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ABSTRACT

We study a more powerful variant of false-name manipulation in In-

ternet auctions: an agent can submit multiple false-name bids, bu
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ities for the agents), a bidder, at worst, loses nothing (but time)
by participating in an auction. On the one hand, this encourages

tmore bidders to join the auction, which potentially leads to higher

then, once the allocation and payments have been decided, with-"€Venue for the seller, as well as a higher social welfare for the bid-

draw some of her false-name identities (have some of her false-

name identities refuse to pay). While these withdrawn identities
will not obtain the items they won, their initial presence may have

been beneficial to the agent’s other identities. We define a mecha-

nism to befalse-name-proof with withdrawal (FNPW)the afore-
mentioned manipulation is never beneficial.
condition than false-name-proofness (FNP).

We first give a necessary and sufficient condition on the type

space for the VCG mechanism to be FNPW. We then characterize
both the payment rules and the allocation rules of FNPW mecha-
nisms in general combinatorial auctions. Based on the characteri-

ders. On the other hand, it enables the bidders to manipulate by
submitting multiple bids via multiple fictitious identities.g, user
accounts linked to different e-mail addresses).

The line of research on preventing manipulation via multiple fic-
titious identities in Internet auctions was explicitly framed by the

FNPW is a stronger groundbreaking work of Yokoet al. [19]. Extendingstrategy-

proofness—the concept of ensuring that it is always in a bidder’'s
best interest to report her valuation function truthfully—the authors
define an auction mechanism to tadse-name-prooif the mech-
anism is not only strategy-proof, but also, under this mechanism,
an agent cannot benefit from submitting multiple bids under false

zation of the payment rules, we derive a condition that is sufficient names (fictitious identities). The authors also extended the reve-

for a mechanism to be FNPW.
We also propose thmaximum marginal value item pricing
(MMVIP) mechanism. We show that MMVIP is FNPW and exhibit

some of its desirable properties. We then propose an automate

mechanism design technique that transforms any feasible mecha- X . ) ) . A
sgeneral combinatorial auction settings (settings where multiple items

nism into an FNPW mechanism, and prove some basic propertie

about this technique. Since FNPW is stronger than FNP, the mecha-© for the i h hibit substitutabili d |
we prove a strict tions for the items that exhibit substitutability and complementar-

nisms we obtain in this paper are also FNP. Finally,
upper bound on the worst-case efficiency ratio of FNPW mech-
anisms. In the appendix, we give a characterization of FNP(W)
social choice rules.

1. INTRODUCTION

With the rapid development of electronic commerce, Internet

lation principle [10] to incorporate false-name-proofness. That is
(roughly stated), in settings where false-name bids are possible,
it is without loss of generality to focus only on false-name-proof

Ome(:hanisms.

Several false-name-proof mechanisms have been proposed for
are for sale at the same time, and agents can express valuation func-

ity [5]). These are the Set mechanism [16], the Minimal Bundle
(MB) mechanism [16], and the Leveled Division Set (LDS) mech-
anism [18]* Other work on false-name-proofness includes the fol-
lowing. For general combinatorial auction settings, Yokoo [16] and
Todoet al.[12] characterized the payment rules and the allocation
rules of false-name-proof mechanisms, respectively. False-name
proofness has also been studied in the context of voting mecha-

auctions have become increasingly popular over the years. [9, 15,nisms [4, 14]. Finally, Conitzer [3] proposed the idea of preventing
11]. Unlike traditional auctions, typical Internet auctions pose no false-name manipulation by verifying the identities of certain lim-
geographical constraint. That is, sellers and bidders from all over ited subsets of agents.
the world can participate in an Internet auction remotely over the  Focusing primarily on combinatorial auctions, this paper con-
Internet, without having to physically attend the auction event. For tinues the line of research on false-name-proofness by consider-
sellers, this reduces the cost of running an auction. For bidders, ing an even more powerful variant of false-name manipulation: an
this lowers the entry cost. Effectively, in an individually rational ~agent can submit multiple false-name bids, but then, once the al-
auction mechanism (a mechanism that guarantees nonnegative utillocation and payments have been decided, withdraw some of her
false-name identities (have some of her false-name identities refuse
to pay). While these withdrawn identities will not obtain the items
they won, their initial presence may have been beneficial to the
agent's other identities, as shown in the following example:
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Example 1.There are three single-mindedgentsl, 2,3 and

A very recent paper [7] introduces a new mechanism called the
ARP mechanism. However, this mechanism requires the additional
restriction that agents are single-minded.

2A single-minded agent is only interested in a single, specific bun-



two items A, B. Agent1 bids4 on {4, B}. Agent2 bids2 on
{B}. Letus analyze the strategic options for aggntho is single-
minded on{ A}, with valuationl. (Thatis,v.S C {A, B}, agent
3's valuation forS is 1 if and only if {A} C S.) The mechanism
under consideration is the VCG mechanism.

If agent3 reports truthfully, then she wins nothing and pays noth-
ing. Her resulting utility equal®.

If agent3 attempts “traditional” false-name manipulation, that
is, submitting multiple false-name bids, and honoring all of them at
the end, then her utility is still at moét if 3 wins both items with
one identity, then she has to pay at leagtvhile her valuation for
the items is onlyl); if 3 wins both items with two identities (one
item for each identity), then the identity winnifd3} has to pay at
least2; if 3 wins only { B} or nothing, then her utility is at most
0; if 3 wins only {A} (in which case{ B} has to be won by agent
2), then3’s winning identity’s payment equals the other identities’
overall valuation for{ A, B} (at least4), minus2’s valuation for
{B} (which equal). That is, in this case} has to pay at leagt
So, overall 3’s utility is at most0 if she honors all her bids.

However, agen8 can actually benefit from submitting multiple
false-name bids, as long as she can withdraw some of them. For
example,3 can use two identities}a and3b. 3a bids1 on {A}.
3b bids4 on {B}. At the end,3a wins { A} for free, and3b wins
{B} for 2. If 3 can withdraw identity3b (e.g, by never checking
that e-mail account anymore), never making the payment and never
collecting{ B}, then, she has obtaingd!} for free, resulting in a
utility of 1.

If we wish to guard against manipulations like the above, we
need to extend the false-name-proofness condition. We refer to the
new condition agalse-name-proofness with withdrawal (FNP\Y)
requires that, regardless of what other agents do, an agent’s optimal
strategy is to report truthfully using a single identity, even if she has
the option to submit multiple false-name bids, and withdraw some
of them at the end of the auction.

To our knowledge, this stronger version of false-name-proofness
has not previously been considered. Whether it is more or less
reasonable than the original version depends on the context. For
example, in an auction, it may be possible to require each partici-
pant to place the amount of her bid in escrow, which would prevent
manipulation based on withdrawal. However, in some auction con-
texts, such an arrangement would be too unattractive to the bidders;
it also reduces the anonymity of bidding. Additionally, if we are in
a setting where the payments are not monetary, but rather are in
terms of performance of future services, then it is not possible to
put the payments in escrow.

In any case, FNPW is a useful conceptual tool for analyzing

nism into an FNPW mechanism. This technique builds on the suf-
ficient condition in Section 4. In Section 7, we show that, under a
minor condition, the mechanism that sells all the items as a single
bundle has the highest worst-case efficiency ratio among all FNPW
mechanisms. Finally, in the appendix, we give a characterization
of FNP(W) social choice rules.

