
Public Project with Minimum Expected Release Delay

Guanhua Wang and Mingyu Guo?

School of Computer Science, University of Adelaide, Adelaide, Australia
{guanhua.wang, mingyu.guo}@adelaide.edu.au

Abstract. We study the excludable public project model where the decision is bi-
nary (build or not build). In a classic excludable and binary public project model,
an agent either consumes the project in its whole or is completely excluded. We
study a setting where the mechanism can set different project release time for dif-
ferent agents, in the sense that high-paying agents can consume the project earlier
than the low-paying agents. The mechanism design objective is to minimize the
expected maximum release delay and the expected total release delay. We pro-
pose the single deadline mechanisms. We show that the optimal single deadline
mechanism is asymptotically optimal for both objectives, regardless of the prior
distributions. For small number of agents, we propose the sequential unanimous
mechanisms by extending the largest unanimous mechanisms from Ohseto [8].
We propose an automated mechanism design approach via evolutionary compu-
tation to optimize within the sequential unanimous mechanisms.

Keywords: Automated Mechanism Design · Public Project · Cost Sharing

1 Introduction

The public project problem is a fundamental mechanism design model with many ap-
plications in multiagent systems. The public project problem involves multiple agents,
who need to decide whether or not to build a public project. The project can be nonex-
cludable (i.e., if the project is built, then every agent gets to consume the project, in-
cluding the non-paying agents/free riders) or excludable (i.e., the setting makes it pos-
sible to exclude some agents from consuming the project) [8]. A public project can be
indivisible/binary or divisible [7]. A binary public project is either built or not built
(i.e., there is only one level of provision). In a divisible public project, there are multiple
levels of provision (i.e., build a project with adjustable quality).

In this paper, we study an excludable public project model that is “divisible” in a
different sense. In the model, the level of provision is binary, but an agent’s consumption
is divisible. The mechanism specifies when an agent can start consuming the project.
High-paying agents can consume the project earlier, and the free riders need to wait.
The waiting time is also called an agent’s delay. The delay is there to incentivize pay-
ments. The model was proposed by Guo et al. [6]. The authors studied the following
mechanism design scenario. A group of agents come together to crowd-fund a piece
of security information. No agent is able to afford the information by herself.1 Based
? Corresponding author
1 Zero-day exploits are very expensive [5, 4].

2 Guanhua Wang and Mingyu Guo

on the agents’ valuations on the information, the mechanism decides whether or not
to crowd-fund this piece of information (i.e., purchase it from the security consulting
firm that is selling this piece of information). If we are able to raise enough payments
to cover the cost of the security information, then ideally we would like to share it to
all agents, including the free riders, in order to maximizes the overall protection of the
community. However, if all agents receive the information regardless of their payments,
then no agents are incentivized to pay. To address this, the mechanism releases the in-
formation only to high-paying agents in the beginning and the non-paying/low-paying
agents need to wait for a delayed release. The mechanism design goal is to minimize
the delay as long as the delay is long enough to incentivize enough payments to cover
the cost of the information. Guo et al. [6] proposed two design objectives. One is to
minimize the max-delay (i.e., the maximum waiting time of the agents) and the other
is to minimize the sum-delay (i.e., the total waiting time of the agents). The authors
focused on worst-case mechanism design and proposed a mechanism that has a con-
stant approximation ratio compared to the optimal mechanism. The authors also briefly
touched upon expected delay. The authors used simulation to show that compared to
their worst-case competitive mechanism, the serial cost sharing mechanism [7] has
much lower expected max-delay and sum-delay under various distributions.

In this paper, we focus on minimizing the expected max-delay and the expected
sum-delay. We propose a mechanism family called the single deadline mechanisms.
For both objectives, under minor technical assumptions, we prove that there exists a
single deadline mechanism that is near optimal when the number of agents is large, re-
gardless of the prior distribution. Furthermore, when the number of agents approaches
infinity, the optimal single deadline mechanism approaches optimality asymptotically.
For small number of agents, the single deadline mechanism is not optimal. We extend
the single deadline mechanisms to multiple deadline mechanisms. We also propose a
genetic algorithm based automated mechanism design approach. We use a sequence of
offers to represent a mechanism and we evolve the sequences. By simulating mech-
anisms using multiple distributions, we show that our genetic algorithm successfully
identifies better performing mechanisms for small number of agents.

