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ABSTRACT University of lowa, significantly outperforms the traditional polls

We study combinatorial prediction markets where agents bet on the ©V€' the past five US presidential elections [1, 5, 6, 10]. The
sum of values at any tree node in a hierarchy of events, for example FOresight Exchange (http://www.ideosphere.com) and Hollywood
the sum of page views among all the children within a web sub- Stock Exchange (www.hsx.com_), two pla_y-money baseql_predlctlon
domain. We propose three expressive betting languages that Seer{]‘narkets, have been successful in p_redlctlng the probabilities qf var-
natural, and analyze the complexity of pricing using Hanson's log- ious e_vents on a large range qf topics, such as unresolved scientific
arithmic market scoring rule (LMSR) market make®um of ar- questions and Oscar award winners [11].

bitrary subset (SASillows agents to bet on the weighted sum of Ina typipal prediction market, agents trade securities yvith each
an arbitrary subset of valueSum with varying weights (SV\&l)- other or with a central market maker. An example security would

lows agents to set their own weights in their bets but restricts them be $l ,,On Duke to Win_the 2009 NCA.A me“’? basketb'all Cha”.‘p"

to only bet on subsets that correspond to tree nodes in a fixed hi-ONShip". Such a security pays off $1 if Duke indeed wins the title,

erarchy. We show that LMSR pricing is NP-hard for both SAS and $0 otherwise. If the market price for this security is $0.2, then
and SVW.Sum with predefined weights (SP#B0 restricts bets it means that the consensus estimated probability of Duke winning
to nodes in a hierarchy, but using predefined weights. We derive athe title is 20 per_cent at the_ time o_f _the 9“°te- The market brice
polynomial time pricing algorithm for SPW. We discuss the algo- changes ‘along Wlt.h the trading activities: more demand results in
rithm’s generalization to other betting contexts, including betting Nigher price and vise versa. . -

on maximum/minimum and betting on the product of binary val- From Las Vegas to Wall Street, nearly all operating prediction

ues. Finally, we describe a prototype we built to predict web site rkr)a(;kets aLe _singleddignf_snsional. That Ii(s, securitigfs gf differer:)t
page views and discuss the implementation issues that arose. Inds are being traded In separate mar ets, even | t ey may be
logically related. For example, the price of one security of Duke

winning the 2009 NCAA men'’s basketball championship should

Categones and SUbJeCt Descrlptors be related to the price of another security of Duke getting into the
J.4 [Computer Applications]: Social and Behavioral Sciences—  Final Four. When related securities are handled separately, esti-
Economics mate discrepancies and undesirable arbitrage opportunities arise.
To capture the underlying relationship among different securities,
General Terms we need a combinatorial market in which all allowable securities
are being traded, and the market must maintain a consistent set of
Economics, Theory prices for all the securities.
Let us consider a combinatorial prediction market on the state-
Keywords by-state results of the US presidential election. The outcome space

for such a combinatorial market is extremely largé'( consider-
ing District of Columbia). Low liquidity becomes a problem, as
the agents’ attention gets divided among exponentially many out-
comes. Generalization of standard double auctions may simply fail
1. INTRODUCTION to find any trades [7, 3]. A better idea is to implement a market
Prediction markets are powerful mechanisms for eliciting prob- maker that is willing to buy or sell any security at any time. When
ability estimates of future events. The markets’ assessment canan agent comes in, she asks for a quote of the security of her inter-
be remarkably accurate [12, 13]. The lowa Electronic Markets est. If the quoted price is lower than the price in the agent’s mind,
(IEM), a real-money based prediction market maintained by the the agent can start buying the security, until the price grows to a
— — ' . ' point that is close to the agent’s estimation. On the other hand, if
This material is based on work done primarily while Guo was the price is considered too high, the agent can start selling the se-
visiting Yahoo! Research. While at Duke, Guo is supported under curity (equivalent to buying the negation of the event). When the
NSF 11S-0812113. market gets stable, the market prices reflect the agents’ consensus
Cite as: Combinatorial Prediction Markets for Event Hierarchiesniygiu probability estimations.
Guo and David M. Pennocieroc. of 8th Int. Conf. on Autonomous In this paper, we will be focusing on a specific type of combi-
Agents and Multiagent Systems (AAMAS 2008iker, Sichman,  patorial market maker — Hanson’s logarithmic market scoring rule