2. FORMALIZATION
We will use the following notation:
e N ={1,2,...,n}: the set of agents

e G=1{1,2,...,m}: the set of items

O: the type space of each agent

0, € ©: agenti's reported type (since we consider only
strategy-proof mechanisms, when there is ho ambiguity, we
also usd); to denotei’s true type)

e —i: the set of agents other than agént

e 6_; € ©" ! types reported by agents other than agent

We study combinatorial auction settings satisfying the following
assumptions:

e Each agent has@uasi-linearutility function. That is, there
exists a function (determined by the setting) such that if an
agent with true typ@ € © ends up with bundlé3 C G and
paymenip € R, then her utility equals (6, B) — p.

I e voco, we havev (6, 0) = 0.
e VB; C By C G, V8 € O, we havev(d, B1) < v(6, Ba).
That is, there idree disposal

e An agent can have any valuation function satisfying the above
conditions. That is, we are dealing witith domaing1]. It

should be noted that in Section 3, we study how restrictive
the type space has to be in order for the VCG mechanism to
be FNPW. That is, we do not have the rich-domain assump-

tion in Section 3, which is an exception.

A mechanism consists of an allocation rie: (6,0 ') —
P(G) and a payment rul® : (6,0 ") — R. X (6;,0_,;) is the
bundle agent receives when reportin; (when the other agents
reportf_;). P(0;,0_;) is the payment agerithas to make when

false-name-proof mechanisms. Indeed, this paper also contributegreportingé; (when the other agents repdrt;). When there is no

to the research on false-name-proofness in the traditional sense
Since FNPW is stronger than FNP, the mechanisms we propose in
this paper, as well as the automated mechanism design technique
should be of interest in the FNP context as well.

The paper is organized as follows. In Section 2, we formalize
the problem we study. In Section 3, we give a sufficient and nec-
essary condition on the type space for the VCG mechanism to be
FNPW. In Section 4, we characterize both the payment rules and
the allocation rules of FNPW mechanisms in general combinato-
rial auctions. We also derive a sufficient condition that can be used
to check whether a mechanism is FNPW. In Section 5, we propose
the maximum marginal value item pricing (MMVIP)echanism,
which we prove is FNPW. In Section 6, we propose an automated

mechanism design technique that transforms any feasible mecha-

dle of items.

ambiguity about the other agents’ types, we simply ¥46;) and
P(6;) in place of X (6;,0—;) andP(0;,0_;).
, Throughout the paper, we only consider mechanisms satisfying

the following conditions:

e Strategy-proofnesstd;, 0., 6_,;, we havev(0;, X (0;))—P(6;)
> v(0;, X (0;)) — P(0;). Thatis, if an agent uses only one
identity, then truthful reporting is a dominant strategy.

e Pay-only:v0;,0_;, we haveP(6;) > 0.

e Individual rationality: V6;, 6_;, we havev(6;, X (6;))—P(6;)
> 0. That is, if an agent reports truthfully, then her utility is
guaranteed to be nonnegative. This condition also implies
that if an agent does not win any items, or has valuatitor
all the items, then her payment must(e



e Consumer sovereigntyd_;, VB C G, there exist®); € ©
such thatX (6;,6_;) O B. That is, no matter what the other
agents bid, an agent can always win any bundle (possibly at
the cost of a large payment).

e Determinism and symmetre only consider deterministic

mechanisms that are symmetric over both the agents and the

items (except for ties).

Yokoo [16] showed that in our setting, the mechanisms satis-
fying the above conditions coincide with ttff@honymous) price-
oriented, rationing-free (PORFRnechanisms. Similar price-based

representations have also been presented by others, including [8].

The PORF mechanisms work as follows:

e The agents submit their reported types.

e The mechanism is characterized by a price functior?(G)
x ©"~1 — [0,00). For any agent, for any multisetd_;
of types reported by the other agents, for any set of items
S C G, x(S,60-;) is the price ofS offered toi by the mech-
anism. That is; can purchase at a price ofy(S,0—;).
V6_;, we havey (0, 0_;) = 0. That s, the price of nothing is
always zero¥V0_;, vS1 C S2 C G, we havex(S1,0—;) <
x(S2,6_;). Thatis, a larger bundle always has a higher (or
the same) price.

The mechanism will select a bundle for agétitat is optimal
for her given the prices, that is, the bundle chosen ferin

i)}

The agent then pays the price for this bundle.

arg maxsca{v(0:,S) — x(S, 06—

Naturally, the mechanism must ensure that no item is allo-
cated to two different agents. This involves setting prices
carefully, as well as breaking ties.

Since allfeasiblemechanisms (mechanisms that satisfy the de-

sirable conditions in our setting) are PORF mechanisms, besides

using X (the allocation rule) and® (the payment rule) to refer to
a mechanism, we can also use the price funcjjoto refer to a
mechanism, namely, the PORF mechanism with price fungtion

In the remainder of this section, we formally define the tradi-
tional false-name-proofness (FNP) condition, as well as our new
false-name-proofness with withdrawal (FNPW) condition.

Definition 1. FNP. A mechanism characterized by allocation rule
X and payment rulé® is FNP if and only if it satisfies the follow-
ing:

vo;, V@ily 91‘27 . ,Hik, Vo_;, we have

v(@Z,X(Gl,G,Z)) (01,0 )
v(6;, _L:JlX(Gij,G—iU(tgﬂn))) EP(GW,@ U(tg 0it))

Thatis, truthful reporting using a single identifier is always better
than submitting multiple false-name bids.

Definition 2. FNPW. A mechanism characterized by allocation
rule X and payment rulé® is FNPW if and only if it satisfies the
following:

3Technically, there can be multiple PORF mechanisms with the
same price function due to tie-breaking, but this will generally not
be an issue.

V0;, Y01, 052, . . ., 05, V0i1, 05a, . . ., 0y,

(HZ,X(Ql,H_L)) — (01,9

v(0i, U X(0:5,0-: U (U bi) U
t#£j

P(0:5,0—: U (U 8it) U
t£

VO_;, we have

i) >
U#:))

Jj=

k
-3 (U%))

That is, truthful reporting using a single identifier is always bet-
ter than submitting multiple false-name bids and then withdrawing
some of them.

Actually, FNPW is exactly equivalent to FNP plus the following
condition:

Definition 3. Others’ bids do not help (OBDNH). A mecha-
nism characterized by allocation rul and payment rulé” satis-
fies the OBDNH condition if and only if

v0;, Vo', Vo_;, we have
U(elvx(el,e—z)) - P(é’l,@_l) >
(0, X (0:,0-; U0")) — P(0;,0_; U0)

That is, an agent'’s utility for reporting truthfully does not in-
crease if we add another agent.

THEOREM 1. FNPW is equivalent to FNP plus OBDNH.

PROOF WEe first prove that FNPW implies FNP and OBDNH.

It is straightforward that FNPW implies FNP. We only need to
prove that FNPW implies OBDNHV0;, VO_;, V&', let k = 1,
01 = 0;,q¢ = 1, andd;, = ¢’. With these assignments, the FNPW
condition reduces to the OBDNH condition.

We now prove that FNP and OBDNH together imply FNPW.

Vs, Y01, 05a, . . ., 0,, VO_;, according to OBDNH, we have
(9L7 X(91> H—L)) (917 9—2) 2 ’U(ei, X(917 9_1' U (U eét))) -
P(0;,0_; U (J0;))- Then, according to FNR(f;1, 02, .. ., O,

replacingd_; by 6_;U(l 6;,), we obtainv(6;, X (0;,0_,U(J 0i,)))—
k
P(0:,0-:U(U0)) = v(0s, U X(0i, 9—¢U(t9, 0i)U(U 03)))—

Z P(0i5,0- U(U 0ir) U
We obtain exactly the FNPW condition[]

(U#::)). Combining the inequalities,

According to Theorem 1, to check whether an FNP mechanism
is FNPW, we only need to check whether it satisfies OBDNH.