2 Related Research

Ohseto [8] characterized all strategy-proof and individually rational mechanisms for
the binary public project model (both excludable and nonexcludable), under minor
technical assumptions. Deb and Razzolini [2] further showed that on top of Ohseto’s
characterization, if we require equal treatment of equals (i.e., if two agents have the
same type, then they should be treated the same), then the only strategy-proof and indi-
vidually rational mechanisms are the conservative equal cost mechanism (nonexclud-
able) and the serial cost sharing mechanism (excludable), which were both proposed
by Moulin [7]. It should be noted that Ohseto’s characterization involves exponential
number of parameters, so knowing the characterization does not mean it is easy to lo-
cate good mechanisms. Wang et al. [11] proposed a neural network based approach for
optimizing within Ohseto’s characterization family. The authors studied two objectives:
maximizing the number of consumers and maximizing the social welfare. It should be

Public Project with with Minimum Expected Release Delay 3

noted that Ohseto’s characterization does not apply to the model in this paper, as our
model has an additional spin that is the release delay. In this paper, we propose a fam-
ily of mechanisms called the sequential unanimous mechanisms, which is motivated by
Ohseto’s characterization. We apply a genetic algorithm for tuning the sequential unan-
imous mechanisms. Mechanism design via evolutionary computation [9] and mecha-
nism design via other computational means (such as linear programming [1] and neural
networks [3, 10, 11]) have long been shown to be effective for many design settings.

3 Model Description

There are n agents who decide whether or not to build a public project. The project is
binary (build or not build) and nonrivalrous (the cost of the project does not depend on
how many agents are consuming it). We normalize the project cost to 1. Agent i’s type
vi ∈ [0, 1] represents her private valuation for the project. We use ~v = (v1, v2, . . . , vn)
to denote the type profile. We assume that the vi are drawn i.i.d. from a known prior dis-
tribution, where f is the probability density function. For technical reasons, we assume
f is positive and Lipschitz continuous over [0, 1].

We assume that the public project has value over a time period [0, 1]. For example,
the project could be a piece of security information that is discovered at time 0 and the
corresponding exploit expires at time 1. We assume the setting allows the mechanism
to specify each agent’s release time for the project, so that some agents can consume
the project earlier than the others. Given a type profile, a mechanism outcome consists
of two vectors: (t1, t2, . . . , tn) and (p1, p2, . . . , pn). I.e., agent i starts consuming the
project at time ti ∈ [0, 1] and pays pi ≥ 0. ti = 0 means agent i gets to consume
the public project right from the beginning and ti = 1 means agent i does not get to
consume the public project. We call ti agent i’s release time. We assume the agents’
valuations over the time period is uniform. That is, agent i’s valuation equals vi(1− ti),
as she enjoys the time interval [ti, 1], which has length 1 − ti. Agent i’s utility is then
vi(1− ti)− pi. We impose the following mechanism design constraints:

– Strategy-proofness: We use ti and pi to denote agent i’s release time and payment
when she reports her true value vi. We use t′i and p′i to denote agent i’s release time
and payment when she reports a false value v′i. We should have

vi(1− ti)− pi ≥ vi(1− t′i)− p′i

– Individual rationality: vi(1− ti)− pi ≥ 0
– Ex post budget balance:

If the project is not built, then no agent can consume the project and no agent pays.
That is, we must have ti = 1 and pi = 0 for all i.
If the project is built, then the agents’ total payment must cover exactly the project
cost. That is,

∑
i pi = 1.

Our aim is to design mechanisms that minimize the following design objectives:

– Expected Max-Delay: Evi∼f (max{t1, t2, . . . , tn})
– Expected Sum-Delay: Evi∼f (

∑
i ti)

4 Guanhua Wang and Mingyu Guo

4 Single Deadline Mechanisms

We first describe the serial cost sharing mechanism (SCS) proposed by Moulin [7].
Under SCS, an agent’s release time is either 0 or 1.2

Let ~v be the type profile. We first define the following functions:

I(~v) =

{
1 ∃k ∈ {1, 2, . . . , n}, k ≤ |{vi|vi ≥ 1

k}|
0 otherwise

I(~v) equals 1 if and only if there exist at least k values among ~v that are at least 1
k ,

where k is an integer from 1 to n.

