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Abstract
We study the classic public project problem, where
a group of agents need to decide whether or not
to build a non-excludable public project. We fo-
cus on efficient, strategy-proof, and weakly budget-
balanced mechanisms (VCG redistribution mech-
anisms). Our aim is to maximize the worst-case
efficiency ratio — the worst-case ratio between
the achieved total utility and the first-best maxi-
mum total utility. Previous studies have identi-
fied the optimal mechanism for 3 agents. It was
also conjectured that the worst-case efficiency ra-
tio approaches 1 asymptotically as the number of
agents approaches infinity. Unfortunately, no op-
timal mechanisms have been identified for cases
with more than 3 agents. We propose an asymptot-
ically optimal mechanism, which achieves a worst-
case efficiency ratio of 1, under a minor technical
assumption: we assume the agents’ valuations are
rational numbers with bounded denominators. We
also show that if the agents’ valuations are drawn
from identical and independent distributions, our
mechanism’s efficiency ratio equals 1 with prob-
ability approaching 1 asymptotically. Our results
significantly improve on previous results. The best
previously known asymptotic worst-case efficiency
ratio is 0.102. For non-asymptotic cases, our mech-
anisms also achieve better ratios than all previous
results.

1 Introduction
1.1 Problem Description
The public project problem is a classic mechanism design
problem that has been studied extensively in economics and
computer science [Mas-Colell et al., 1995; Moore, 2006;
Moulin, 1988]. In this problem, n agents decide whether or
not to build a non-excludable public project (e.g., a bridge
that can be accessed by everyone). There are two possible
outcomes: build and not build. Without loss of generality, we
assume that the project costs 1. We use θi (0 ≤ θi ≤ 1)1

1Naroditskiy et al. [2012] showed that for the objective of max-
imizing worst-case efficiency ratios, it is without loss of generality

to denote agent i’s valuation for the project if it is built. If
the decision is not to build, then everyone retains her share
of the cost, which equals 1/n. That is, agent i’s valuation
is either θi (if the project is built) or 1/n (if the project is
not built). Our model is identical to those used in exist-
ing literature on VCG redistribution mechanisms for public
project problems [Guo et al., 2011; Naroditskiy et al., 2012;
Guo et al., 2013; Guo, 2016; Guo and Shen, 2017].

We focus on mechanisms that are efficient, strategy-proof,
and weakly budget-balanced (the mechanisms should never
incur deficits). Due to a characterization result from [Holm-
ström, 1979], the only mechanisms with the above properties
are the VCG redistribution mechanisms. Under a VCG re-
distribution mechanism, we first run the VCG mechanism,
then every agent receives (or pays additionally) an amount
that is independent of her own type as her redistribution pay-
ment. Since an agent’s redistribution is independent of her
own type, this guarantees that the incentives are not affected,
therefore maintaining efficiency and strategy-proofness of
VCG. To maintain weakly budget-balance, the total amount
redistributed should never exceed the total VCG payment.
Essentially, VCG redistribution mechanisms are just Groves
mechanisms that are weakly budget-balanced.

We aim to maximize the worst-case efficiency ratio:

Definition 1. (Due to Moulin [2009]) A mechanism’s worst-
case efficiency ratio is the worst-case ratio between the
achieved total utility and the first-best total utility. Here, the
worst case is taken over all possible type profiles.

The first-best total utility is defined as the maximum total
utility assuming that the agents act unselfishly.

One way to interpret the first-best total utility is that we as-
sume the agents would voluntarily reveal their private types.
We then solve the mechanism design problem as a pure op-
timization problem, ignoring incentives altogether. The first-
best total utility often cannot be achieved by strategy-proof
mechanisms. The worst-case ratio between the achieved total
utility and the first-best total utility is then an indication of
the cost of implementing truthfulness.

to assume that the agents’ valuations (the θi) are bounded above by
the project cost (i.e., 1). Any mechanism can be easily generalized
to handle θi values that are larger than 1, and the generalization does
not reduce the mechanism’s worst-case efficiency ratio.