ig{i&r;? Castelfranchi (eds.), May, 10-15, 2009, Budapesgary, pp. market maker (LMSR) [8, 9]. A prediction market based on LMSR
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liquidity. LMSR is becoming the standard market maker for com- tion, if a party wins the popular vote of a state, then it wins all the
binatorial setting, and it has been the subject of interest in a numberelectoral votes of that state (winner-takes-all). We can use a binary
of research papers [4]. variable to denote the election result of a state: it takes value 1 if
In principle, agents should be allowed to bet on (buy/sell secu- the Democrats win, and it takes value 0 if the Republicans win.
rities of) any event (subset of outcomes). However, when the out- The total number of electoral votes won by the Democrats is then
come space is large, pricing (computing the exact “price quote”) theweighted sunof all the binary variables, where the weights are
may take exponential time for some securities. Therefore, as a tradethe number of electoral votes of different states (e.g. Ohio has 20
off, we can restrict the set of events that are allowed to be bet on, electoral votes — its weight is 20). Betting on the number of elec-
usually through restricting the betting language. Several papers ex-toral votes won by the Democrats from a set of states is essentially
amine the balance between expressiveness and computational cormbetting on the weighted sum of the binary variables representing
plexity [7, 4, 2, 3]. This line of research was initiated by Fortnow those states.
et al. [7], followed by Chen et al. [3], in which the authors study A natural bet (security) in this context would be “the total num-
betting languages on Boolean combinatorics and permutations forber of electoral votes won by the Democrats is betweaeandv,”
market clearing problems. In Chen et al. [2], the authors analyze the = “the weighted sum of states won by the Democrats is between
computational complexity of LMSR pricing for permutations and andwv.”.
Boolean combinatorics. The authors show that for subset betting, Our paper is organized as follows: In Section 2, we review the
pair betting, and betting on conjunctions and disjunctions, pricing preliminaries of Hanson’s logarithmic market scoring rule market
for LMSR market maker is #P-hard. The work closest to our own maker. In Section 3, we propose three expressive betting languages
is that of [4]. The authors study a special case of Boolean com- that seem natural. The first betting language (SAS) allows agents to
binatorics in which the agents bet on how far a team goes in a bet on the weighted sum of an arbitrary subset of values. The sec-
single-elimination tournament. They propose a polynomial-time ond betting language (SVW) allows agents to set their own weights
algorithm for the problem of LMSR pricing in the tournament con- in their bets but restricts subsets to form a hierarchy. In Section 4
text. The authors also show that the pricing problem is NP-hard for and Section 5, we show that LMSR pricing is NP-hard for both SAS
some more general betting languages. and SVW. The third betting language (SPW) allows the agents to
In this paper, we will follow this line of research. We study com- bet on the weighted sum of selected subsets of values, where the
binatorial prediction markets in which the agents can bet on the weights are predefined and subsets form a hierarchy. We derive a
weighted sum of values that are associated with future events. Be-polynomial time pricing algorithm for SPW in Section 6. In Sec-
low we give two detailed example application contexts that involve tion 7, we discuss the algorithm’s generalization to other betting
betting on sum. We will be referring to these two example contexts contexts, including betting on maximum/minimum and betting on
throughout the paper. the product of binary values. Finally, in Section 8, we describe a
Betting on page views:The total page views or impression of a  prototype we built to predict web site page views and discuss the
subdomain of a web site (e.g. www.conferences.hu/AAMAS2009 implementation issues that arose.
is a subdomain of www.conferences.hu) is the number of visits to
this subdomain (for a given period of time). Page views is a stan- 2
dard metric for Internet advertising as it captures quantity of adver- ~*
tisements that can be supplied to the advertisers. If we can predict RULE MARKET MAKER (LMSR)
the page views of a subdomain for the coming month, that is, if we  Logarithmic market scoring rules [8, 9] are sequential versions
can predict the quantity of supply of the coming month, then we of logarithmic scoring rules Scoring rules map probability distri-
can set better prices for advertisements. Traditionally, the predic- butions and results of future events into amounts of reward. Loga-
tion has been solely based on machine learning algorithms. Pre-rithmic scoring rules arproperin the sense that when facing such
diction market improves upon the traditional approach by adding rules, risk-neutral agents will reveal their true subjective probabil-
an extra “tweaking/correcting” stage to the predicting process: We ity distributions of the future events to maximize their expected
initialize the market according to the best algorithm available, then reward.
leave it for the invisible hand to figure out the rights and wrongs.  Logarithmic market scoring rules can be interpreted as follows:
(We have implemented a prototype to predict web site page views. The market starts with some initial distribution over the outcome
More details are in Section 8.) space. When an agent comes in, she can modify the current market
A subdomain is called &af subdomain, if it contains no child distribution at her will. Her reward is then the reward, under a spe-
subdomains under it. For example, www.conferences.hu is not a cific logarithmic scoring rule, for the modified distribution, minus
leaf subdomain because it contains the child subdomain the reward for the distribution before modification. At any time, for
www.conferences.hu/AAMAS2009. The total page views of anon- any agent, since the reward for the distribution before modification
leaf subdomain is theumof the page views of its child subdo- is beyond the agent’s control, essentially, the agent can only focus

LOGARITHMIC MARKET SCORING

mains. For example, a subdomain about NCAA contains a list of
child subdomains: NCAA homepage, NCAA basketball, NCAA
football, etc. Betting on the page views of a non-leaf subdomain
is essentially betting on the sum of the page views of all its child
subdomains.