K(~v) =

{
max{k|k ≤ |{vi|vi ≥ 1

k}|, k ∈ {1, 2, . . . , n}} I(~v) = 1

0 I(~v) = 0

Given ~v, there could be multiple values for k, where there exist at least k values
among ~v that are at least 1

k . K(~v) is the largest value for k. If such a k value does not
exist, then K(~v) is set to 0.

Definition 1 (Serial Cost Sharing Mechanism [7]). Given ~v, let k = K(~v).

– If k > 0, then agents with the highest k values are the consumers. The consumers
pay 1

k . The non-consumers do not pay.
– If k = 0, then there are no consumers and no agents pay.

Essentially, the serial cost sharing mechanism finds the largest k where k agents
are willing to equally split the cost. If such a k exists, then we say the cost share is
successful and these k agents are joining the cost share. If such a k does not exist, then
we say the cost share failed.

Next we introduce a new mechanism family called the single deadline mechanisms.

Definition 2 (Single Deadline Mechanisms).
A single deadline mechanism is characterized by one parameter d ∈ [0, 1]. d is

called the mechanism’s deadline. We use M(d) to denote the single deadline mecha-
nism with deadline d.

The time interval before the deadline [0, d] is called the non-free part. The time
interval after the deadline [d, 1] is called the free part.

We run the serial cost sharing mechanism on the non-free part as follows. For the
non-free part, the agents’ valuations are d~v = (dv1, . . . , dvn). Let k = K(d~v). Agents
with the highest k values get to consume the non-free part, and each needs to pay 1

k .
The free part is allocated to the agents for free. However, we cannot give out the

free part if the public project is not built.
If we give out the free part if and only if I(d~v) = 1, then the mechanism is not

strategy-proof, because the free parts change the agents’ strategies.3 Instead, we give
2 Because the concept of release time does not exist in the classic binary excludable public

project model.
3 For example, an agent may over-report to turn an unsuccessful cost share into a successful cost

share, in order to claim the free part.

Public Project with with Minimum Expected Release Delay 5

agent i her free part if and only if I(dv−i) = 1. That is, agent i gets her free part if and
only if the other agents can successfully cost share the non-free part without i.

If an agent receives both the non-free part and the free part, then her release time is
0. If an agent only receives the free part, then her release time is d. If an agent does not
receive either part, then her release time is 1. Lastly, if an agent only receives the non-
free part, then her release time is 1− d, because such an agent’s consumption interval
should have length d (i.e., [1− d, 1]).

Proposition 1. The single deadline mechanisms are strategy-proof, individually ratio-
nal, and ex post budget balanced.

5 Max-Delay: Asymptotic Optimality

Theorem 1. The optimal single deadline mechanism’s expected max-delay approaches
0 when the number of agents approaches infinity.

Proof. We consider a single deadline mechanism M(d). Every agent’s valuation is
drawn i.i.d. from a distribution with PDF f . Let Vi be the random variable repre-
senting agent i’s valuation. Since f is positive and Lipschitz continuous, we have that
∀d, ∃k, P (dVi ≥ 1

k) > 0. That is, for any deadline d, there always exists an integer k,
where the probability that an agent is willing to pay 1

k for the non-free part is positive.
Let p = P (dVi ≥ 1

k). We define the following Bernoulli random variable:

Bi =

{
1 dVi ≥ 1

k

0 otherwise

Bi equals 1 with probability p. It equals 1 if and only if agent i can afford 1
k for

the non-free part. The total number of agents in ~v who can afford 1
k for the non-free

part then follows a Binomial distribution B(n, p). We use B to denote this Binomial
variable. If B ≥ k+ 1, then every agent receives the free part, because agent i receives
the free part if excluding herself, there are at least k agents who are willing to pay 1

k
for the non-free part. The probability that the max-delay is higher than d is therefore
bounded above by P (B ≤ k). According to Hoeffding’s inequality, when k < np,

P (B ≤ k) ≤ e−2n(p−
k
n)

2

. We immediately have that when n approaches infinity, the
probability that the max-delay is higher than d is approaching 0. Since d is arbitrary,
we have that asymptotically, the single deadline mechanism’s expected max-delay is
approaching 0.