CLAIM 1. The Leveled Division Set (LDS) mechanism [18] does
not satisfy OBDNH. That is, LDS is not FNPW in genéral.

The general LDS mechanism is rather complicated. Instead of
describing LDS in its general form, we focus on a specific LDS
mechanism for three items, which is characterized by reserve price
1.and two levels{{(4, B, C)}] and[{(A, B), (C)},{(A), (B, C)}].
The mechanism works as follows. If there are at least two agents
whose valuations fof A, B, C} are at leasB, then we combine
{A, B, C} into one bundle, and run the Vickrey auction. If every
agent's valuation fo{ A, B, C'} is less thar8, then we do the fol-
lowing. We first introduce a dummy agent into the system. The
dummy agent has an additive valuation function and values every
item at1. We only allow five types of allocations: 1) The dummy
agent wins everything. 2) The dummy agent wins ong¢ 4f B}

“We will show later that the other two known FNP mechanisms,
that is, the Set mechanism [16] and the Minimal Bundle mecha-
nism [16], are both FNPW.



and{C}, and a non-dummy agent wins the other. 3) The dummy
agent wins one of A} and{ B, C'}, and a non-dummy agent wins
the other. 4) A non-dummy agent wins one{od, B} and{C'},

and another non-dummy agent wins the other. 5) A non-dummy
agent wins one of A} and{B, C'}, and another non-dummy agent

at the end. Lefi¥ be the set of false-name identitiesubmits
and withdraws. We already know that submodularity is sufficient
for the VCG mechanism to be FNP. Hence,Af contains mul-
tiple identities, theni might as well replace all of them by one
identity that reportg’s true type. We then show that the identi-

wins the other. We run the VCG mechanism on this restricted set ties in W do not helpi (OBDNH). We useS to denote the set

of possible allocations. Finally, if there is only one agent whose
valuation for{A, B, C} is at least3, then this agent is the only
winner. She has the option to purchase all the items at grice

to obtain the result she would have obtained if everyone (includ-
ing the dummy agent) were to join in the above maximal-in-range
mechanism.

PROOF We only need to prove that the above specific LDS
mechanism does not satisfy OBDNH. We consider the following
scenario. There are two agents. Agénbids 2.2 on {A, B}.
Agent 2 is single-minded, valuind A} at 1.1. Under the above
LDS mechanism, i2 reports truthfully, thed A, B} is allocated to
1, and{C'} is allocated to the dummy agent (thrown away). That s,
if 2 reports truthfully, then her utility equals If, beside2’s true
identity, 2 also submits a false-name bid 20 on {B, C'}, then
{B, C} will be allocated to2’s false-name identity2( will with-
draw this identity, that is, refuse to pay for this bundle), dad}
will be allocated t2’s true identity at a price of. That is,2 now
has utility0.1. We conclude that, in general, LDS does not satisfy
OBDNH, and hence is not FNPW.CJ

3. RESTRICTION ON THE TYPE SPACE SO
THAT VCG IS FNPW

The VCG mechanism [13, 2, 6] satisfies several nice proper-
ties, including efficiency, strategy-proofness, individual rationality,
and the non-deficit property. Unfortunately, as shown by Yosbo
al. [19], the VCG mechanism is not FNP for general type spaces.
One sufficient condition on the type space for the VCG mechanism
to be FNP is as follows:

Definition 4. Submodularity [19]. For any set of bidder¥’,
whose types are drawn fro@, V.51, S C G, we havel/ (S1,Y)+
U(Sz7 Y) > U(Sl U 527 Y) =+ U(Sl N SQ7Y). Here,U(S, Y) is
defined as the total utility of bidders ¥j, if we allocate items irt
to these bidders efficiently.

That is, if the type spac® satisfies the above condition, then

the VCG mechanism is FNP. In this section, we aim to characterize

type spaces for which VCG is FNPW. We consider restricted type

spaces (that make the VCG mechanism FNPW) in this section. In

of items won by: at the end. To winS, ¢ pays the VCG price
U(G,{—i}UW)—-U(G—S,{—i}UW) ({—i} is the set of other
agents). We us#’ to denote the set of items won by identities in
W, when we allocate items i — S to identities in{ —i} UW effi-
ciently. We have that/ (G, {—i}UW)—-U(G - S,{—i}UW) =
UG A-i}UW)-U(G—S—8" {-i}) -U(S" W) > U(G -
S {=i}) + U(S"\ W) = U(G = S = 5", {~i}) = U(S", W)
UG — S, {-i}) = UG — S — §',{—i}). The submodularity
condition implies that/ (G — S', {—i}) —U(G—S— 5", {—i}) >
U(G,{—i}) — U(G — S,{—i}). But, the expression on the right-
hand side of the inequality is the priéavould be charged fof

when she uses a single identifier. Thatiisioes not benefit from

the false-name identities . Therefore, the VCG mechanism is
FNPW if the type space satisfies submodularity.

Next, we prove that if the VCG mechanism is FNPW, then the
type space must satisfy submodularity (if it contains the additive
valuations). LetS be an arbitrary set of items. Létbe an agent
that is interested ir. Since we allow additive valuations, such
i always exists €.g, ¢ may have a very large valuation for ev-
ery item inS). If ¢ bids truthfully, then she can wiff' at a price
of U(G,{—i}) — U(G — S,{—i}). Let S’ be another arbitrary
set of items that does not intersect with For each itery in
S’, we introduce a false-name identity that is only interested in
item j, with value ¢, wherec is set to a very large valuee @,
larger thanU (G, {—i})). These false-name identities are allowed
since we assume the type space contains the additive valuations.
Let W be the set of identities introduced. WiiliY, ¢ can win
S at a price ofU(G,{—i} UW) — U(G — S,{—i} UW). We
have thatyU (G, {—i} UW) —U(G — S,{—i} UW) = U(G —

' {~i}) + U(S', W) — U(G — § — 8", {~i}) - U(S", W)
UG-S,{-i})-U(G—-S—5S",{—i}). The new price should
never be smaller than the old price. Otherwise, there is an incen-
tive for < to submit false-name bids and withdraw them. That is, we
haveU (G, {—i})-U(G-S,{—i}) <U(G-S",{—i})-U(G-
S—8',{—i}). LetS1 = G-8,S, = G-5",andY = {—i}. We
haveU(S1 N S2,Y) —U(S1,Y) <U(S2,Y) —U(S1U S2,Y).
SinceSs, S2, andY are arbitrary, we have submodularity]

4. CHARACTERIZATION OF FNPW MECH-
ANISMS

other sections, unless specified, we assume that the rich-domain

condition holds.

THEOREM 2. If the type space satisfies the submodularity con-

dition, then the VCG mechanism is FNPW. Conversely, if the mech-

anism is FNPW, and additionally the type space contains the ad-

ditive valuations, then the type space satisfies the submodularity

condition.

That is, submodularity does not only imply FNP, it actually im-
plies FNPW. Moreover, unlike for FNP, in the case of FNPW, the
converse also holds—if we allow the additive valuations (those val-
uations which value any set of items at the sum of the values of its
elements, with no complementarity and no substitutability).

PROOF We first prove that if the type space satisfies submod-
ularity, then the VCG mechanism is FNPW. We consider agent
i. Let K be the set of false-name identitiesubmits and keeps

Yokoo [16] and Todcet al.[12] characterized the payment rules
(the price functions in the PORF representation) and the allocation
rules of FNP mechanisms, respectively. In this section, we present
similar results on the characterization of FNPW mechanisms.