A natural bet (security) in this context would be “the page views
of subdomain x is betweem, andv. (for the coming month)” =
“the sum of page views of all the child subdomains of x is between
v1 andvs (for the coming month)”.

Betting on electoral vote count:! In the US presidential elec-

on maximizing the reward for the modified distribution. That is,
the agents always face a (proper) logarithmic scoring rule. There-
fore, it is a dominant strategy for a myopic agent to reveal her true
beliefs under LMSR.

LMSR is usually implemented as a market maker. That is, in-
stead of asking the agents to directly modify the market distribu-
tion, there is a market maker that is in charge of maintaining a con-
sistent set of prices (probabilities) for all the allowable securities,
and the agents modify the market distribution through buying or
selling securities. For example, selling securities of an outcome
is equivalent to marking down the probability of that outcome in

For simplicity, we assume all states are winner-takes-all and we ignore all third parties.



the market distribution. Obviously, trading securities is more nat- and face different levels of computational difficulty. We first in-
ural than playing with distribution over an outcome space that is troduce the SAS betting language, which is the most general one
usually exponential in size. among the three.
A generic LMSR offers securities corresponding to all outcomes.  Sum of arbitrary subset (SAS)— betting on sum of arbitrary
A security on outcomev pays off $1 ifw happens, and $0 other-  subset of the:;.
wise. At any moment, the market maker keeps track of a vector A security under SAS has the following form:
q = (qu)wen, Which indicates the number of outstanding shares
of all outcomes. That is, the number of (active) securities covering
outcomew is denoted byy,,. Q is the set of all outcomes. U1 < Z Ci%y < V2
Theinstantaneougrice for securityw under LMSR is s

whereS C {0,1,...,n}, v1, v2 and thec; are all nonnegative
integers.> We also allow bets that specify only one end of the
triple inequality.

bis a positive parameter. Whéris small, purchasing or shorting In Section 4, we will show that LMSR pricing is NP-hard even
a few securities can significantly change the market distribution. for a restricted version of SAS in which all the are required to
Whenb is large, the effect of buying or selling a few securities b€ constant (unit weights). Allowing betting on arbitrary subsets
is less noticeable, meaning the effective liquidity of the market is Makes LMSR pricing computationally infeasible. Therefore, we

e‘lw/b
Pw(q) = m

large. need to sacrifice some expressiveness. A natural step is to make

Suppose an agent wants to purchase/short one security of certain rgst_rictions on the s_ubsets that_are allowed to be bet on. Ac-
The current outstanding shares are denotedybwand after pur- tually, this is not necessarily a bad thing because chances are our
chasing/shorting, the set of outstanding shares beco@nerhen interests are focused on selected subsets anyway. We notice that

the cost of the transaction equals the integral of the instantaneoushatural events sometimes forewent hierarchies- events of inter-
price following any path fromy to . The cost can be written as ~ €Sts (What we are interested in betting on) correspond to nodes of a

C(§) — C(q), where functiorC is a cost function with the follow- tree, and the event corresponding to a non-leaf node is determined
ing form: by its child nodes. For both example contexts mentioned in the

introduction, we see such hierarchies.
Event hierarchy for betting on page view$he following tree

C(q) =blogy_e?/* describes a typical subdomain hierarchy.
TEQ Sports
FunctionC' has another meaning. At any moment, the worst-
case subsidy required to run the market maker is at r6def). If
the market starts with 0 shares on all outcomes (which is an usual NCAA .

assumption), then the worst-case subsidyligs |€2|.

In most cases, it is natural to only bet on compound securities on
collections of outcomes. For example, the compound security “It
will rain on exactly one day in the next week” is a collection of 7
securities on single outcomes: “It will rain on day x only”, for all
choices of x. A compound security’s instantaneous price is just the
sum of the instantaneous prices of all the outcomes covered by the
compound security.

Homepage Basketball Football

The page views of NCAA is the sum of the page views of its child
subdomains. A bet on the page views of NCAA is a bet on the sum
of the page views of its child subdomains, that is, the sum of the
page views of all the leaf subdomains whose ancestor is NCAA.

Event hierarchy for betting on electoral vote coumt: the US
presidential election, the state-by-state results, as well as the overall
3. BETTING LANGUAGES election result, form the following hierarchy:

In this paper, we consider combinatorial prediction markets in Overall Election Result
which the final outcomes can be represented as tuples of values.
Specifically, we consider outcome spd¢evhose elements are

Alabama Alaska  Arizona Arkansas

w = (21,82, Tn) The overall election result depends on its children. The number
wherez; € {0,1,..., N} forall i.? of electoral votes received by the Democrats in the election is the
It is easy to see that the size of the outcome spa¢#7ig- 1)". weighted sum of the results of all states. (Recall that we use bi-

For betting on page views, is the number of leaf subdomains, and  nary variables to denote the result of a state: it takes vhlfithe
N is the upper bound on the page views of the leaf subdomains. Democrats win, an€ otherwise.)