Next, we use an example to show that when n = 500, the optimal single deadline
mechanism’s expected max-delay is close to 0.01. We reuse all notation defined in the
proof of Theorem 1. We make use of the Chernoff bound. When k < np, we have
P (B ≤ k) ≤ e−nD(

k
n ||p), where D (a||p) = a ln a

p + (1− a) ln 1−a
1−p .

When all agents receive the free part, the max-delay is at most d. Otherwise, the
max-delay is at most 1. The expected max-delay is at most

P (B ≤ k) + d(1− P (B ≤ k)) ≤ P (B ≤ k) + d

6 Guanhua Wang and Mingyu Guo

Example 1. Let us consider a case where n = 500. We set d = 0.01 and k = 250.

– f is the uniform distribution U(0, 1): We have p = 0.6 and P (B ≤ 250) ≤ 3.69e−
5. M(0.01)’s expected max-delay is then bounded above by 0.01 + 3.69e− 5.

– f is the normal distribution N(0.5, 0.1) restricted to [0, 1]: We have p = 0.84 and
P (B ≤ 250) ≤ 7.45e− 69. M(0.01)’s expected max-delay is then bounded above
by 0.01 + 7.45e− 69.

On the contrary, the expected max-delay of the serial cost sharing mechanism is not
approaching 0 asymptotically. For example, when n = 500, underU(0, 1), the expected
max-delay of the serial cost sharing mechanism equals 0.632.

6 Sum-Delay: Asymptotic Optimality

Theorem 2. When the number of agents approaches infinity, the optimal single dead-
line mechanism is optimal among all mechanisms in terms of expected sum-delay.

Theorem 2 can be proved by combining Proposition 4 and Proposition 5.

Proposition 2. The optimal expected sum-delay is finite regardless of the distribution.

Proof. We consider the following mechanism: Pick an arbitrary integer k > 1. We offer
1
k to the agents one by one. An agent gets the whole interval [0, 1] if she agrees to pay 1

k
and if the project is built. Otherwise, she gets nothing. We build the project only when k
agents agree. Since we approach the agents one by one, after k agents agree to pay 1

k , all
future agents receive the whole interval for free. This mechanism’s expected sum-delay
is bounded above by a constant. The constant only depends on the distribution.

The following proposition follows from Proposition 2.

Proposition 3. Given a mechanism M and the number of agents n, let Fail(n) be
the probability of not building under M . We only need to consider M that satisfies
Fail(n) = O(1/n).

We then propose a relaxed version of the ex post budget balance constraint, and use
it to calculate the delay lower bound.

Definition 3 (Ex ante budget balance). Mechanism M is ex ante budget balanced if
and only if the expected total payment from the agents equals the probability of building
(times project cost 1).

Proposition 4. Let Fail(n) be the probability of not building the project when there
are n agents. We consider what happens when we offer o for the whole interval [0, 1] to
an individual agent. If the agent accepts o then she pays o and gets the whole interval.
Otherwise, the agent pays 0 and receives nothing.

We define the delay versus payment ratio r(o) as follows:

r(o) =

∫ o

0
f(x)dx

o
∫ 1

o
f(x)dx

Public Project with with Minimum Expected Release Delay 7

r is continuous on (0, 1). Due to f being Lipschitz continuous, we have limo→0 r(o) =
f(0) and limo→1 r(o) =∞.4 We could simply set r(0) = f(0), then r is continuous on
[0, 1). We define the optimal delay versus payment ratio r∗ = mino∈[0,1) r(o).

The expected sum-delay is bounded below by r∗(1 − Fail(n)), which approaches
r∗ asymptotically according to Proposition 3.

Proposition 5. Let o∗ be the optimal offer that leads to the optimal delay versus pay-
ment ratio r∗.5

o∗ = arg min
o∈[0,1)

r(o)

Let ε > 0 be an arbitrarily small constant. The following single deadline mecha-
nism’s expected sum delay approaches r∗(1 + ε) asymptotically.

M(
1 + ε

no∗
∫ 1

o∗
f(x)dx

)

We then use an example to show that when n = 500, under different distributions,
the optimal single deadline mechanism’s expected sum-delay is close to optimality.

Example 2. We consider n = 500 which is the same as Example 1. Simulations are
based on 100, 000 random draws.