4.1 Characterizing FNPW payments

We recall that in our setting, a feasible mechanism corresponds
to a PORF mechanism, characterized by a price fungtiofokoo [16]
gave the following sufficient and necessary conditionycior the
mechanism characterized yto be FNP.

Definition 5. No superadditive price increase (NSA)Let O be
an arbitrary set of agentsWe run mechanisny (a PORF mech-
anism characterized by price functigf for the agents irO. Let

5In a slight abuse of language, we also use “a set of agents” to refer
to the types reported by this set of agents.



Y be an arbitrary subset @d. Let B; (i € Y') be the set of items
agent; obtains. We must have

> x(Bi,0 —{i}) > x(U Bi,0 -Y).
€Y €Yy
By modifying the NSA condition, we get the following sufficient
and necessary condition gnfor mechanisnmy to be FNPW.

Definition 6. No superadditive price increase with withdrawal
(NSAW). Let O be an arbitrary set of agents. We run mechanjsm
for the agents irD. LetY andZ be two arbitrary nonintersecting
subsets oD. Let B; (i € Y) be the set of items agenbbtains.
We must have

> x(Bi,0—{i}) 2 x(U Bi,O-Y — Z).

€Y €Y
NSAW is equivalent to NSA plus the following condition.

Definition 7. Prices increase with agents (PIA)Let O be an
arbitrary set of agents. Letbe another agent noti®. VS C G,
we must have

x(S,0 U{a}) > x(S,0).

That is, from the perspective of agenif another agent joins in,
then the price faces for any set of items must (weakly) increase.

CLAIM 2. NSAW is equivalent to NSA plus PIA.

PROOF We first prove that NSAW implies NSA and PIA. It is
straightforward that NSAW implies NSA, so we only need to show
that NSAW implies PIA. LetR be an arbitrary set of agents. Let
a be another agent not iR. VS C @G, we can construct an agent
(denoted by) that winsS if we run x on the agents iR U {a} U
{y} (e.g, lety be single-minded o, with a very large value). Let
Y = {y}, Z = {a}, andO = RUY U Z. NSAW implies that
x(S, RUZ) = x(S,RU{a}) > x(S, R). Thatis, NSAW implies
PIA.

We now prove that NSA and PIA imply NSAW. PIA implies that

x(U Bi,O-Y —2) < X( U B;,0 —Y). NSA implies that

3 ) B0 ).

> xX(Bi,0 — Combining the two
inequalities, we obtain the NSAW condition(]

€Y

THEOREM 3. Mechanismy is FNPW if and only ify satisfies
the NSAW condition.

PROOF We first prove that ify satisfies NSAW, then the mech-
anism is FNPW. Let us consider a specific agentetO —Y — Z
be the set of agents other than herself. Yebe the set of false-
name identities: submits and keeps at the end. [&be the set of
false-name identities submits but withdraws at the end. S2,is
the set of all the identities. The set of itemseceives at the end is

U B, whereB; is the bundle won by identity. The total pricer
€Y

pays is > x(B:, O — {i}). According to NSAW, this price is at
€Y

leasty( |J B;,0—Y —Z). Thatis,z would not be any worse off
iy

if she just used a single identity to buy) B;. Whenx uses only

€Y
one identity, her optimal strategy is to report truthfully. Therefore,
if NSAW is satisfied, mechanism is FNPW.
Next, we prove that if mechanism is FNPW, theny must
satisfy NSAW. Suppose not, that is, suppose there exists some

nonintersecting sets of ageritS Z, andO — Y — Z, such that
> x(Bi, O = {i}) < x(U Bi,O =Y — Z), whereB; is the
€Y €Yy
bundle agent obtains (when we apply mechanispto the agents
in O). Let us consider a single-minded agentvho values|J B;
€Y
atexactlyx( U Bi,O—Y —Z2). If the set of other agents faced by
€Y
xisO—Y — Z, thenz has utility0 if she reports truthfully using a
single identifier. However, if instead submits multiple false-name
identitiesY + Z, keeps those ify” and withdraws those i#, then
she will obtain her desired items at a lower price and end up with
positive utility, contradicting the assumption thats FNPW. That
is, if NSAW is not satisfied, theg is not FNPW. [

4.2 A sufficient condition for FNPW

The NSAW condition in Section 4.1 leads to the following suffi-
cient condition for mechanismg to be FNPW.

Definition 8. Sufficient condition for no superadditive price
increase with withdrawal (S-NSAW).Let O be an arbitrary set of
agents. S-NSAW holds if we have both of the following conditions:

e Discounts for larger bundles (DLB).VS1,S2 € G with
S1 NSy =0, X(Sl, O) + X(SQ, O) > X(Sl U Sa, O) That
is, the sum of the prices of two disjoint sets of items must be
at least the price of the joint set.

e Prices increase with agents (PIAf.VS C G, for any agent
athatis not inO, x(S,0 U {a}) > x(S, O).

CLAIM 3. Mechanismy is FNPW ify satisfies S-NSAW.

PrROOF We only need to show that S-NSAW is stronger than
NSAW (by Theorem 3, NSAW is sufficient (and necessary)xfor
to be FNPW). Lety satisfy S-NSAW. LeD be an arbitrary set of
agents. We run mechanisgon the agents i®. We divideO into
three subgroups/, Z, andO — Y — Z. Fori € Y, let B; be the
bundle agent obtains. By PIA, we havg_, ., x(Bi, O — {i}) >
Y iey X(Bi,O =Y — 7). By DLB, we have . x(B;,0 —
Y-2)> X( L_J B;,0 —Y — Z). Combining these inequalities,

we can conclude that S-NSAW implies NSAW]

S-NSAW is a cleaner, but more restrictive condition than NSAW.
(To see why, note that even if DLB does not hold, NSA may still
hold: even ifx(S1, O) 4+ x(S2, O) < x(S1US2, 0), it may be the
case that by putting separate bids$inand.Ss, each of these bids
makes the price for the other bundle go up, so that the result is still
more expensive than buyirf§y US> as a single bundle.) We find it
easier to use S-NSAW to prove that a mechanism is FNPW (rather
than using the more complex NSAW conditidn).et us recall the
three existing FNP mechanisms (for general combinatorial auction
settings): the Set mechanism, the MB Mechanism, and the LDS
mechanism. We have already shown that LDS is not FNPW. With
the help of S-NSAW, we can prove that both Set and MB are FNPW.

CLAIM 4. Both the Set mechanism and the MB mechanism sat-
isfy the S-NSAW condition. Hence, they are FNPW.

The Set mechanism simply combines all the items into a grand
bundle. The grand bundle is then sold in a Vickrey auction. The
MB (Minimal Bundle) mechanism builds on the concept of mini-
mal bundles. A set of item§8 () C S C G) is called aminimal

5This is the same PIA condition as the one in Section 4.1.
"However, S-NSAW cannot be used to prove that a mechanism is

that corresponds to an FNPW mechanism, and there exist threenot FNPW, because it is a more restrictive condition.



bundlefor agent; if and only if v.S” ¢ S, v(7,.5) > v(i,S"). Un-

der the MB mechanism, the price of a bundlean agent faces is
equal to the highest valuation value of a bundle, which is minimal
and conflicting withS. Generally, MB coincides with Set, because
usually the grand bundle is a minimal bundle for every agent (any
smaller bundle usually gives at least slightly lower utility).

PROOF The proof of the above claim is straightforward; we
omit the details due to space constrainf.]

We will also use S-NSAW to prove that the MMVIP mechanism

that we propose (Section 5) is FNPW. The automated mechanlsmgu

design technique for generating FNPW mechanisms (Section 6) is
also based on S-NSAW.

