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Abstract

Boolean functions have numerous applications in domains as diverse as cod-
ing theory, cryptography, and telecommunications. Heuristics play an impor-
tant role in the construction of Boolean functions with the desired properties
for a specific purpose. However, there are only sparse results trying to under-
stand the problem’s difficulty. With this work, we aim to address this issue.
We conduct a fitness landscape analysis based on Local Optima Networks
(LONs) and investigate the influence of different optimization criteria and
variation operators. We observe that the naive fitness formulation results in
the largest networks of local optima with disconnected components. Also,
the combination of variation operators can both increase or decrease the
network size. Most importantly, we observe correlations of local optima’s
fitness, their degrees of interconnection, and the sizes of the respective basins
of attraction. This can be exploited to restart algorithms dynamically and
influence the degree of perturbation of the current best solution when restart-
ing.
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1. Introduction1

Boolean functions are mathematical objects that can be uniquely repre-2

sented in truth tables and they have applications in diverse domains. Not3

only do they form a core concept in combinatorial optimization, such as in4

the satisfiability problem, but they are used to construct Hadamard ma-5

trices [1], strongly regular graphs [2], and decision diagrams [3]. In coding6

theory, every binary unrestricted code of length 2n can be interpreted as a7

set of Boolean functions [4, 5]. In sequences, bent sequences constructed us-8

ing bent Boolean functions have the lowest value of mutual correlations and9

autocorrelations, and they are used in communication systems with multiple10

access [6]. In telecommunications, bent Boolean functions are used in CDMA11

networks [7]. In cryptography, Boolean functions are used in stream and block12

ciphers as the source of nonlinearity [8, 9], the design of hash functions [10],13

or for generating pseudorandom numbers [11]. While various domains have14

different usages of Boolean functions, some shared characteristics remain.15

For instance, the ratio between the zeros and ones in the Boolean function’s16

truth table is an important characteristic for many fields. Similarly, the non-17

linearity property is not only relevant in cryptography, but also coding theory18

and sequences. Unfortunately, such widespread use of Boolean functions can19

also represent a problem since there are numerous scenarios (e.g., considering20

Boolean function size or relevant properties) for Boolean functions, and it is21

not always readily available how to construct the required Boolean function.22

There are several construction methods to construct Boolean functions:23

algebraic constructions, random search, heuristics, and combinations of those24

methods [12]. The advantages of heuristics seem to be (1) the ability to25

generate many different functions, (2) easy adjustment for different criteria,26

and (3) very good performance if the size of a Boolean function is not too27

large. On the other hand, the main drawbacks are (1) no guarantee that28

optimal solutions will be reached, (2) for every new Boolean function size,29

new optimization needs to be undertaken, and (3) due to the huge search30

space size, heuristics are limited in the Boolean function size. In practice,31

in many domains, the size n of a Boolean function is not very large. For32

instance, in error-correcting codes, the sizes usually do not surpass 10 since33

they already give codes of size 2n (i.e., codes of length 1 024). In cryptography,34

when used as vectorial Boolean functions, they rarely surpass the size 8, and35

in the stream ciphers, the size was at most 10 until recent algebraic attacks,36

and now, the size goes up to 20 inputs. At the same time, already for n > 5,37
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the exhaustive search is not possible. Note, that, for a Boolean function with38

n inputs, there are 22n possible Boolean functions.39

Heuristics is applied to evolve Boolean functions for cryptography [13] and40

combinatorial designs [14, 15]. What is more, some of the common properties41

of Boolean functions commonly evolved with heuristics are relevant is the42

telecommunications [7] and sequences [6] domains. Thus, while heuristics has43

an important role in the design of Boolean functions, there are only sparse44

results trying to understand the problem’s difficulty or when it can reach45

optimal solutions. Fitness landscape analysis (FLA) studies the influence46

of representations on the design of such heuristics, addressing the relative47

importance of features in explaining the algorithm performance [16].48

This article investigates how a range of different design decisions can affect49

the search for Boolean functions. In particular, we conduct the first FLA for50

Boolean functions considering several function sizes most occurring in the51

literature, Boolean function properties, and variation operators in isolation52

as well as in combination. As far as we know, this is also the first time that53

combined neighborhood strategies are applied (in parallel) and considered in54

an FLA context in general.55

2. Boolean Functions and Their Properties56

Let n be a positive integer, i.e., n ∈ N+. The set of all n-tuples of elements57

in the field F2 is denoted as Fn2 where F2 is the Galois field with two elements.58