For betting on electoral vote count,is the number of US states, The tree structure of an event hierarchy determines which sub-
and N = 1 (recall that the result of a state is denoted by a binary sets are allowed to be bet on (these subsets correspond to the tree
variable). nodes). For example, for the tree below, we are allowed to bet on

We propose three expressive betting languages that seem naturalthe weighted sum of) the following subsefs:: }, {2}, {z3},
for betting on sum. They offer different levels of expressiveness, {z4},{zs}, {z1,z2, 3}, {z4, x5}, {T1, T2, T3, T4, T5}.

2|t is without loss of generality to restrict the values of theto
integers from0 to NV, as long as the; take their values from a
finite set of rational numbers. For examplegif's value is either 3Again, it is without loss of generality to restrict the valuesvef
1/7 or2/3, then(21z; — 3)’s value is eithe© or 11, which is in vz and thec; to integers, as long as;, v» and thec; are rational
{0,1,..., N} for N > 11. We can simply bet on the values of the numbers. For example, a bet 25 < 1/5z1 +1/2z2 < 3/7 can
x; after certain linear transformation. simply be rewritten a88 < 14x1 + 35z2 < 30.
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Now we are ready to introduce SVW and SPW.
Sum with varying weights (SVW) — betting on the weighted
sum of selected subsets of the Only subsets corresponding to

tree nodes are allowed to be bet on. The agents can set their own

weights in their bets.
A security under SVW has the following form:

v1 < ZCLJJL < ve
i€S
whereS corresponds to a tree nods,, v2 and thec; are integers
specified by the agentsv; and v, are nonnegative. The; are
positive.* We also allow bets that specify only one end of the triple
inequality.

In Section 5, we will show that LMSR pricing is NP-hard for
SVW for any event hierarchy (tree structure).

Sum with predefined weights (SPW}- betting on the weighted
sum of selected subsets of the Only subsets corresponding to
tree nodes are allowed to be bet on. The weights are predefined.

A security under SPW has the following form:

v < Z ity < U2
ies
whereS corresponds to a tree node, vz are nonnegative integers
specified by the agents, and theare predefined constant integers.

We also allow bets that specify only one end of the triple inequality.

In Section 6, we derive a polynomial time pricing algorithm for
the SPW betting language.

4. COMPLEXITY OF SAS

In this section, we analyze the complexity of pricing using LMSR
for the SAS betting language. We show that LMSR pricing is NP-
hard even for a restricted version of SAS in which all the weights
are required to beé (unit weights).

CLAIM 1. LMSR pricing for the SAS betting language is NP-
hard.

PROOF Recall that a security under SAS has the following form:
v1 <) es Citi < v2, whereS'is an arbitrary subset d0, . .., n},
v1, v2 and thec; are nonnegative integers. In this proof, we will
only need to consider securities with the following formy <
> ies i < ve. Thatis, we only consider securities in which all
the ¢; are equal to constarit We will show that even if agents
only bet on these restricted securities, pricing using LMSR s still
NP-hard.

Let us consider an arbitrary 3-SAT expression with binary
variableszi, 2, .. ., z,, andn. clauses. E.g.

(71 V22V zn, ) A (25 V26 Vzn, ) Ao A (21 V 21 Vo 27)

We will show that LMSR pricfng for SAS involves solving the
satisfiability problem of the above 3-SAT expression.

Recall that the outcome spa@ss the set of all tuples
w = (z1,22,...,Ts), Wherez; € {0,1,..., N} forall ;. Letus
consider a LMSR market marker for whieh= (2n, + 2)n.. For
presentation purpose, we rename theso that the outcomes are
now n tuples as follows:

(211,211, 221, 221, - - -, Znyls Znyl, UL, U1,

20,42
212, 212, 222, 2225 - - + 5 Zny 2y By, 2, U2, V2,

2n4+2

Zlngs Zlnes 22ney 22ngs -+ Zngnes Znynes Une, Un, )

2ny+2
(altogethem, rows)

Zijy Zigy Uj andvj are in{O, 1, ..
from 1 to nc.

Basically, we want to link the value of;; to the value ofz; in
the j-th clause of the 3-SAT expression under consideration. (For
eachi, we need to make sure that the values ofdfjeare the same
over differenty, sincez;’s value should be the same in all clauses.)
We want to link the value of;; to the logical negative of;. The
u; andv; are auxiliary variables.

Suppose the following securities have been purchased. (We as-
sume that there were no outstanding securities when the market
started. That is, the following securities are the only outstanding
securities.)

., N} for i from 1 to n,, andyj

1. P securities o) < z;; <
from 1 ton.

1 for all 7 from 1 to n,, and allj

2. P securities o) < z;; <
from1ton.

1 for all  from 1 to n,, and allj

3. P securities o) < u; < 1 forall j from 1 ton.
4. P securities o) < v; < 1 forall j from 1 ton,

5. P securities omd7<, z;; = 0 for all i from 1 to n,; P
securities ory_"c

i1 %ig = Ne forall i from 1 ton,
6. P securities onx;; + z;; = 1 for all i from 1 to n, and allj
from1ton.