4.3 Characterizing FNPW allocations

Todoet al.[12] gave the following characterization of the alloca-
tion rules of FNP mechanisms. We recall tB¢0;, 0_;) is the set
of items that agentwins if her reported type i8; and the reported
types of the other agents afie;. To simplify notation, we use
X (0;) in place ofX (0;, 6_;) when there is no risk of ambiguity.

Definition 9. Weak-monotonicity [1]. X is weakly monotone
if v0;,0,,0_;, we have
v(0;, X(0:)) — v(0:, X (05)) > v(0;, X (6:)) — v(0;, X (0)).

Definition 10. Sub-additivity [12]. V0;, V0,01, 02, . . .
V0.1, 05, ...,0%., V0_;, we have the following:

70ik1

>

X+Ik
(9117X+I§l( ;

v(0;, X(6:)) < l; v(05, X

(Here, X, x, (0:1) is short forX (0;;,60—; U (

ook (0)).
U

1<t<k,t#l

0it))-)

X is said to bé=NP-implementabl# there exists a payment rule
P so thatX combined withP constitutes a feasible FNP mecha-
nism. Todoet al.[12] showed thafX is FNP-implementable if and
only X satisfies both weak-monotonicity and sub-additivity.

We define allocation rul& to beFNPW-implementabli there
exists a payment rul® so thatX combined withP constitutes a
feasible FNPW mechanism. We introduce a third condition called
withdrawal-monotonicityWe prove thafX is FNPW-implementable
if and only X satisfies weak-monotonicity, sub-additivity, and
withdrawal-monotonicity.

Definition 11. Withdrawal-monotonicity. V0;,V0_;, V0, vor,
VoY, the following holds:

v(0, X (6f,0-:)) =0
X(0Y,0_;U60% = X(6;,0_;)

3
v(olLv X(QU 0*1)) < U(01U7 X(eh Q*l))
THEOREM 4. An allocation ruleX is FNPW-implementable if
and only X satisfies weak-monotonicity, sub-additivity, and

withdrawal-monotonicity.

PROOF We first prove that ifX is FNPW-implementable, then
X satisfies weak-monotonicity, sub-additivity, and
withdrawal-monotonicity. I1fX is FNPW-implementable, theX is
also FNP-implementable. Henck,satisfies both weak-monotonicity
and sub-additivity [12]; only withdrawal-monotonicity remains to
be shown. Lety be the (PORF) price function corresponding to
an FNPW mechanism that allocates accordingfto We denote
X (0;,0—;) by S. Sincev(0F, X (0F,60_,)) = 0, we have(6f, S) <

x(S,0_;) (otherwise, an agent with true tyg¢ would be better
off purchasingsS). SinceX (67,0_; U#*) = X(0;,6—;) = S, we
havev(6Y,S) > x(S,0_; U 6*) (because an agent with true type
is best off buyingS when the other agents’ types d@re; U 6%).

x is FNPW, hence it satisfies the PIA condition, by Theorem 3 and
Claim 2. So, we havg(S,0_; U68%) > x(S,0_;). Combining all

the inequalities, we get(67, X (0:,0—;)) > v(0F, X (6:,0_;)).
That is, withdrawal-monotonicity is satisfied.

Next, we prove that ifX satisfies weak-monotonicity,
sub-additivity, and withdrawal-monotonicity, théfis
FNPW-implementable. Sinc¥ satisfies both weak-monotonicity
and sub-additivity,X is FNP-implementable [12]. Latbe a (PORF)
price function that characterizes an FNP mechanism that allocates
according taX. We prove thaj must also be FNPW. We only need
to prove thaty satisfies PIA (because, according to Claim 2 and
Theorem 3, if an FNP mechanism satisfies PIA, then it is FNPW).
Supposey does not satisfy PIA. Then, there exists a set of agents
O, an agenta not in O (wherea's type is denoted by“), and
someS C G, such that(S, O) > x(S,0 U {a}). Letx(S,0) —
x(S,0U{a}) = B > 0. Letd_; be the reported types of the agents
in O. Leti be an agent that is single-minded Sywith a very large
valuation, so thak (0;,6—;) = S (we denote agerits type by0;).

We also construct an agent that is single-minded pwith valua-
tion x(S, 0) — g. We denote the type of this agent &Y. We have
X(0F,6_;) = 0 (she is not willing to payy(S,O) to purchase
S). Hencew(0F, X(0F,0_;)) = 0. We construct another agent
that is also single-minded of, with valuationy (S, OU{a}) + £.
We denote the type of this agent BY . We haveX (8Y,6_; U
%) = S = X(6;,0—;). By withdrawal-monotonicity, we must
havev (07, X (0:,0—;)) < v(8Y,X(0;,6_;)). However, on the
other handy(6/, X (6;,0-:)) = x(S,0) — £ = x(S,0U{a}) +
2 > x(S,0U{a})+2 =v(6Y, X (0:,0—;)). We have reached a
contradiction. We conclude thgthas to satisfy PIA, which implies
thaty is FNPW. HenceX is FNPW-implementable. []

5. MAXIMUM MARGINAL VALUE ITEM
PRICING MECHANISM

In this section, we introduce a new FNPW mechanism.

Definition 12. Maximum marginal value item pricing mech-
anism (MMVIP). Let O be an arbitrary set of agents. MMVIP is
characterized by the following price functign

e VS C G, x(S,0) =

pricing.
o Vse G, x(s,0) = max 1 max {v(],SU{s}) v(4,5)}.2

That is, the price an agent faces for an item is the maximum
possible marginal value that any other agent could have for
that item, where the maximum is taken over all possible al-
locations.

> ses X({s},0). Thatis,x usestem

8In this notation, we assume that the maximum over an empty set
is 0 (for presentation purpose). Such notation will also appear later
in the paper.



CLAIM 5. MMVIP is feasible and FNPW.

PROOF We first prove that MMVIP is feasible. We need to
show that, with appropriate tie-breaking, MMVIP will never allo-

cate the same item to multiple agents. Let us suppose that unde

MMVIP there is a scenario in which two agentsndj, both win

item s. Let.S; and.S; be the sets of other items (items other than

s) thati andj win at the end, respectively. Let = v(¢,5; U
{s}) — v(3,S;). Thatis,v; is i’s marginal value fors. Letv; =
v(j,8; U {s}) — v(j, S;). Thatis,v; is j's marginal value fors.
If v; > vj;, thenj has to pay at least; to win s, which is too high
for her; j is better off not winnings. Similarly, if v; < v;, thens
is better off not winnings. If v; = v;, then: andj both have to
pay at least their marginal value ferto win s. That is, they are
either indifferent between winning or not, or prefer not to win.

The only case that does not lead to a contradiction is where they
are both indifferent; any tie-breaking rule can resolve this conflict.

We then show that MMVIP is FNPW. By Claim 3, we only need
to prove that the price functiog that characterizes MMVIP sat-
isfies S-NSAW. LeD be an arbitrary set of agentgS;,S2 C G
with S1N.Sy = @, we haVQ((Sl, O)+X(S2, O) = X(S1 USQ, O),
because MMVIP uses item pricing. Hence, DLB is satisfigfl.C
G, for any agent: that is not inO, x(S,0U{a}) = > x(s,0U

seS
. ’ . /!
{a}) Egjerggﬁ} S,gr%a}{s}{v(w S"U {s}) —v(4, )}

{v(, 8" U{s}) —v(i, 9} = X x(s5,0) =

seS

Y

> max max
scs J€EO S'CG—{s}

x(S,0). Thatis, PIA is also satisfied.[]

Next, we prove two properties of the MMVIP mechanism.