Under our public project problem, if the agents act un-
selfishly, then the optimal total utility (considering the weakly
budget-balance constraint) is achieved by the following trivial
mechanism: no payments are needed, build if and only if the
agents’ total valuation exceeds the project cost. It should be
noted that this trivial mechanism is only used as a benchmark
as it is not strategy-proof. The first-best total utility equals
max{

∑
θi, 1}.

It should be noted that the worst-case efficiency ratio is at
most 1 for weakly budget-balanced mechanisms. Under a mi-
nor technical assumption, we are able to derive a mechanism
whose worst-case efficiency ratio approaches 1 as the num-
ber of agents approaches infinity. Therefore, even though we
focus on strategy-proof and efficient mechanisms, for asymp-
totic cases, strategy-proofness and efficiency are “free con-
straints” — even if we drop these constraints, we cannot get
better worst-case efficiency ratios. In other words, we have
identified an asymptotically optimal weakly budget-balanced
mechanism for the public project problem, and the resulting
optimal mechanism is efficient and strategy-proof.

1.2 Related Research and Our Contributions
VCG redistribution mechanisms have been studied exten-
sively in resource allocation settings. For the single-item auc-
tion, Cavallo [Cavallo, 2006] identified an asymptotically op-
timal VCG redistribution mechanism, whose worst-case effi-
ciency ratio approaches 1 as the number of agents approaches
infinity. Guo [Guo, 2011] proposed a similar asymptotically
optimal mechanism for resource allocation with gross substi-
tutes (i.e., multi-unit auctions with non-increasing marginal
values, heterogeneous-item auctions with single demand).
For non-asymptotic cases with specific numbers of agents,
optimal VCG redistribution mechanisms have also been iden-
tified for various resource allocation settings, such as multi-
unit auctions and heterogeneous-item auctions [Guo and
Conitzer, 2009; Moulin, 2009; Gujar and Narahari, 2011;
Guo, 2012]. Manisha et.al. [Manisha et al., 2018] studied
applying Deep Learning to the design of redistribution mech-
anisms.

VCG redistribution mechanisms have also been studied ex-
tensively for the public project problem [Guo et al., 2013;
Guo et al., 2011; Naroditskiy et al., 2012; Guo, 2016;
Guo and Shen, 2017]. Unfortunately, previous research on
the public project problem has been less successful. Our pa-
per significantly improves on previous results on multiple as-
pects. We summarize the related results from previous re-
search and our contributions as follows:
Previous Results (PR) and Our Contributions (OC)

PR Naroditskiy et al. [2012] conjectured that for the pub-
lic project problem, the asymptotic worst-case efficiency
ratio can reach 1. The authors discretized the type
spaces and used Automated Mechanism Design to de-
rive the upper bounds on the worst-case efficiency ra-
tios for small n values. The upper bounds follow a pat-
tern, which shows that as n approaches infinity, the up-
per bound approaches 1. This is a conjectured result be-
cause the upper bounds are not shown to be strict. Also,
the pattern on the upper bounds was based on experi-

mental results on small n values, so it may or may not
hold for larger n.

OC We confirm that the asymptotic worst-case efficiency ra-
tio can indeed reach 1, under a minor technical assump-
tion: we assume the agents’ valuations are rational num-
bers with bounded denominators. For example, if the
agents’ valuations are expressed in terms of real-life cur-
rency values, then our assumption holds.

PR Guo [2016] proposed a mechanism with a constant
asymptotic worst-case efficiency ratio of 0.102.

OC With the aforementioned technical assumption, we have
achieved a ratio of 1. Even without the assumption,
we have identified another mechanism with a constant
asymptotic worst-case efficiency ratio of 0.5.

PR For non-asymptotic cases with specific numbers of
agents, several mechanisms have been proposed that
achieved constant worst-case efficiency ratios, including
one heuristic-based SBR mechanism [Naroditskiy et al.,
2012], another heuristic-based ABR mechanism [Guo,
2016], and mechanisms derived via Automated Mech-
anism Design (AMD) [Guo and Shen, 2017]. These
mechanisms are either computationally expensive to
generate [Guo and Shen, 2017] or the worst-case ratios
have to be calculated via numerical methods [Narodit-
skiy et al., 2012; Guo, 2016]. As a result, these mech-
anisms’ ratios have only been calculated for at most 10
agents.