7. P securities o0 < wj; 4+ u; + v; < 3 for all j, where
wj is the sum of three selected variables amepgandz;;
that correspond to the three literals in thi¢h clause of the
3-SAT expression under consideration. For example, if the
j-th clause of the 3-SAT expression(is; V —z2 V z3), then
wj = 215 + 225 + 235

8. @ securities orw; + u; + v; = 3 for all j, wherew; is
defined the same as above

P = (nc+1)(2ny 4+ 2)nclog(N)b
Q = (2ny, + 2)nclog(N)b

If there exists a satisfactory assignment of the 3-SAT expression,
then there exists one outcome that satisfies all the above groups
of securities®. (Let the z; be any satisfactory assignment. The
following outcome satisfies all the groups; = z; for all  andy;

Zi; = z; forall i andj; If w; = 1, thenu; = v; = 1; If w; = 2,
thenu; = 1 andv; = 0; If w; = 3, thenu; = v; = 0.)

If there exists one outcome that satisfies all the above groups of
securities, then it corresponds to a satisfactory assignment of the
3-SAT expression. One satisfactory assignment is simphy z;;
for arbitrary j. (All the variables are binary according to the first
four groups of bets. For specificthe values of the;; are the same

“If the ¢; are allowed to be zeros, then it reduces to the case of *We say an outcome satisfies the fifth group of securities if it satis-

betting on arbitrary subsets.

fies half of them 4., out of 2n,,).



over allj (either all0 or all 1) according to the fifth group of bets.  and satisfies the first seven groups of existing securities, then it
The value ofz;; andz;; are different according to the sixth group  also satisfies the eighth group of securities, which is contrary to the
of bets. That is;z; corresponds t@;; for all j. All the clauses of fact that the 3-SAT expression is not satisfiable. That is, all out-
the 3-SAT are satisfied by the according to the eighth group of  comes covered by the objective security must violate some of the
securities, sincev; + u; + v; = 3 impliesw; > 1.) first seven groups of securities.

Thatis, there exists one outcome that satisfies all the above groups The number of outstanding shares for any outcome that is cov-
of securities if and only if the 3-SAT expression has a satisfactory ered by the objective security is at ma3t2n,n. + 2n. + n, +

assignment. nyne+ne — 1)+ Qne. Therefore, the instantaneous price for such
Consider the pricing problem of the following security: an outcome is at most
ne e(P(Sn,UnG+3nc+nU71)+an)/b
Zl(wj + u; +v;) = 3ne > eq et/
3=

There are at mosV™ = N(Zmv+2ne gych outcomes. So the sum
of the instantaneous prices of all the outcomes that are covered by
the objective security is at most

This security is allowed by the SAS betting language, since itis the
sum of a subset of variables with unit weights. From now on, we
refer to this security as the objective security.
We first assume that the 3-SAT expression is satisfiable. There N@not2)ne o (PBnonet3netny —1)+Qne)/b
exists at least one outcome that satisfies all the above groups of se- b
i : - . ; Yoreqe?’
curities, and it must be covered by the objective security according €

to the eighth group of existing securities. Recall that the instan-

taneous price for outcome is p.,(q) = ﬁésf/’ whereq., =
is the number of outstanding shares for outcameThe number

of outstanding shares for an outcome that satisfies all the existing

groups of securities i® (2n,n¢ + 2nc + 1y +nune + ne) + Qne. —

e(2nv +2)ne log(N)+(P(Bnync+3ne+ny, —1)+Qne) /b
b
ZTEQ e‘IT/

e(P(snv”c+3nc+nv_1)+Q(”c+1))/b

The instantaneous price for such an outcome is Preqe?/t
e(P(Bnync+3netny)+Qne)/b Now consider an outcome that corresponds to an arbitrary as-
S oqedr/t signment of the 3-SAT expression. (E.g; = z; andz;; = —z;

for all i andj; u; = 0 andv; = 0 for all j.) The outcome satisfies
Since a compound security’s instantaneous price is the sum of thethe first seven groups of existing securities, and does not satisfy the
instantaneous prices of all the outcomes covered by the compoundobjective security. Its instantaneous price is at least
security, we have that the price of the objective security is greater

A PBnync+3ne+mny)/b
than or equal to the above expression. e "

If an outcome is not covered by the objective security, then it > reqel/?
makesw; + u; + v; # 3 for at least ong. The number of out-
standing shares for such an outcome is at i@, n. + 2n. + o(PBnync+3nctny—1)+Q(ne+1))/b
Ny +nyne +ne) + Q(ne — 1). Therefore, the instantaneous price = e i/t

for such an outcome is at most

o(PGRonct3netn,)+Q(ne—1))/b Thatis, if the 3-SAT expression is not satisfiable, then the price
of the objective security is less than or equag—to