– f is the uniform distribution U(0, 1): The single deadline mechanismM(1) (essen-
tially the serial cost sharing mechanism) has an expected sum-delay of 1.006, which
is calculated via numerical simulation. Fail(500) is then at most 0.002. r∗ = 1.
The lower bound is 0.998, which is close to our achieved sum-delay 1.006.

– f is the normal distribution N(0.5, 0.1) restricted to [0, 1]: The single deadline
mechanism M(1)’s expected sum-delay equals 2.3e − 4 in simulation, which is
obviously close to optimality.

– f is the beta distributionBeta(0.5, 0.5): The single deadline mechanismM(0.01)’s
expected sum-delay equals 1.935 in simulation. Fail(500) is then at most 0.00387.
r∗ = 1.927. The lower bound equals (1 − 0.00387) ∗ r∗ = 1.920, which is very
close to the achieved sum-delay of 1.935. The serial cost sharing mechanism M(1)
is far away from optimality in this example. The expected sum-delay of the serial
cost sharing mechanism is much larger at 14.48.

7 Automated Mechanism Design for Smaller Number of Agents

For smaller number of agents, the single deadline mechanism family no longer contains
a near optimal mechanism. We propose two numerical methods for identifying better
mechanisms for smaller number of agents. One is by extending the single deadline
mechanism family and the other is via evolutionary computation.

4 When o approaches 0, r(o)’s numerator is approaching of(0) while the denominator is ap-
proaching o.

5 If o∗ = 0, then we replace it with an infinitesimally small γ > 0. The achieved sum-delay is
then approaching r(γ)(1 + ε) asymptotically. When γ approaches 0, r(γ) approaches r∗.

8 Guanhua Wang and Mingyu Guo

Definition 4 (Multiple Deadline Mechanisms). A multiple deadline mechanism
M(d1, . . . , dn) is characterized by n different deadlines. Agent i’s non-free part is
[0, di] and her free part is [di, 1]. The mechanism’s rules are otherwise identical to
the single deadline mechanisms.

We simply use exhaustive search to find the best set of deadlines. Obviously, this
approach only works when the number of agents is tiny. We then present an Automated
Mechanism Design approach based on evolutionary computation.

Ohseto [8] characterized all strategy-proof and individually rational mechanisms
for the binary public project model (under several minor technical assumptions). We
summarize the author’s characterization as follows:

– Unanimous mechanisms (characterization for the nonexcludable model): Under an
unanimous mechanism, there is a cost share vector (c1, c2, . . . , cn) with ci ≥ 0 and∑

i ci = 1. The project is built if and only if all agents accept this cost share vector.
– Largest unanimous mechanisms (characterization for the excludable model): Under

a largest unanimous mechanism, for every subset/coalition of the agents, there is
a constant cost share vector. The agents initially face the cost share vector corre-
sponding to the grand coalition. If some agents do not accept the current cost share
vector, then they are forever excluded. The remaining agents face a different cost
share vector based on who are left. If at some point, all remaining agents accept,
then we build the project. Otherwise, the project is not built.

We extend the largest unanimous mechanisms by adding the release time element.

Definition 5 (Sequential unanimous mechanisms). A cost share vector under a se-
quential unanimous mechanism includes both the payments and the release time:

T1, B1, T2, B2, . . . , Tn, Bn

Agent i accepts the above cost share vector if and only if her utility based on her
reported valuation is nonnegative when paying Bi for the time interval [Ti, 1]. That is,
agent i accepts the above cost share vector if and only if her reported valuation is at least
Bi

1−Ti
. Bi

1−Ti
is called the unit price agent i faces. We require Bi ≥ 0 and

∑
iBi = 1.

A sequential unanimous mechanism contains m cost share vectors in a sequence.
The mechanism goes through the sequence and stops at the first vector that is accepted
by all agents. The project is built and the agents’ release time and payments are deter-
mined by the unanimously accepted cost share vector. If all cost share vectors in the
sequence are rejected, then the decision is not to build.

The largest unanimous mechanisms (can be interpreted as special cases with binary
Ti) form a subset of the sequential unanimous mechanisms. The sequential unanimous
mechanisms’ structure makes it suitable for genetic algorithms — we treat the cost share
vectors as the genes and treat the sequences of cost share vectors as the gene sequences.