OC We propose a mechanism with better worst-case effi-
ciency ratios than all previous mechanisms. Further-
more, the mechanism’s implementation takes O(n3)
complexity. The worst-case efficiency ratio has been
characterized analytically (n+1

2n ). That is, unlike previ-
ous results, our mechanism can also be used for large
n values. We present the competitive ratios of differ-
ent mechanisms in the following table. The column OC
contains the efficiency ratios of our mechanisms. The
column UB contains the conjectured upper bounds on
the efficiency ratios [Naroditskiy et al., 2012].

n SBR ABR AMD OC UB
3 0.333 0.334 0.667 0.667 0.667
4 0.354 0.459 0.600 0.625 0.666
5 0.360 0.402 0.545 0.600 0.714
6 0.394 0.386 0.497 0.583 0.868
7 n too large 0.360 0.465 0.571 0.748
8 n too large 0.352 0.444 0.563 0.755
9 n too large 0.339 0.422 0.556 0.772
10 n too large 0.336 0.405 0.550 0.882

OC Lastly, we also proved that if the agents’ valuations
are drawn from identical and independent distributions,
our mechanisms’ asymptotic efficiency ratio equals 1
with probability close to 1 (approaching 1 asymptoti-
cally). For example, if every agent’s valuation is drawn
i.i.d. from the uniform U(0, 1) distribution, then with 20
agents, the efficiency ratio is 1 with probability at least
0.954. With 50 agents, the probability becomes at least
0.991.



2 Formal Model Description
For the public project problem, anonymous2 VCG redistribu-
tion mechanisms have the following form [Naroditskiy et al.,
2012]:

• Build the public project if and only if
∑
θi ≥ 1.

• If the decision is to build, then agent i receives∑
j 6=i θj − h(θ−i).

• If the decision is not to build, then agent i receives (n−
1)/n− h(θ−i).
• h is an arbitrary function and θ−i refers to the types from

the agents other than i herself.

A VCG redistribution mechanism is characterized by the
function h. Not all h functions are valid, since we need to
enforce the weakly budget-balanced constraint.

After simplification, we have that the total payment re-
ceived by the agents is

(n− 1)max{
∑
i

θi, 1} −
∑
i

h(θ−i)

We note that max{
∑

i θi, 1} is exactly the first-best total
utility. For presentation purposes, we use S(θ) to denote this
expression, where θ is the type profile.

Therefore, a VCG redistribution mechanism characterized
by h is weakly budget-balanced if and only if

∀θ, (n− 1)S(θ) ≤
∑
i

h(θ−i)

Because all VCG redistribution mechanisms are efficient
and strategy-proof, under it, agent i’s utility equals

∑
i θi −

h(θ−i) if the decision is to build, and her utility equals 1 −
h(θ−i) if the decision is not to build. That is, agent i’s utility
equals S(θ)− h(θ−i). The total utility is then

nS(θ)−
∑
i

h(θ−i)

The mechanism has a worst-case efficiency ratio α if

∀θ, nS(θ)−
∑
i

h(θ−i) ≥ αS(θ)

That is,

∀θ,
∑
i

h(θ−i) ≤ (n− α)S(θ)

Combining the above with the weakly budget-balanced
constraint, we have

∀θ, (n− 1)S(θ) ≤
∑
i

h(θ−i) ≤ (n− α)S(θ) (1)

In conclusion, our task is to design h that satisfies In-
equality (1) with the aim of maximizing the worst-case ef-
ficiency ratio α.

2For our objective, it is without loss of generality to focus on
anonymous mechanisms.

Naroditskiy et al. [2012] derived one optimal h function for
the case of 3 agents. Guo and Shen [2017] used Automated
Mechanism Design technique and identified another optimal
solution for 3 agents. We present the latter solution below as
one of our results builds on it:

h(θ−i) = T (θ−i,
2

3
) +

1

2
T (θ−i, 1)−

1

2
T (θ1−i,

2

3
)− 1

6
(2)

T (θ−i, b) is defined as the maximum between “the sum of
the types from θ−i” and constant b. T (θ1−i, b) is defined as
the maximum between “the highest type from θ−i” and b.

