agents
in the firstk + 1 winner sets. Removing the other agents do
not affectR(S, k). Proof omitted due to space constraint.
Proposition 3. Foranyl < k < |n/m] — 1, we have
Yier RU —ik) = (n — km — m)R(I, k) 4+ (km +
m)R(I, k+1).

We use one example to illustrate the usefulness of the
above proposition. Let = 100 andm = 2. We have
Y ier BRI —1i,1) =96R(1,1) +4R(1,2) (casek = 1) and
Yoier R(I —i,2) = 94R(1,2) + 6R(I,3) (casek = 2).

Let us consider the following strategy- proof redistributi
scheme: agentreceivesis R(I — i,1) — geogy R(I —14,2).
The total redistribution is theg: (96R(I, 1) + 4R(I,2)) —

g7 (94R(1,2) 4+ 6R(I,3)) = R(I,1) — 5325 R(I,3).

We assumeR is non-increasing in the second variable (we
will prove next that this is indeed true). We have that every

jak_

agent’s redistribution is non-negative, and the totalsedi
bution is at most?(1, 1) and at leastl — 535 )R(I, 1).

We recall thatR(1,1) = VCG(I). That is, this scheme
satisfies the non-deficit constraint and has a worst-case re-
distribution fraction0.99734. (For this pair ofn andm,

the Cavallo mechanism'’s worst-case redistribution foacti

is 100=2=1 — (.97

Proof. Sincek + 1 > 2, by definition of R, we have
(km +m)R(Ik + 1) = > icw,<iin BU — 4. k) +
(km + m — |W(S,< k + )|)R(I k). That is, we
need to prove thad_, ., R(I — j. k) = (n — [W(S,<

k+DDRIE) + 3 jew,<k+1y RU = j, k). The right-
hand side can be rewritten S, (s <441y 2L, k) +
> jewr<krny U=, k).2 According to Lemma 2, when
jel—-W(UI,< k+1), R(I,k) = R(I — j,k). That
is, the right-hand side i3 _, ;v (7 <1y B — j, k) +
> jew(r.<k+n) U — j, k), which is the same as the left-
hand side. O

Next, we prove thaR is non-increasing in both variables.

Lemma 3. Forany S, anyz € S,andanyl < k < k¥ —1,
we haveR(S, k) > R(S — z, k).

Proof omitted due to space constraint.

Proposition 4. For any S and any2 < k < k%, R(S, k) <
R(S,k—1).
Proof. According to Lemma 3R(S, k) =

o (O ews.<ky RS — 4,k — 1) + (km — [W(S,
BIDR(S,k - 1)) <

m(zjew(s,gk) R(S,k — 1) + (bm — |[W(S,<
E))R(S,k—1)) = R(S,k —1) O

Better Redistribution Scheme by AMD

As illustrated in the example in the previous section, we
are able to construct better redistribution schemes based o
R. Our construction is based on Automated Mechanism
Design (AMD) (Conitzer and Sandholm 2002). Specif-
ically, we focus our attention to a family of parameter-
ized redistribution schemes. Then, by optimizing over
the parameters, we solve for good redistribution schemes
within the family of consideration. Similar approachesdav
been studied in (Likhodedov and Sandholm 2004; 2005;
Guo and Conitzer 2010a).

We consider the following parameterized family of redis-
tribution schemes (both the example redistribution scheme
proposed in the previous section and the Cavallo redistribu
tion scheme are special cases of this family): Agénte-
distribution equals -, ;. ¢; R(I — i, j), where the:; are
the parameters, and= |n/m| — 1.°

R(I — 4,j) does not depend oiis type. Therefore, it
maintains strategy-proofness and efficiency. However, not

8This is true only whed — W (I, < k + 1) is non-empty. To
ensure this, we require th@t + 1)m < n (the total size of the first
k + 1 winner sets is at mogk + 1)m). Thatis,k < |n/m] — 1.

9The upper bound ojis to ensure that Proposition 3 holds.



all the ¢; correspond to feasible redistribution schemes as
we still need to make sure that individual rationality and th
non-deficit constraint hold. The next lemma is helpful for
finding thec; that correspond to feasible schemes.

Lemma 4. (Guo and Conitzer 2009) When thgand thex;

are independent, the following two sets of inequalities are
equivalent:

1)s1z1+82w2+...+8qxq > 0forallzy > x0 > ... > 24 > 0.
2)s1+s2+...+sp,>0forall1 <b<a.

For anyi, we havek! =% > [(n—1)/m] > [n/m] —1 =
z. According to Proposition 4, we havB(I — i,j) is
non-increasing inj for 1 < j < z. That is, accord-
ing to Lemma 4, the following is sufficient for ensuring
the individual rationality constraint: For all < b < z,
Zlgtgb ¢y 2 0.

The total VCG payment isVCG(I) R(I,1).
The total redistribution under the above scheme
dier << GRUI — i, j) <<z G((Gm +
m)R(I,j + 1) + (n — jm — m)R(,j)) c(n —
2m)R(1,1)+c.(zm+m)R(I, z4+1)+3 5 ;<. (cjo1jm+
¢j(n—jm—m))R(I, 7). We introduce two additional con-
stantscg = c¢,11 = 0. With ¢g andc, 1, the total redis-
tribution can be rewritten aElSjSzH(cj_ljm +¢j(n —
jm —m))R(I, 7). We havek! > |n/m| = z + 1. Accord-
ing to Proposition 4, we have th&(I, j) is non-increasing
injforl < j < z+ 1. The following inequality ensures
the non-deficit constraintz(7,1) > 37, ;<. (¢j—1im+
¢j(n—jm—m))R(I, j). The nextinequality ensures that the
worst-case redistribution fraction is at leastaR(I,1) <
Yi<j<arilcj—1jm~+ci(n—jm—m))R(I, j). According
to Lemma 4, to ensurElSjSZ+1 s;R(I,j) > 0, one suffi-
cient conditionis thatforall <b < z+1,%", ., s¢ > 0.
That is, the non-deficit constraint and the worst-case redis
tribution constraint can be ensured by linear inequalities
volving thec; anda. Therefore, we are able to find a good
assignment of the; (corresponding to a large) using a
linear progrant?

Experimentally, whem /m is small, we can not find bet-
ter schemes than the Cavallo redistribution scheme. When
n/m is large,a* (the worst-case redistribution fraction ob-
tained based on the above technique) is higher ﬂﬁf‘ﬁl
(the worst-case redistribution fraction of the Cavalloised
tribution scheme). Below, we present several cases where
a* is higher.

is

Oé* n—m—1
n=10,m =2 0.733333 0.7
n="50,m=2 0.999999 0.94
n="50,m=4 0.996028 0.9
7 =100, m = 2 | 1.000000 (rounded up)| _0.97
n=100,m =4 0.999999 0.95

1%The solution of the linear program is not necessarily an optimal
assignment of the;, because, for example, the individual rational-
ity constraint is ensured by enforcing a sufficient constraint, which
usually is stronger.
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