Before moving on to the other property that we prove about
MMVIP, we first experimentally compare the revenue and alloca-
tive efficiency of the MMVIP mechanism and the Set mechanism,

runder the assumption that the agents’ valuations are additive.

assume that there at®0 items andl00 agents. An agent's valu-
ation for an item is drawn i.i.d. fron/(0, 1) (the uniform distri-
bution from0 to 1). The results are presented below (the numbers
shown are average ovéd000 instances):

MMVIP Set
Revenue | 98.02 56.19
Efficiency | 99.01 | 57.22

Finally, we have the following claim about MMVIP.

CLAIM 7. Among all FNPW mechanisms that use item pricing,
MMVIP has minimal payments. That is, jebe the price function
of MMVIP. Lety’ be a different price function corresponding to a
different FNPW mechanis that also uses item pricing. We have
that there always exists a set of itesi@nd a set of agent®, so
thatx’(S,0) > x(S,0).

ProoF For the sake of contradiction, let us assume that the
claim is false. That is, we assume that for every set of itéms
and every set of agent3, we havey’'(S,0) < x(S,0). Since
x # %, we have that there exists at least one set of itéins
and one set of agent® such thaty’(S,0) < x(S,0). Since
X'(8,0) = 3 csX'(5,0) andx(S,0) = 3= s x(s,0), it
follows that there exists € S such thaty'(s,0) < x(s,0).

By the definition of MMVIP, (s, O) corresponds to the maximal

CLAIM 6. Suppose we restrict the domain to additive valua- marginal value of some agejite O. That is, there exist§’ ¢ G
tions. Then, MMVIP coincides with the VCG mechanism, so that with s ¢ S’ such thaty(s, O) = v(j, S’ U {s}) — v(j,8"). We
MMVIP=VCG is FNPW and efficient. Moreover, no efficient, strategyconstruct an agent, whose valuation function is additive. Lels

proof, and individually rational mechanism achieves strictly higher valuations of items not i’ U {s} be extremely high, so that

revenue than MMVIP=VCG on any additive profile.

wins all these items under both mechanisgandx’. (We recall

PROOF When the agents’ valuations are additive, we have that that we assume consumer sovereignty for FNPW mechanisms, so

MMVIP’s item price function satisfieg(s, O) =

max Sgrgz?%s}{v(],S U{s}) —v(4,9)} = max v(j,{s}). Thus,

MMVIP is equivalent tom separate Vickrey auctions (one Vickrey

thaty, ¥’ < co everywhere.) Let’s valuation ons be (s, O) — e
(wheree is small enough so that(s,0) — e > x'(s,0)). Let
x's valuation of items inS” be 0. When the set of agents con-
sists ofx and the agents i®, we have thatr wins all the items

auction for each item), and hence to VCG (which also corresponds except for those inS’ under M. Since M is FNPW, we have

to m separate Vickrey auctions when the valuations are additive).

X'(5,0) > x'(s,{4}) (PIA). That is, when the set of agents con-

Now, for the sake of contradiction, let us assume that there exists sjsts of onlyz and j, = also wins all the items except for those

an efficient, strategy-proof, and individually rational mechanism iy s’ under M. Also, underM, j wins all of S’, because for
M that achieves higher revenue than MMVIP=VCG on atleastone any s’ € ', we havey/(s', {z}) < x(s’,{z}) = 0. However,

additive profile. Lety’ be the price function ofi/. Letx be the
price function of MMVIP. If x'(S,0) < x(S, O) for every set of
items .S and every set of additive agents then MMVIP’s rev-
enue is at least that aff on every additive profile, because due

we then have that'(s, {z}) < x(s,{z}) = x(5,0) — ¢ =
v(4, 8" U{s}) —v(j,9") — e so thatj would choose to also wig
when facingz underM. That is, undeM/, when the set of agents
consists of only: andy, s is won by both agents, contradicting the

to the efficiency of both mechanisms, we can assume without l0ss 3ssumption that\/ is feasible. Thus, assuming that the claim is
of generality that the winners and the bundles won by the winners f5se leads to a contradiction ]
are the same under both mechanisms. Hence, it must be the case

that there exists a set of itenfsand a set of additive agen¢s,

so thatx'(S,0) > x(S,0). Letz, = maxjcov(j,{s}). If an

additive agent’s valuation fos is x; + ¢ for all s € S, then her
valuation forS'is x (S, O) + |S|e. Hence, for sufficiently sma¥,

x(S,0) +|S]e < x'(S, 0), so this agent will not wirt againsiO

underM. But this contradicts the assumed efficiency\6f Hence,
the claim holds. []

6. AUTOMATED FNPW MECHANISM
DESIGN

In this section, we propose an automated mechanism design
(AMD) technique that transforms any feasible mechanism into an
FNPW mechanism. In our setting, a feasible mechanism is charac-
terized by a price functiory. We start with anyy that corresponds

The above claim essentially says that, when the agents’ valua-g ; : ; o .
. o w . A . Under this assumption, the VCG mechanism coincides with the
tions are additive, MMVIP “does _the rlg_ht thing.” MMVIP is the  pmvIP mechanismp. We also have that the MB mechanism and
only known FNP/FNPW mechanism with the above property for the Set mechanism coincide. (In our experimental setup, the grand
general combinatorial auctions. bundle is always a minimal bundle for every agent.)



to a feasible mechanisre.g, the price function of the VCG mecha- . max {x(S1US2,0) — x(51,0) — x(S2,0)}
nism). Our technique modifiegso that it satisfies S-NSAW, while $1,52CG,51N52=0
maintaining feasibility. e ma S,0—{j})+H(O —{j}) — x(S,0

We recall that for general combinatorial auction settings, there @QSQGJEO{X( b ( 17h) = x(5. 0}
are three known FNPW mechanisms (Set, MB, and MMVIP), and  \\ia have thak ™ is FNPW.
four known FNP mechanisms (the aforementioned three mecha- '
nisms, plus LDS). Though computationally expensive (like many It should be noted that, for ang, the first expression in the
other AMD techniques in other contexts), this technique has the theorem is at least (settingS; = Se = (). That is,H never takes
potential to enlarge the set of known FNPW (FNP) mechanisms. negative valuesy” is feasible by Lemma 1.
By designing tiny instances of FNPW mechanisms via automated Hooig: . .
mechanism design, we may get a better understanding of the struc- p.ROOF We prove}tlhgty satisfies S-NSAW. By Claim 3, this
ture of FNPW mechanisms, from which we can then conjecture suffices to ShOV\_/ that” is FNPW.‘
FNPW mechanisms in analytical form. Later in this section, we _Proof of DLB:LetO be an arbltrar}; set of agentESh S C G
show that in a specific setting, by starting with the VCG mech- W}Eh 51N 5 = 0, we prove thaty (81,0) + X" (52,0) >
anism, the AMD technique produces exactly the MMVIP mech- X (51055, 0). Ifatleast one of, alr}ng IS empty,chen wlog.,
anism. That is, had we not known the MMVIP mechanism, the V& assumes, = 0. In this casex™(51,0) + x7(52,0) =
AMD technique could have helped us find it (though it just so hap- X (S2, O%,: X" (51 U%, 0). It neltr}{ersl nor 5, is empty, then
pened that we discovered MMVIP before the AMD technique). It '€ havex * (51, 0) + X" (52,0) — x " (51U 82,0) = H(O)/+
remains an open question of whether new, general FNPW mecha X (51 O)+x(52, 0)—x(51U5>, 0) 2 H(O)fsfg]l?f:@{X(Slu
nisms can be found in this way. S5,0) — x(S1,0) — x(S5,0)} > 0.