Unfortunately, neither of the previous results can be gener-
alized to cases with larger numbers of agents. Naroditskiy et
al. [2012]’s manual technique only works for 3 agents. Guo
and Shen [2017]’s Automated Mechanism Design technique
can handle more than 3 agents, but like many Automated
Mechanism Design approaches, it soon reaches its computa-
tional limit around 10 agents. Also, the derived mechanisms
are not optimal when the number of agents is above 3. One
mechanism we propose in this paper is obtained by extending
the mechanism described in Equation (2). Our approach can
easily handle thousands of agents (it takes O(n3) time to cal-
culate the payments) and the achieved worst-case efficiency
ratios are also better.

3 Dimension Reduction Technique
The main challenge of designing h is its high dimension when
n is large. When n = 100, h is a function with 99 vari-
ables, which makes it nearly impossible for manual design
and computationally too expensive for techniques like Auto-
mated Mechanism Design. We have identified an effective
technique for reducing the dimension of h, which leads to
easy analysis and great worst-case ratios. We can reduce the
dimension of h by focusing on the following family of mech-
anisms:

• We randomly pick 3 distinct agents i, j and k among the
n agents.

• If an agent a is not picked, then her additional payment
h(θ−a) is set to 0.

• If agent i is picked together with j and k, then her addi-
tional payment is set to

h(θ−i) = g(θj , θk, z−ijk)

Here, z−ijk represents the sum of the types from the re-
maining n−3 agents (those that are not i, j, and k). That
is, if an agent is picked, then her additional payment de-
pends only on the types of the other two agents who are
also picked, and the sum of the types from the remaining
n− 3 agents.

By focusing on the above family of mechanisms, we are
essentially dealing with g, which has only 3 variables. By
focusing on the above family, we expect to lose on worst-
case efficiency ratios (as we are imposing constraints). On the
other hand, the design problem is now much easier to handle,



and our results show that this dimension reduction technique
leads to good worst-case efficiency ratios.3

We average over all the possible random choices to end up
with a mechanism that is deterministic and anonymous. For
agent i, there is 3/n chance of being picked, we have

h(θ−i) =
3

n(n− 1)(n− 2)

∑
j,k 6=i

g(θj , θk, z−ijk)

∑
i

h(θ−i) =
3

n(n− 1)(n− 2)

∑
i,j,k

g(θj , θk, z−ijk)

=
1

n(n− 1)(n− 2)

∑
i,j,k

(g(θj , θk, z−ijk)

+g(θi, θk, z−ijk) + g(θi, θj , z−ijk))

For presentation purposes, we introduce function f , which
is just g divided by (n− 1). We have

∑
i h(θ−i) equals

1

n(n− 2)

∑
i,j,k

(f(θj , θk, z−ijk) + f(θi, θk, z−ijk)

+f(θi, θj , z−ijk)) (3)

Recalling Inequality 1, we want the above sum (3) to be at
least (n− 1)S(θ) and at most (n−α)S(θ). Since we want α
to be as large as possible, we basically want the above sum to
be at least (n − 1)S(θ) and be as close to (n − 1)S(θ) itself
as possible. One way to work toward this goal is to design f
so that the following is at least S(θ) and be as close to S(θ)
itself as possible.

f(θj , θk, z−ijk) + f(θi, θk, z−ijk) + f(θi, θj , z−ijk) (4)

We start with a trivial scenario. If z−ijk ≥ 1, then obvi-
ously the decision is to build (and this signal can be picked
up by all of i, j, and k since this signal does not depend on
any of their types). In this case, we simply set

z ≥ 1⇒ f(a, b, z) =
a+ b

2
+
z

3
(5)

As a result, if z−ijk ≥ 1, we have

f(θj , θk, z−ijk) + f(θi, θk, z−ijk) + f(θi, θj , z−ijk)

=
θj + θk

2
+
z−ijk
3

+
θi + θk

2
+
z−ijk
3

+
θi + θj

2
+
z−ijk
3

= θi + θj + θk + z−ijk = S(θ)

Recall that our goal is to make the sum (4) to be above
S(θ) and be as close to S(θ) as possible. With the setup in
(5), we have made the sum exactly S(θ). So when z−ijk ≥ 1,

3There are many possible ways to reduce dimensions. For ex-
ample, we may randomly pick 4 agents and end up dealing with
functions with 4 variables. Or we may group the agents in other
ways (i.e., three even-sized groups instead of three individuals and a
remaining large group). We have tried different dimension reduction
methods, some also led to mechanisms with constant worst-case ef-
ficiency ratios, but the method we presented here is the one that led
to the best results.

the setup in (5) is optimal. We will stick to this setup in our
mechanisms.