The sequential unanimous mechanisms are generally not strategy-proof. However,
they can be easily proved to be strategy-proof in two scenarios:

Public Project with with Minimum Expected Release Delay 9

– A sequential unanimous mechanism is strategy-proof when the sequence contains
only one cost share vector (an agent faces a take-it-or-leave-it offer). This observa-
tion makes it easy to generate an initial population of strategy-proof mechanisms.

– If for every agent, as we go through the cost share vector sequence, the unit price
an agent faces is nondecreasing and her release time is also nondecreasing, then
the mechanism is strategy-proof. Essentially, when the above is satisfied, all agents
prefer earlier cost share vectors. All agents are incentivized to report truthfully, as
doing so enables them to secure the earliest possible cost share vector.

The sequential unanimous mechanism family seems to be quite expressive.6 Our
experiments show that by optimizing within the sequential unanimous mechanisms,
we are able to identify mechanisms that perform better than existing mechanisms. Our
approach is as follows:

– Initial population contains 200 strategy-proof mechanisms. Every initial mecha-
nism is a sequential unanimous mechanism with only one cost share vector. TheBi

and the Ti are randomly generated by sampling U(0, 1).
– We perform evolution for 200 rounds. Before each round, we filter out mechanisms

that are not truthful. We have two different filters:
• Strict filter: we enforce that every agent’s unit price faced and release time

must be nondecreasing. With this filter, the final mechanism produced must be
strategy-proof. We call this variant the Truthful Genetic Algorithm (TGA).

• Loose filter: we use simulation to check for strategy-proofness violations. In
every evolution round, we generate 200 random type profiles. For each type
profile and each agent, we randomly draw one false report and we filter out
a mechanism if any beneficial manipulation occurs. After finishing evolution,
we use 10, 000 type profiles to filter out the untruthful mechanisms from the
final population. It should be noted that, we can only claim that the remain-
ing mechanisms are probably truthful. We call this variant the Approximately
Truthful Genetic Algorithm (ATGA).

– We perform crossover and mutations as follows:
• Crossover: We call the top 50% of the population (in terms of fitness, i.e.,

expected max-delay or sum-delay) the elite population. For every elite mech-
anism, we randomly pick another mechanism from the whole population, and
perform a crossover by randomly swapping one gene segment.

• Mutation: For every elite mechanism, with 20% chance, we randomly select
one gene, modify the offer of one agent by making it worse. We insert that new
cost share vector into a random position after the original position.

• Neighbourhood Search: For every elite mechanism, with 20% chance, we ran-
domly perturb one gene uniformly (from −10% to +10%).

6 Let M be a strategy-proof mechanism. There exists a sequential unanimous mechanism M ′

(with exponential sequence length).M ′ has an approximate equilibrium where the equilibrium
outcome is arbitrarily close to M ’s outcome. To prove this, we only need to discretize an
individual agent’s type space [0, 1] into a finite number of grid points. The number of type
profiles is exponential. We place M ’s outcomes for all these type profiles in a sequence.

10 Guanhua Wang and Mingyu Guo

• Abandon duplication and unused genes: In every evolution round, if a cost
share vector is never unanimously accepted or if two cost share vectors are
within 0.0001 in L1 distance. then we remove the duplication/unused genes.

7.1 Experiments

We present the expected max-delay and sum-delay for n = 3, 5 and for different dis-
tributions. ATGA is only approximately truthful. We recall that in our evolutionary
process, in each round, we only use a very loose filter to filter out the untruthful mech-
anisms. After evolution finishes, we run a more rigorous filter on the final population
(based on 10, 000 randomly generated type profiles). The percentage in the parenthesis
is the percentage of mechanisms surviving the more rigorous test. The other mecha-
nisms (TGA and Single/Multiple deadlines) are strategy-proof. SCS is the serial cost
sharing mechanism from Moulin [7], which has the best known expected delays [6].

n=3,sum-delay ATGA TGA Single deadline Multiple deadline SCS
Uniform(0,1) 1.605(95%) 1.605 1.605 1.605 1.605
Beta(0.5,0.5) 1.756(89%) 1.757 1.757 1.757 1.757