. . Proof of PIA: Let O be an arbitrary set of agents. Letbe an

6.1 Technlque descrlptlon agent that is not ir0. If S is empty, then we havg” (S,0 U

LetH : ©F — [0,oo)_ be a function that maps any set_of agents f4}) = x#(5,0) = 0. V0 € S C G, x(5,0U {a}) =
O (more precisely, their reported types) to a nonnegative number (O U {a}) + x(S,0U{a}) > (x(S,0) + H(S,0) — x(S,0U

H(O). For any feasible mechanisgy we definey” as follows: {a}) +x(S,0U{a}) =x7(S,0). O
e Foranysetofagen®, V() C S C G, x(S,0) = x(S,0) This still leaves the question of how to compute fielescribed
+ H(O). in the theorem; we address this next. Giwgrfor any agent and
" any set of other types_;, we computed (f_;) using the following
e For any set of agen®®, x" (0, O) = x(0,0) = 0. dynamic programming algorithm.
That is, moving fromy to x, if we fix the reported types of the Fort =0,1,...,[6_
other agent®), then we are essentially increasing the price of every
nonempty set of items by the same amount, while keeping the price ForanyT C 6_, with |T| = ¢
of @ at0. -
hy = max S1U 82, T) —x(51,T) —
LEMMA 1. [17] V feasiblex, VH, x is feasible. 1T g 5B g, X(51 U 52 T) = X(51,T)
X(SQ, T)}
This lemma was first proved in [17]. An agent is allocated
her favorite set of items (the set that maximizes valuation minus he = max {H(T —{j}) +x(5T —{j}) -
payment) in (PORF) mechanisgn From the perspective of agent (S, 1)} =HEEIE
i, the set of types reported by the other agéhtsis fixed. That X4 25
; s o . . .
is, for 4, underx“, the price of every nonempty set of items is H(T) = max{hi, hs}.

increased by the same amouifitf_;). Hence, agent's favorite
set of items is either unchanged, or has bec6rie H (0_;) is too
large). It is thus easy to see thatifnever allocates the same item CLaim 8. If we apply the AMD technigue to a mechanism that
to more tha(lj?lone agent, then neither dgé&s That is, feasibility is already satisfies S-NSAW, the mechanism remains unchanged.
not affected:

We use the phrase “the AMD mechanism” to denote the mecha-
THEOREM 5. V feasibley, we define the following/. For any nism generated by the AMD technique starting from VCG (though

set of agent®), H(O) equals the maximum of the following two the AMD technique is not restricted to starting from VCG). Next,
values: we prove a claim that is similar to Claim 6.

9The GM-SMA mechanism [17] relies on this property. However, CLAIM 9. When we restrict the preference domain to additive
it has been shown that GM-SMA it FNP in [12]. valuations, the MMVIP, the VCG, and the AMD mechanism all co-
HIf the agents are single-minded, then in a PORF mechanism, asincide.
long as the prices of larger sets of items are more expensive, an ) )
agent's favorite set of items is either the set on which she is single- PROOF Claim 6 already shows that MMVIP and VCG coin-
minded, or the empty set. Thus, we do not need to increase thecide. All that remains to show is that VCG already satisfies S-
price of every set by the same amount. As long as we are increas-NSAW, so that by Claim 8, AMD is also the same. When the
grgbtggor%rclacseZh %? a(gfetr;]t(’as F‘;?‘ég”.tnecrsétlsi'tgﬁrtrr}‘émsae't”gnu“%hgf]‘%?%agents’ valuations are additive, the VCG mechanism’s price func-
y (i ice i whi : - ' ; .
is single-minded is too high). That is, for single-minded agents, tion x IS defined as follows: for any setsof |tenSScSC_¥ and any set
we have more flexibility in the process of transforming a feasible ©f additive agente), x(5,0) = >~ s #°, wherez* is the highest
mechanism into an FNPW mechanism. Due to space constraint, wevaluation for items among the agents i@. Itis easy to see that
do not pursue this further here. satisfies S-NSAW. [



Moreover, the next claim shows that in settings with exactly two
substitutable items, the AMD mechanism coincides with MMVIP
(but not with VCG).

CLaiM 10. In settings with exactly two substitutable items, the
AMD mechanism coincides with MMVIP.

PROOF The proof is by induction on the number of agents.
When there is only one agent, this agent faces firfoe every bun-

VCG | Set | AMD | MMVIP
Revenue | 1.285 | 1.002 | 1.221 1.221
Efficiency | 1.668 | 1.236 | 1.550 | 1.550

Valuations with complementarityThe va} and thevi{B} are
still drawn independently frorV (0, 1). For allz, vi{A’B} is set to
be (vi{A} + vi{B})(l + z;), where thex; are also drawn indepen-
dently fromU (0, 1). It turns out that, in this scenario, Set performs

dle under the VCG mechanism. This already satisfies S-NSAW, so better than AMD and MMVIP, both in terms of revenue and alloca-

by Claim 8, we do not need to increase any price in the AMD pro-
cess. Therefore, whem = 1, the AMD mechanism allocates all
the items to the only agent for free. The MMVIP mechanism does
the same. Hence, when = 1, the AMD mechanism coincides
with MMVIP. For the induction step, we assume that the two mech-
anisms coincide when < k. Whenn = k + 1, the price function

of the VCG mechanism is defined ag({A},0) = vip — vp,
x({B},0) = vip — vji, andx({AB},0) = v, 5. Here,A and

B are the two itemsv’, is the highest valuation fof by the agents

in O. v is the highest valuation foB by the agents irD. v g

is the highest combined valuation f¢#l, B} by the agents irD
(which may be obtained by splitting the items across two different

agents, or giving both to the same agent). Since the items are substi

tutable,v’y p < vi+vp. Equivalently,x({A}, O)+x({B},0) <
x({AB}, O). Therefore, in the AMD technique, the price of every
bundle has to increase by at leag{ A, B},0) — x({A4},0) —
x({B},0). Thatis, under the AMD mechanism, the price/fs

at leastv’, the price ofB is at leastw}, and the price of A, B}

is at leastv; + vp. These prices are high enough to guarantee
the PIA condition, because by the induction assumption, the AMD
mechanism coincides with MMVIP fat < k; so, it follows that
the AMD technique results in exactly these prices. They coincide
with the prices under the MMVIP mechanism. Therefore, by induc-
tion, the AMD mechanism coincides with the MMVIP mechanism

for any number of agents, when there are exactly two substitutable

items. [

tive efficiency. (MMVIP performs especially poorly when valua-
tions exhibit complementarity, because every item can potentially
have a very large marginal value to another agent, leading to prices
that are too high.)

VCG | Set | AMD | MMVIP
Revenue | 1.864 | 1.849 | 1.288 0.594
Efficiency | 2.372 | 2.365 | 1.565 | 0.721

Thus, when there are two items and five agents, among these
FNPW mechanisms, it seems that Set is most desirable if it likely
that there is significant complementarity, and AMD is most desir-

able if it is likely that there is substitutability. (We cannot use the

VCG mechanism unless we are certain that the type space makes
VCG FNPW.)

7. WORST-CASE EFFICIENCY RATIO OF
FNPW MECHANISMS

Yokoo et al. [19] proved that in general combinatorial auction
settings, there exists no efficient FNP mechanisms. [7] further
showed that, under a minor condition called 11G (described below),
the worst-case efficiency ratio of any feasible FNP mechanism is at
most 2 1

Definition 13. Independence of irrelevant good (11G) [7]. Sup-
pose agent is winning all the items. If we add an additional item
that is only wanted by, thens still wins all the items.

It remains an open question whether there are more general set-

tings in which the AMD mechanism and the MMVIP mechanism
coincide.