The inner product of two vectors a and b is denoted by a · b and equals59

a · b =
⊕n−1

i=0 aibi. Here, “⊕” represents addition modulo two (bitwise XOR).60

An (n, 1)-function is any mapping f from Fn2 to F2 and such a function61

is called the Boolean function. A Boolean function f on Fn2 can be uniquely62

represented by a truth table (TT), which is a vector (f(0), ..., f(1)) that63

contains the function values of f , ordered lexicographically, i.e., a ≤ b.64

The Walsh-Hadamard transform Wf is a unique representation of a65

Boolean function that measures the correlation between f(x) and the lin-66

ear functions a · x [17]:67

Wf (a) =
∑
x∈Fn2

(−1)f(x)⊕a·x. (1)

A Boolean function f is balanced if it takes the value 1 exactly the same68

number 2n−1 of times as the value 0 when the input ranges over Fn2 .69
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x2 x1 x0 TT

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Table 1: Truth table of a Boolean function with 3 inputs.

The minimum Hamming distance between a Boolean function f and all70

affine functions (in the same number of variables as f) is called the nonlin-71

earity of f . The nonlinearity Nlf of a Boolean function f can be expressed72

in terms of the Walsh-Hadamard coefficients as [17]:73

Nlf = 2n−1 − 1

2
max
a∈Fn2
|Wf (a)|. (2)

In Table 1, we give an example of a Boolean function with 3 inputs.74

Clearly, this function is balanced as it has the same number of zeros and75

ones in the truth table representation (TT column).76

In Table 2, we give an example of Walsh-Hadamard calculation of the77

Boolean function from Table 1. Notice that to conform with Eq. (1), instead78

of TT, we write f(x). Also, while we write a values as integers, they should79

be considered as binary values. Finally, from column Wf (a), we see that the80

maximal absolute Walsh-Hadamard spectrum value equals 4, which means81

that nonlinearity equals 2 as per Eq. (2) (22 − 1
2
· 4 = 2).82

The maximal value of the Walsh-Hadamard spectrum equals at least 2n/2,83

which occurs in the case of bent Boolean functions [1]. Bent functions cannot84

be balanced, as their Hamming weight equals 2n − 1± 2
n
2
−1. Bent functions85

exist only for n even. The nonlinearity of bent functions equals [1, 18]:86

Nlf = 2n−1 − 2
n
2
−1. (3)

The nonlinearity of a Boolean function with n variables is bounded above87

by 2n−1− 2
n
2
−1 (the Covering Radius Bound). Clearly, this bound cannot be88
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a f(x) Wf (a)

0 1 (−1)1 + (−1)1 + (−1)0 + (−1)1 + (−1)0 + (−1)0 + (−1)1 + (−1)0 = 0
1 1 (−1)1 + (−1)0 + (−1)0 + (−1)0 + (−1)0 + (−1)1 + (−1)1 + (−1)1 = 0
2 0 (−1)1 + (−1)1 + (−1)1 + (−1)0 + (−1)0 + (−1)0 + (−1)0 + (−1)1 = 0
3 1 (−1)1 + (−1)0 + (−1)1 + (−1)1 + (−1)0 + (−1)1 + (−1)0 + (−1)0 = 0
4 0 (−1)1 + (−1)1 + (−1)0 + (−1)1 + (−1)1 + (−1)1 + (−1)0 + (−1)1 = −4
5 0 (−1)1 + (−1)0 + (−1)0 + (−1)0 + (−1)1 + (−1)0 + (−1)0 + (−1)0 = 4
6 1 (−1)1 + (−1)1 + (−1)1 + (−1)0 + (−1)1 + (−1)1 + (−1)1 + (−1)0 = −4
7 0 (−1)1 + (−1)0 + (−1)1 + (−1)1 + (−1)1 + (−1)0 + (−1)1 + (−1)1 = −4

Table 2: Calculation of the Walsh-Hadamard spectrum for a Boolean function with 3
inputs.