Bernoulli(0.5) 0.869(100%) 0.868 1.499 1.253 1.498
50% 0, 50% 0.8 1.699(98%) 1.873 1.873 1.873 1.873

n=3,max-delay ATGA TGA Single deadline Multiple deadline SCS
Uniform(0,1) 0.705(97%) 0.705 0.705 0.705 0.705
Beta(0.5,0.5) 0.754(87%) 0.757 0.782 0.757 0.782

Bernoulli(0.5) 0.5(100%) 0.498 0.687 0.50 0.877
50% 0, 50% 0.8 0.676(94%) 0.753 0.749 0.749 0.877

n=5,sum-delay ATGA TGA Single deadline Multiple deadline SCS
Uniform(0,1) 1.462(95%) 1.503 1.415 1.415 1.415
Beta(0.5,0.5) 2.279(92%) 2.12 1.955 1.955 1.955

Bernoulli(0.5) 1.146(100%) 1.867 2.106 1.711 2.523
50% 0, 50% 0.8 2.432(94%) 2.845 2.323 2.248 2.667

n=5,max-delay ATGA TGA Single deadline Multiple deadline SCS
Uniform(0,1) 0.677(91%) 0.677 0.662 0.662 0.678
Beta(0.5,0.5) 0.754(79%) 0.75 0.73 0.73 0.827

Bernoulli(0.5) 0.506(100%) 0.50 0.577 0.50 0.971
50% 0, 50% 0.8 0.666(80%) 0.751 0.736 0.679 0.968

Table 1. We see that ATGA performs well in many settings. If we focus on provable strategy-
proof mechanisms, then TGA and the optimal multiple deadline mechanism also often perform
better than the serial cost sharing mechanism.

Public Project with with Minimum Expected Release Delay 11

References

1. Conitzer, V., Sandholm, T.: Complexity of mechanism design. In: Darwiche, A., Friedman,
N. (eds.) UAI ’02, Proceedings of the 18th Conference in Uncertainty in Artificial Intelli-
gence, University of Alberta, Edmonton, Alberta, Canada, August 1-4, 2002. pp. 103–110.
Morgan Kaufmann (2002)

2. Deb, R., Razzolini, L.: Voluntary cost sharing for an excludable public project. Mathematical
Social Sciences 37(2), 123 – 138 (1999)

3. Dütting, P., Feng, Z., Narasimhan, H., Parkes, D., Ravindranath, S.S.: Optimal auctions
through deep learning. In: International Conference on Machine Learning. pp. 1706–1715.
PMLR (2019)

4. Fisher, D.: Vupen founder launches new zero-day acquisition firm zerodium (2015),
july 24, 2015 online: https://threatpost.com/vupen-launches-new-zero-day-acquisition-firm-
zerodium/113933/

5. Greenberg, A.: Shopping for zero-days: A price list for hack-
ers’ secret software exploits (2012), march 23, 2012 online:
http://www.forbes.com/sites/andygreenberg/2012/03/23/shopping-for-zero-days-an-price-
list-for-hackers-secret-software-exploits/

6. Guo, M., Yang, Y., Ali Babar, M.: Cost sharing security information with minimal release
delay. In: PRIMA 2018: Principles and Practice of Multi-Agent Systems. pp. 177–193.
Springer International Publishing, Cham (2018)

7. Moulin, H.: Serial cost-sharing of excludable public goods. The Review of Economic Studies
61(2), 305–325 (1994)

8. Ohseto, S.: Characterizations of strategy-proof mechanisms for excludable versus nonex-
cludable public projects. Games and Economic Behavior 32(1), 51 – 66 (2000)

9. Phelps, S., McBurney, P., Parsons, S.: Evolutionary mechanism design: a review. Au-
tonomous agents and multi-agent systems 21(2), 237–264 (2010)

10. Shen, W., Tang, P., Zuo, S.: Automated mechanism design via neural networks. In: Proceed-
ings of the 18th International Conference on Autonomous Agents and MultiAgent Systems.
pp. 215–223. AAMAS ’19, International Foundation for Autonomous Agents and Multia-
gent Systems, Richland, SC (2019)

11. Wang, G., Guo, R., Sakurai, Y., Babar, A., Guo, M.: Mechanism design for public projects via
neural networks. In: 20th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2021, online) (2021)