Finally, we compare the revenue and allocative efficiency of the
VCG mechanism, the Set mechaniénthe MMVIP mechanism,
and the AMD mechanism. It should be noted that the VCG mech-
anism is not FNPW in general. We use it as a benchmark.

We consider a combinatorial auction with two itefn$, B} and
five agents{1,2,...,5}.2® We denote agenis valuation for set
S C {A, B} byvy. We consider two scenarios, one with valua-
tions displaying substitutability, and the other with valuations dis-
playing complementarity. We randomly genera@0 instances
for each scenario.

Valuations with substitutabilityThev{*’ and they!®! are drawn

independently front/ (0, 1) (the uniform distribution fron® to 1).
For alli, v}*"?} is drawn independently frofi (max{v{*), v},

i i U

U,L-{A} + vi{B}). In this scenario, AMD and MMVIP coincide. They

perform better than the Set mechanism, both in terms of revenue

and allocative efficiency.

12The MB mechanism and the Set mechanism coincide in our exper-

imental setup (the whole bundle is every agent’s minimal bundle).

3wWe only focused on these tiny auctions because the AMD tech-

Given the agents’ reported types, the efficiency ratio of a mech-
anism is defined as the ratio between the achieved allocative effi-
ciency and the optimal allocative efficiency (payments are not taken
into consideration). The worst-case efficiency ratio of this mecha-
nism is the minimal such ratio over all possible type profiles.

Example 2. The worst-case efficiency ratio of the Set mechanism
is at Ieast% [7]. Letwv be the winning agent’s valuation for the
grand bundle. The allocative efficiency of the Set mechanism is
The optimal allocative efficiency is at mostv, since there are at
mostm winners in the optimal allocation, and a winner’s valuation
(for the items she won) is at most

Our next theorem is thag}ﬁ is a strict upper bound on the effi-
ciency ratios of feasible FNPW mechanisms. That is, the Set mech-
anism is worst-case optimal in terms of efficiency ratio. Of course,
this is only a worst-case analysis, which does not preclude FNPW
mechanisms from performing well most of the time.

THEOREM 6. The worst-case efficiency ratio of any feasible
FNPW mechanism is at mo%g, if 1IG holds, even with single-
minded bidders.

1417] also introduced the ARP mechanism, whose worst-case effi-

nique is computationally quite expensive. Nevertheless, even theCiency ratio is exactly. %= . However, the ARP mechanism is only

solutions to tiny auctions can be helpful in conjecturing more gen-
eral mechanisms.

FNP for single-minded agents. Our next result implies that ARP is
not FNPW, even with single-minded bidders.



PROOF Lety be the price function that corresponds to an FNPW
mechanism with optimal worst-case ratio. Since the Set mechanism
is FNPW, x’s worst-case efficiency ratio is at Ieaét. We denote
item< by s;. We consider the following types:

0.: the type of an agent that is single-minded on the grand bun-
dle, with valuel.

0, (i = 1,2,...,m): the type of an agent that is single-minded
on s;, with valuel — e. Here,e is a small positive number.

Scenario 1:There are two agents. Agemtas type),. Agentl
has type?; .

Scenario 2:There are two agents. Both agents have #jpe

Scenario 3:There aren + 1 agents. Agent has type),. Agent
i hastype); fori =1,2,... ,m.

We first prove that in scenario 1, agentwins. We start with
the special case ofv = 1. If x({s1},{61}) > 1 — ¢, then we
consider scenario 2. In scenario 2, both agents can not afford the
only item. That is, the efficiency ratio & Hence, we must have
x({s1},{01}) < 1—e. Thatis, in scenario 1, in the casemaf= 1,
agenta must win. The IIG condition implies that this is also true
for cases withn > 1.

Since agent is the only winner in scenario 1, we hayé{s: },
{0.}) > 1 — € (otherwise, agent would win in scenarid). e can
be made arbitrarily close & hencex({s1},{6.}) > 1.

Finally, we consider scenario 3. The price agétiaces fors;
is x({s1}, {0} U (U {6;})). According to PIA, this price is at

J#1
leasty({s1},{0.}) = 1. Thatis, agent does not win in scenario
3. By symmetry over the items, agentioes not win for al =
1,2,...,m. The efficiency ratio in this scenario is then at most
which goes tol ase goes to). [
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APPENDIX

Characterizing FNP(W) in Social Choice
Settings

Throughout the paper, we have only discussed combinatorial auc-
tions. In this section, we focus on FNP(%/)n social choice set-
tings (without payments). Specifically, we present a characteriza-

%In these settings, it does not matter whether withdrawal is allowed
or not.



tion of FNP(W) social choice functions (without payments). A so-
cial choice functionf is defined asf : {f}uOUO*U... —

Q, where® is the space of all possible types of an agent, and
{#yu©eUue?u...is the space of all possible profiles (since we
do not know how many agents there ar@)is the outcome space.
Let agent’s type bed;. Let the types of agents other thabed ;.

i's valuation for outcomey € 2 is denoted by; (0;, w).

First, we present the following straightforward characterization
of strategy-proof social choice functions.

CLAaIM 11. A social choice functiorf is strategy-proof if and
only if it satisfies the following condition¥s, 8;,6_;, we have
f(03,0-:) € argmaxg vi(0:, f(65,0-4)).

PrRoOF If the above condition is satisfied, th&, 0;,6;,0_;,
we havev; (0;, f(0;,0-,)) > vi(0;, f(0;,0_;)). Thatis, reporting
truthfully is a dominant strategy.

If reporting truthfully is a dominant strategy, thea 6;, 0;, 0_;,
we havev; (0“ f(GZ, 972)) > v; (0“ f(@{, 972)) That iS,Vi, 92', 0_i,
we havevi(éi, f(Gl,H_Z)) > maxeé Ui(ai, f(a:, 9_i)), which is

equivalent tof (6;, 0—;) € arg max,, vi(0:, f(0;,0-)). O

Thatis, an agent always receives her most-preferred choicegamo
outcomes that she can attain with some type report. We are now
ready to present the characterization of FNP(W) social choice func-
tions.

CLAIM 12. Suppose that for every outcome (2, there exists
some typ#);, € O such that{o} = argmax,/co uo,(0’) (each
o is the unique most-preferred outcome for some type). Then, a
strategy-proof and individually rational social choice functifris
FNP(W) if and only if it satisfies the following conditiowt, 6_;, 6o,
we have{f(91,071)|91 S @} B {f(@Z,G,ZU{Go})wZ S (“)} That
is, with an additional other agent, the set of outcomes that an agent
can choose decreases or stays the same.

PROOF We first show that iff is FNP(W), then the condition
must be satisfied. Suppose not, that is, for saenfe ;, 6y, there
exists some» € {f(6;,0—; U{6o})|0; € O} \ {f(6:,0-:)]0; €
©}. Then, by assumption, there exists sofec © such that
{0} = argmax,/co ug, (o). It follows that an agent facing type
profile #_; cannot obtairv with a single report, but can obtain it
by reporting bothd, and some other type (such as, by strategy-
proofnessg;). Because is her unique most-preferred outcome,
she prefers to engage in this manipulation, contradicting FNP(W).

Conversely, we show that if the condition is satisfied, tlfen
FNP(W). By assumptiony, is strategy-proof and individually ratio-
nal, so we only need to check that an agent has no incentive to use
multiple identifiers. Suppose thatis an outcome thatcan obtain
when facingd_; by submitting multiple identities. Because the set
of choices is nonincreasing in the number of identifiers used ac-
cording to the condition, it must be thate {f(0;,0—;)|0; € ©}.
Hence, there is no reason for her to use more than one idenfity.