If for all i, j, k, we have z−ijk ≥ 1, then by the above
setup, we have achieved an efficiency ratio of 1:∑
i

h(θ−i) =
1

n(n− 2)
n(n− 1)(n− 2)S(θ) = (n− 1)S(θ)

Lemma 1. Under the setup specified in (5), the efficiency
ratio is 1 when the sum of the types is at least 4.

Proof. If
∑

i θi ≥ 4, then z−ijk ≥ 1 for all i, j, k, because
each type is at most 1.

4 Asymptotically Optimal Mechanism
Let I(COND) be the characteristic function.

I(COND) =

{
1 COND=TRUE

0 COND=FALSE

We first introduce a technical assumption that is needed in
our proof.

Definition 2 (Bounded Precision Assumption). Under the
Bounded Precision Assumption, every agent’s type is a ra-
tional number where the denominator is bounded above by
constant C.

As mentioned earlier, the above assumption is not too re-
strictive. For example, if the agents’ valuations are expressed
in terms of real-life currency values, then our technical as-
sumption holds. Or if the agents’ valuations are expressed
using fixed-precision formats (e.g., byte-sized integers4), then
our assumption holds.

Theorem 1. Under the Bounded Precision Assumption, the
VCG redistribution mechanism characterized by the follow-
ing f is asymptotically optimal. Namely, as n goes to infinity,
the mechanism’s worst-case efficiency ratio approaches 1.

If z ≥ 1, then

f(a, b, z) =
a+ b

2
+
z

3

If z < 1, then

f(a, b, z) =
z

3
+

max{a+ b, 1− z}
3

+
I(a > 0)(max{a+ b, 1− z} −max{b, 1− z})

6

+
I(b > 0)(max{a+ b, 1− z} −max{a, 1− z})

6

+
I(a > 0 AND b > 0)(1− z)

3
(6)

The worst-case efficiency ratio equals

α = 1− 4C(4C − 1)(3n− 2− 8C)

n(n− 2)
4Of course, in this case, the project cost should also be expressed

as an integer larger than 1.



Before we prove the theorem, we discuss how we derived
the proposed mechanism. The high-level process is that we
first construct an unanonymous mechanism that has a few
properties that we need, and then anonymize it to get the
mechanism described in the theorem.

When we randomly pick three agents, we keep track of the
pick order. For example, let us say, the pick order is i, then j,
then k. We only need to consider cases where z−ijk < 1, due
to the setup described in (5).

For agent i, we set fi(θj , θk, z−ijk) to be

max{0 + θj + θk + z−ijk, 1}
= z−ijk +max{θj + θk, 1− z−ijk}

This is ensure that if θi = 0, then the above amount is exactly
S(θ).

We then move on to agent j, we set fj(θi, θk, z−ijk) to be

I(θi > 0) (max{θi + θk + z−ijk, 1} −max{θk + z−ijk, 1})
= I(θi > 0) (max{θi + θk, 1− z−ijk} −max{θk, 1− z−ijk})

The characteristic function ensures that if θi = 0, then the
above amount is 0 (i has already figured out the exact value
of S(θ), so j should not mess with it). Otherwise, if θj = 0,
the sum of fi(θj , θk, z−ijk) and fj(θi, θk, z−ijk) is exactly
S(θ).

Finally, for agent k, we set fk(θi, θj , z−ijk) to be

I(θi > 0 AND θj > 0)(1− z−ijk)

The characteristic function ensures that if either θi or θj
equals 0, then the above amount is 0.

If either θi or θj is 0, then the sum (4) is exactly S(θ). If
neither θi nor θj is 0, then the sum (4) is between S(θ) and
2S(θ).5

The mechanism proposed in the theorem is obtained by av-
eraging over the 3! = 6 possible permutations of the three
picked agents, in order to make the mechanism anonymous.
The anonymized version has two properties that we need: if
two or more agents among the three picked agents have type
0, then the sum (4) is exactly S(θ). Otherwise, the sum (4) is
between S(θ) and 2S(θ).