> reael/t If there exists a LMSR pricing algorithm for SAS that takes

only P(n) time, then there exists an algorithm that solves any 3-

n_ 1 _ (2ny+2)ne n i . o - . N ) _
Ther_e areatmosv®—1 = N I.SUCh outcomes™ is SAT satisfiability problem withn,, variables inP(n) time. Since
the size of the outcome space, and there is at least one outcome that

. e . . . = (214 + 2)nc < (20, + 2)(*2v), the algorithm solves any 3-
is covered by the objective security according to our assumption). 1= (2n0 + 2)ne < (2, + )( 3 ) 9 y

- . SAT satisfiability problem withm,, variables inP(n,) time. This
So the sum of the instantaneous prices of all outcomes that are notg impossible unless P=NP. Therefore, LMSR pricing for the SAS
covered by the objective security is at most ) '

betting language is NP-hard []

(N(2nv+2)nc _ l)e(P(Snan+3nc+nv)+Q(ncfl))/b

S e 5. COMPLEXITY OF SVW
In this section, we analyze the complexity of pricing using LMSR
e(2nv+2)nc log(N)+(P(B3nynct+3netny)+Q(ne—1))/b for the SVW betting language. The proof of Claim 1 tells us that
< S odr /b if agents are allowed to bet on arbitrary subsets ofitheéhen the
TEQ

pricing problem is NP-hard even if we require unit weights. SVW
(P(3nymet Bre-trie) L Qne) /b restricts the_set of subsets that are gll_owed to be bet on (only subse_ts
_ ¢ corresponding to tree nodes are eligible), but on the other hand, it
dren ear /b still allows agents to set their own weights in the their bets. It turns
| out that the result is still negative: LMSR pricing is NP-hard for
SVW for any event hierarchy.

That is, the price of the objective security is greater than the tota
price of all the outcomes that are not covered by it. Hence, if the 3-
SAT expression is satisfiable, then the price of the objective security
is greater tharj .

Now we assume that the 3-SAT expression is not satisfiable.
There does not exist an outcome that satisfies all the existing groups PROOF Recall that a security under SVW has the following
of securities. If an outcome is covered by the objective security form: v1 < Y"._. c;x; < v2, whereS corresponds to a tree node,

CLAIM 2. LMSR pricing for the SVW betting language is NP-
hard for any event hierarchy.

i€S



v1, v2 and thec; are integers specified by the agentsandv, are Before introducing our algorithm, we first propose the following

nonnegative. The; are positive. lemmas.
For any event hierarchy, the following subsets are always al- . . )
lowed to be bet on{a;} fori = 1,2 n, and{z1, z2 Zn} LEMMA 1. Lety be a random variable associated with any
K - 3 Sy ety 1 ) IR B £

(they correspond to the leafs and the root). We will construct our €Vent. The distribution of is characterized by the outstanding

proof based on securities only on these subsets. Therefore, our reS€curities in the market. Letbe an arbitrary constant. IP(y =

sult applies to any event hierarchy. v) = p, then after |ntr?dbucmg one extra security gn= v, we

Suppose the following securities have been purchased. (We as-haveP(y = v) = #@

sume that there were no outstanding securities when the market

started. That is, the following securities are the only outstanding ~One way to interpret the above claim is that, after introducing

securities.) one extra copy of security = v, the probability ofy = v is first
magnified by a factor 0é'/*, then the distribution vector of is

nlog(N)b securities one; = 1 (ciz; = ¢;) forall i from 1 to . normalized (multiplied by some value so that the sum of all the

nlog(N)b securities or; = 0 (c;z; = 0) for all ¢ from 1 ton. elements is back to).
Consider the pricing of the following two securities: PROOF We useq = (¢, )-cq to indicate the number of out-
> iz ciwi = I (security A) andd 7, cizi = 0 (security B). standing shares of all outcomes before introducing the extra secu-
I is a specific positive integer. rity. We have
If there exists a subset of the that sum to exactly, then there
. . Z L etr/b
exists one outcomé, to, . . ., t,) Whose number of outstanding _ Zure{r|y=v}
shares is»? log(N)b, by settingt; = 1 if ¢; is in the subset of b= Y oreqel/t
numbers that sum td, andt; = 0 otherwise. This outcome is
covered by security A. For security B, the only outcome it cov- ZTemU:v} edr /b
ers is(0,0,...,0), whose number of outstanding shares is also = ;

+/b +/b
n?log(N)b. Therefore, the price of security A is at least as great 2oretrly=vy €70+ Dreriyzny €7
as the price of security B, if there exists a subset ofdhat sum After introducing the extra security, we have
exactly to/.
If there does not exist a subset of thethat sum tol, then all
outcomes covered by security A have at most — 1) log(N)b
outstanding shares. There are at m¥8t — 1 such outcomes. The

b il }e(qr+1)/b
Te{T|y=v

—T1)/b I
refriy=vy €T D0y €97

P(y=v)=Z

instantaneous price of security A is then at most pel/?
(Nn _ 1)6n(n71)log(N) - pel/b -+ (]_ — p)
doren etr/b U
N n(n—1) log(N) 12 log(N) LEMMA 2. Lety, z be two random variables that represent the
© — = c - values of two arbitrary events. The distributionipfs character-
> reqer/ >req et/ ized by the outstanding securities in the market. dgtv. be two

We notice that the right-hand side of the inequality is exactly the arbitrary constants. Leb = P(y = vy), p' = P(y = vy|z = v2)
instantaneous price of security B. That is, the price of security Ais andp” = P(y = vy|z # vz).
less than the price of security B, if there does not exist a subset of
thec; that sum exactly td.