Now let us prove Theorem 1.

Proof. First of all, we do not need to consider type profiles
where the sum of the types is at least 4 due to Lemma 1.

The Bounded Precision Assumption assumes that an
agent’s type has the form p/q where p and q are integers, and
p ≤ q ≤ C. Therefore, the minimal non-zero type is 1/C.
That is, the total number of agents with non-zero types is at
most 4C.

Let us recall Equation 3.
∑

i h(θ−i) equals∑
i,j,k (f(θj , θk, z−ijk) + f(θi, θk, z−ijk) + f(θi, θj , z−ijk))

n(n− 2)

If at least two types among θi, θj , and θk are 0s, we have

f(θj , θk, z−ijk) + f(θi, θk, z−ijk) + f(θi, θj , z−ijk) = S(θ)

5This can be established via algebraic simplification, so we omit
the details due to space constraint.

If at most one type is 0, then we have

f(θj , θk, z−ijk) + f(θi, θk, z−ijk) + f(θi, θj , z−ijk)

is between S(θ) and 2S(θ).
We immediately have that

∑
i h(θ−i) is at least (n −

1)S(θ).
For three random picks, the probability of having at most

one 0 is at most

p =
4C

n

4C − 1

n− 1

4C − 2

n− 2
+ 3

4C

n

4C − 1

n− 1

n− 4C

n− 2

Therefore,
∑

i h(θ−i) is at most

n(n− 1)(n− 2)

n(n− 2)
(p2S(θ) + (1− p)S(θ))

=

(
(n− 1) +

4C(4C − 1)(3n− 2− 8C)

n(n− 2)

)
S(θ)

Therefore, the worst-case efficiency ratio equals

α = 1− 4C(4C − 1)(3n− 2− 8C)

n(n− 2)

When n goes to infinity, the worst-case efficiency ratio ap-
proaches 1.

Example 1. Let us consider an example where C = 10.
• If C = 10 and n = 10000, then α = 0.553.
• If C = 10 and n = 100000, then α = 0.953.
• If C = 10 and n = 1000000, then α = 0.995.
• If C = 10 and n = 10000000, then α ≈ 1.000.
We conclude this section with another asymptotic result.

Theorem 2. We assume the agents’ types are drawn indepen-
dently and identically from a distribution, with µ and σ being
the expectation and the standard deviation, respectively. We
assume µ > 0 and σ > 0. If we use the setup introduced in
(5) (true for all mechanisms proposed in this paper), then the
efficiency ratio is 1 with probability at least

1− nσ2

(nµ− 4)2
(7)

When n goes to infinity, the above probability approaches 1.

Proof. Let us consider the sum of the agents’ types, denoted
by s. The sum’s expectation and standard deviation are µ′ =
nµ and σ′ =

√
nσ. When n is large enough, µ′ = nµ is

above 4. The probability that s is less than 4 is at most

P (s < 4) ≤ P (|s−µ′| ≥ (µ′−4)) = P (|s−µ′| ≥ σ′µ
′ − 4

σ′
)

This is at most (due to Chebyshev’s inequality)

σ′2

(µ′ − 4)2
=

nσ2

(nµ− 4)2

Since µ and σ are constants, when n goes to infinity, the prob-
ability of s < 4 approaches 0. When the sum of the types s
is at least 4, our mechanism’s efficiency ratio is 1 according
to Lemma 1. Hence, asymptotically, our mechanism’s effi-
ciency ratio is 1 with probability 1.



Example 2. Let us consider an example where the agents’
types are drawn independently and identically from a uniform
distribution U(0, 1). Here, µ = 1/2 and σ2 = 1/12. Accord-
ing to Equation 7, under our mechanism, the efficiency ratio
is 1 with probability at least 1− n

3(n−8)2 .

• If n = 20, the probability is at least 0.954.

• If n = 50, the probability is at least 0.991.

• If n = 100, the probability is at least 0.996.