Therefore, LMSR pricing for the SVW betting language is at

1. If we introduceM copies of security = v, into the market,
then we havéims oo P(y = vy) =p'.

least as difficult as the Subset-sum problem witpositive inte- 2. If we introduce negativd/ copies of securitg = v, (both
gers, which is NP-complete.[] M copies ofz > v, and M copies ofz < v.) into the
market, then we havém ;.. P(y = vy) = p”.
6. A POLYNOMIAL-TIME PRICING _ ol o .
ALGORITHM FOR SPW PROOF Due to space constraint, we will only present the proo

of statement 2.
The SPW betting language allows agents to bet on the weighted we useq = (¢)-cq to indicate the number of outstanding
sum of selected subsets of the. These subsets correspond t0  shares of all outcomes. We have
events that form a tree. The weights are predefined. For example,
for the following event hierarchy (values in the parenthesis are the P = Py =wvylz #v:) = Py = vy Az # v:)/ Pz # vz)
predefined weights of the nodes):

qr /b /b
retriymvgnzoa €70 Vretrlspon €

- = /
/\ ZTEQ €QT/b ZTEQ e(IT/b
T T

/b
: /R\ _ ZTG{le:Uy/\Z#UZ} e /
= —
x (3)/33'(1)\33(5) z4(1) TRR D re{rlztv.} €
1 2 3 P After shortingM copies of security = v, we haveP(y = v,)
z5(7)  x6(2) equals
The agents are allowed to bet on the valuesQtrs, . .., zs, 7L a0 -,
(Bz1 + 1za + 5x3), rrE (725 + 226), TR (124 + T25 + 226), @Nd ZTE{T‘y:vyAZ:%} e + ZTG{ﬂy:vy/\z#vz} e

r (3z1 + 1x2 + Bxs + lay + Txs + 2x6). D oreirlemuny €T S sy €T



As M goes to infinity,e(? ~*)/* goes ta for any 7. So

» e/
TE{T|y=vyAz#v,} 7"

eQT/b :p

P(y =vy)

ZTE{T\z#vz}
1

LEMMA 3. The outcome space consists of tuples aoordi-
nates. If then coordinates can be separated intaroups, and no

outstanding security mentions coordinates of different groups, then
. . . of v < r < ws,
coordinates of different groups are independent — the market can distribution vector®

be interpreted a& separate markets.

One simple example suffices to illustrate the idea behind the

above claim. Let the outcome space f&1, z2, x3)|z1 is the
number of states won by the Democrats in the electignis the
number of states won by the Republicans in the electionjs
tomorrow’s temperatufe  When the market starts (with no out-
standing securities), the; are pairwise independent (property of

LMSR). Now suppose the securities are divided into two groups.
One group of securities are on election. They have some effect on

the distribution ofz; or z2 or both. The other group of securities

are on temperature. They have some effect on the distribution of

x3. With these two groups of securitie&;1, x2) andxs are still
independent. A detailed proof is omitted due to space constraint.
Now we are ready to introduce the LMSR pricing algorithm for

by aggregating the distribution e andrs. We are done ik — 1
steps. The time complexity of each step is at most the square of
the size of the distribution vector, which is polynomialkirand N .
Therefore, the whole aggregation process is polynomial time. Now
we have the distribution of. However, this is the distribution that
considers only securities ors offspring. To getdist(r), we need
to add back in all securities an According to Lemma 1, we only
need to magnify the probability of = v by a factor ofe®™/* (.,
is the number of securities an = v: securities having the form
with v1 < v < wv9), and then normalize the

r is a leaf node:For leaf noder, computingdist(r) is much
easier. For any possible valuethe probability ofr = v is propor-
tional toe®*/®, wherex,, is the number of securities on= v.

Complexity of the algorithm

We only need to show that the routinkst(r) is polynomial
time. dist(r) is a recursive routine, but it visits any node at most
once. The number of nodes is polynomiakifeach non-leaf node
has at least two children). The non-recursive padst(r) takes
polynomial time (inn and N). Therefore,dist(r) is polynomial
time inn and N, so is our algorithm.