5 Extending the Optimal Mechanism for
Three Agents

In this section, we focus on smaller numbers of agents and
derive a mechanism that achieves better worst-case efficiency
ratios than previous results.

We extend the optimal mechanism from [Guo and Shen,
2017]. We use h3∗ to denote the optimal h function when
n = 3. h3∗ from Equation (2) can be rewritten as h3∗(a, b) =

max{a+ b,
2

3
}+ 1

2
max{a+ b, 1} − 1

2
max{a, b, 2

3
} − 1

6

Lemma 2. (Due to [Guo and Shen, 2017]): For any 0 ≤
a, b, c ≤ 1, we have

2max{a+ b+ c, 1} ≤ h3∗(a, b) + h3∗(b, c) + h3∗(a, c)

≤ 7/3max{a+ b+ c, 1}
Next, we modify h3∗ slightly into h3∗

′
(replacing a, b by

min{a, 1} and min{b, 1}, respectively, and then added a −
min{a, 1}+ b−min{b, 1}):

h3∗
′
(a, b) = a−min{a, 1}+ b−min{b, 1}

+max{min{a, 1}+min{b, 1}, 2
3
}

+
1

2
max{min{a, 1}+min{b, 1}, 1}

− 1

2
max{min{a, 1},min{b, 1}, 2

3
} − 1

6

Lemma 3. For any 0 ≤ a, b, c, we have

2max{a+ b+ c, 1} ≤ h3∗
′
(a, b) + h3∗

′
(b, c) + h3∗

′
(a, c)

≤ 7/3max{a+ b+ c, 1}
The main difference between Lemma 2 and Lemma 3 is

that we no longer require that a, b, c ≤ 1.
Finally, for all constant terms mentioned in the description

of h3∗
′
, we can scale it by a factor of t and maintain a similar

inequality to that in Lemma 3. We modify h3∗
′

into h3∗
′′

by
scaling the constants by a factor of t:

h3∗
′′
(a, b, t) = a−min{a, t}+ b−min{b, t}

+max{min{a, t}+min{b, t}, 2t
3
}

+
1

2
max{min{a, t}+min{b, t}, t}

− 1

2
max{min{a, t},min{b, t}, 2t

3
} − t
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Lemma 4. For all 0 ≤ a, b, c and 0 < t, we have

2max{a+b+c, t} ≤ h3∗
′′
(a, b, t)+h3∗

′′
(b, c, t)+h3∗

′′
(a, c, t)

≤ 7/3max{a+ b+ c, t}

Theorem 3. The VCG redistribution mechanism character-
ized by the following f has a worst-case efficiency ratio of
n+1
2n .

If z ≥ 1, then

f(a, b, z) =
a+ b

2
+
z

3

If z < 1, then

f(a, b, z) =
z

3
+
h3∗

′′
(a, b, 1− z)

2

Proof. We have that for all 0 ≤ θi, θj , θk and 0 ≤ z−ijk < 1,

f(θj , θk, z−ijk) + f(θi, θk, z−ijk) + f(θi, θj , z−ijk)

= z−ijk +
h3∗

′′
(θj , θk, 1− z−ijk)

2

+
h3∗

′′
(θi, θk, 1− z−ijk)

2
+
h3∗

′′
(θi, θj , 1− z−ijk)

2

Therefore, we have

S(θ) = max{θi + θj + θk, 1− z−ijk) + z−ijk ≤

f(θj , θk, z−ijk) + f(θi, θk, z−ijk) + f(θi, θj , z−ijk)

≤ 7/6max{θi + θj + θk, 1− z−ijk) + z−ijk

For the mechanism characterized by the above f function,∑
i h(θ−i) is at least (n−1)S(θ), as required by Inequality 1.
Next we analyze how large

∑
i h(θ−i) can be.

We first consider type profiles where the decision is to
build.

∑
i h(θ−i) is at most

1

n(n− 2)

∑
i,j,k

(7/6max{θi + θj + θk, 1− z−ijk) + z−ijk)

= (n− 1)S(θ) +
n− 1

2n
S(θ) = (n− n+ 1

2n
)S(θ)

So when the decision is to build, the corresponding worst-
case efficiency ratio is n+1

2n . We omit the case where the de-
cision is not to build due to space constraint.