7. OTHER BETTING CONTEXTS

So far we have been only focusing on event hierarchies based
on weighted sum. In principle, the algorithm we proposed in the

SPW. The algorithm takes as input the set of outstanding securitiesprevious section can be applied to any betting context, as long as the

and an objective security of the following form:= v wherer is
an event (a tree node) andis a constant integer. The algorithm

events of interest form a tree structure. However, for some betting
contexts, the algorithm may not be polynomial time. A sufficient

outputs the instantaneous price (probability) of the objective secu- condition for the algorithm to be polynomial time is that

rity. (The price of a security on a range, exg. < r < v9, can be
computed a$_-"2  P(r =wv).)

v=v1

The tree nodes are random variables that take integer values from

0to CnN, whereC is the maximal weight (constant). We will use
array of sizeCnN + 1 as the data structure for storing distribution
of a random variable.

The algorithm is based on the following routidést(r): it com-

putes the market distribution of the random variable corresponding

to tree node-, considering only outstanding securitiesoandr’s
offspring (ignoring all other outstanding securities).

Outline of the algorithm

Let ro be the root of the tree. To compute the price of secu-
rity ro = v, we simply rundist(ro) (no securities ignored). To
compute the price of security = v wherer # ro, we first
run dist(ro) to get the distribution ofro. Then we recompute
dist(ro), considering an extra infinite copies of secunity= v.
By Lemma 2 dist(ro) returns the distribution of, conditional on
r = v. Then we recomputéist(ro), considering an extra negative
infinite copies of securityy = v. By Lemma 2, we get the distri-
bution of o conditional onr # v. SinceP(ro = vo) = P(ro =
vo|r = v)P(r = v) + P(ro = vo|r # v)(1 — P(r = v)) for any
vo, we can solve for the value @ (r = v) based on the computed
distributions.

Outline of the routine dist(r)

r is not a leaf nodeRecall that when computingist(r), we are
considering only securities onandr’s offspring. We further ig-
nore all securities on. The remaining securities are separated into
a few groups, with each group corresponding to a branet'safff-
spring. Letrq, 72, ..., r, ber’s children. According to Lemma 3,
the values of’s children are independent, and the distributiom of
is justdist(r;). We computelist(r;) for all i. Then we compute
the distribution ofr by aggregating allist(r;). We first compute
the distribution ofs; = r1 + r2 by aggregating the distribution of
r1 andry. We then compute the distribution o = r1 4+ r2 + 3

e The size of the set of all possible values over all tree nodes is
polynomial ofn and N .

e Letr be an arbitrary non-leaf tree node. gt ro, ..., r be
r's children.r can be written as; ©r2®. . . &k, Whered is
an associative binary operator (e.g. addition, multiplication).
Thatis,r = ((((r1 ®r2)®rs)®r4) ... Dry). The operator
@ may be different for different tree nodés.

In this section, we give two example contexts based on operators
other than sum — betting on maximum/minimum and betting on the
product of binary values. Both example contexts satisfy the above
sufficient condition. Hence for both contexts, our algorithm can be
applied (polynomial time).

Betting on maximum or minimum: Let us consider the fol-
lowing scenario. An electronic game company wants to predict
the earliest possible release date of its next generation game. The
game’s components are organized as follows:

Game

Graphics Sound Network

Characters Background
We may run a combinatorial prediction market that allows people
to bet on the maximum number of days it takes from today to finish
a component. A bet (security) would be like “Background can be

®If 2, = oo, thenP(r = v) = 1. If z, = —oc0, P(r = v) = 0.

A more general version of this condition is thatan be written
asf((((r1 @1 r2) ®a2rs)...Br—17k), Where thep; are arbitrary
binary operators and is an arbitrary function. (We assume that the
operators and the function can be evaluated in polynomial time.)




finished in 60 days”, or “The whole game can be finished in 100 subdomain. We proposed three expressive betting languages that
days”. This is an event hierarchy based on the maximum operator seem natural, and analyzed the complexity of pricing using Han-
x @y = max(z,y): the number of days it takes to finish a (non-  son’s logarithmic market scoring rule (LMSR) market mak&sm
leaf) component is the maximum of the number of days it takes to of arbitrary subset (SASJllows agents to bet on the weighted sum
finish any child component. of an arbitrary subset of valueSum with varying weights (SVW)
Betting on the product of binary values: Let us consider a allows agents to set their own weights in their bets but only allows
slightly modified scenario. The company wants to predict whether bets on nodes in a hierarchy. We showed that LMSR pricing is NP-
the game can be released before some deadline. We may run dard for both SAS and SVWsum with predefined weights (SPW)
combinatorial prediction market in which people bet on whether allows agents to bet on the weighted sum of subsets corresponding
a component can be finished on time. We use a binary value toto nodes in a hierarchy, where the weights are predefined. We de-
denote whether a component can be finished before the deadlinerived a polynomial time pricing algorithm for SPW. We discussed
A bet (security) would be like “Background can be finished before the algorithm’s generalization to other betting contexts, including
the deadline”, or “The whole game can not be finished before the betting on max/min and betting on the product of binary values.
deadline”. This is an event hierarchy based on the product of binary Finally, we described a prototype we built to predict web site page
values: a (non-leaf) component can be finished on time if and only views and discussed the implementation issues that arose.
if all its child components can be finished before the deadline.
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