In summary, for the mechanism we introduced in this sec-
tion, which does not require the Bounded Precision Assump-
tion, the worst-case efficiency ratio is n+1

2n . Asymptotically,
this is 0.5. We have included this mechanism in the table in
Subsection 1.2. This mechanism outperforms all previously
proposed mechanisms in terms of worst-case efficiency ratios
(both asymptotically and for smaller number of agents). The
mechanism’s implementation takes O(n3) complexity, as we
need to average over all possible draws of three agents.



References
[Cavallo, 2006] Ruggiero Cavallo. Optimal decision-making

with minimal waste: Strategyproof redistribution of vcg
payments. In Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS ’06, pages 882–889, New York, NY, USA,
2006. ACM.

[Gujar and Narahari, 2011] Sujit Gujar and Y. Narahari. Re-
distribution mechanisms for assignment of heterogeneous
objects. J. Artif. Intell. Res., 41:131–154, 2011.

[Guo and Conitzer, 2009] Mingyu Guo and Vincent
Conitzer. Worst-case optimal redistribution of VCG
payments in multi-unit auctions. Games and Economic
Behavior, 67(1):69–98, 2009.

[Guo and Shen, 2017] Mingyu Guo and Hong Shen. Speed
up automated mechanism design by sampling worst-case
profiles: An application to competitive VCG redistribu-
tion mechanism for public project problem. In Bo An,
Ana L. C. Bazzan, João Leite, Serena Villata, and Leen-
dert W. N. van der Torre, editors, PRIMA 2017: Principles
and Practice of Multi-Agent Systems - 20th International
Conference, Nice, France, October 30 - November 3, 2017,
Proceedings, volume 10621 of Lecture Notes in Computer
Science, pages 127–142. Springer, 2017.

[Guo et al., 2011] Mingyu Guo, Victor Naroditskiy, Vincent
Conitzer, Amy Greenwald, and Nicholas R. Jennings.
Budget-balanced and nearly efficient randomized mecha-
nisms: Public goods and beyond. In Ning Chen, Edith
Elkind, and Elias Koutsoupias, editors, Internet and Net-
work Economics - 7th International Workshop, WINE
2011, Singapore, December 11-14, 2011. Proceedings,
volume 7090 of Lecture Notes in Computer Science, pages
158–169. Springer, 2011.

[Guo et al., 2013] Mingyu Guo, Evangelos Markakis,
Krzysztof R. Apt, and Vincent Conitzer. Undominated
groves mechanisms. J. Artif. Intell. Res., 46:129–163,
2013.

[Guo, 2011] Mingyu Guo. VCG redistribution with gross
substitutes. In Wolfram Burgard and Dan Roth, editors,
Proceedings of the Twenty-Fifth AAAI Conference on Arti-
ficial Intelligence, AAAI 2011, San Francisco, California,
USA, August 7-11, 2011. AAAI Press, 2011.

[Guo, 2012] Mingyu Guo. Worst-case optimal redistribution
of VCG payments in heterogeneous-item auctions with
unit demand. In Wiebe van der Hoek, Lin Padgham,
Vincent Conitzer, and Michael Winikoff, editors, Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2012, Valencia, Spain, June 4-8, 2012 (3
Volumes), pages 745–752. IFAAMAS, 2012.

[Guo, 2016] Mingyu Guo. Competitive VCG redistribution
mechanism for public project problem. In Matteo Baldoni,
Amit K. Chopra, Tran Cao Son, Katsutoshi Hirayama, and
Paolo Torroni, editors, PRIMA 2016: Princiles and Prac-
tice of Multi-Agent Systems - 19th International Confer-
ence, Phuket, Thailand, August 22-26, 2016, Proceedings,

volume 9862 of Lecture Notes in Computer Science, pages
279–294. Springer, 2016.

[Holmström, 1979] Bengt Holmström. Groves’ scheme on
restricted domains. Econometrica: Journal of the Econo-
metric Society, pages 1137–1144, 1979.

[Manisha et al., 2018] Padala Manisha, C. V. Jawahar, and
Sujit Gujar. Learning optimal redistribution mechanisms
through neural networks. In Elisabeth André, Sven
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