tight when n is odd, so for Boolean functions with an odd number of inputs,89

the maximal nonlinearity lies between 2n−1 − 2
n−1
2 and 2n−1 − 2

n
2
−1.90

While we consider here only two properties, balancedness and nonlinear-91

ity, they play important roles in different domains. For example, finding the92

covering radius for the Reed-Muller code of order one is equivalent to find-93

ing maximally nonlinear Boolean functions [17]. Note that balanced Boolean94

functions are used in cryptography and coding theory while bent functions95

are, for instance, used in sequences and mobile networks.96

3. Applications of Boolean Functions97

In the last few decades, there has been a number of papers considering98

heuristics and Boolean functions. A more careful study reveals that a large99

part of those works considers applications in cryptography, and we provide100

an overview in the following.101

To the best of our knowledge, Millan et al. were the first to apply ge-102

netic algorithms (GAs) to the evolution of cryptographically suitable Boolean103

functions [19]. There, the authors experimented with GA to evolve Boolean104

functions with high nonlinearity. Later, Millan et al. [20] continued to use105

GA to evolve Boolean functions with high nonlinearity. In conjunction with106

the GA, they used hill climbing and a resetting step to find Boolean func-107

tions with even higher nonlinearity and sizes of up to 12 inputs. Dawson et108

al. [21] experimented with two-stage optimization to generate Boolean func-109

tions. They used a combination of simulated annealing and hill-climbing with110

a cost function motivated by the Parseval theorem to find functions with high111

nonlinearity and low autocorrelation. Kavut and Melek [22] developed im-112

proved cost functions for a search that combines simulated annealing and hill113

0



climbing. With that approach, the authors were able to find some functions114

of eight and nine inputs that have a combination of nonlinearity and auto-115

correlation values previously not obtained. Millan et al. [23] proposed a new116

adaptive strategy for the local search algorithm for the generation of Boolean117

functions with high nonlinearity. Hernan et al. [24] were the first to use a118

multi-objective random bit climber to search for balanced Boolean functions119

of size up to eight inputs with high nonlinearity. Picek et al. [25] experimented120

with genetic algorithms and genetic programming to find Boolean functions121

that possess several cryptographic properties. As far as we are aware, this122

is the first application of genetic programming to the evolution of Boolean123

functions with cryptographic properties. Picek et al. investigated the sym-124

metries in highly nonlinear balanced Boolean functions with 8 inputs [26].125

Mariot and Leporati [27] used Particle Swarm Optimization to find Boolean126

functions with good trade-offs of cryptographic properties for dimensions up127

to 12.128

There have been several successful approaches where the authors could129

find bent Boolean functions for different dimensions. Hrbacek and Dvorak130

experimented with Cartesian genetic programming to evolve bent Boolean131

functions of size up to 16 inputs [30]. Picek and Jakobovic used genetic pro-132

gramming to evolve algebraic constructions used to construct bent Boolean133

functions [31].134

When considering combinatorial designs, Mariot et al. used evolution-135

ary algorithms to design binary orthogonal arrays [14] and orthogonal Latin136

squares [15].137

4. Analyzing Fitness Landscapes138

Fitness landscapes describe the relationship between search and fitness139

space [33], thus a heuristic strategy can navigate a specific landscape struc-140

ture searching for optimal solutions.141

Several cost models have been used to make specific predictions for com-142

binatorial problems, identifying which features of the fitness landscape con-143

tribute more to the problem solving complexity during the search. By iden-144

tifying these features, some improvements regarding the algorithm perfor-145

mance can be designed.146

The Local Optima Network (LON) [34] is a model designed to under-147

stand the local optima structure in combinatorial landscapes, incorporating148
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Figure 1: An example of the connectivity in local optima networks.

network analysis techniques to study fitness landscapes and problem diffi-149

culty [35].150

The fitness landscape in LON models is modeled as a graph where the151

local optima represent nodes that can be connected. A local search heuristic152

H maps the solution space S to the set of locally optimal solutions S∗. Given153

a fitness function F , a solution i in the solution space S is a local maximum154

according to a neighbourhood operator N if F (i) ≥ F (s),∀s ∈ N(i).155

Each local optima i has an associated set of basin of attraction defined156

by Bi = {s ∈ S|H(s) = i}. This set contains all the solutions that, after157

applying a local search starting from each of them, the procedure returns158

i. The cardinality of Bi is the size of the basin of attraction of i. Given a159

neighborhood operator, we assume a connection between two local optima if160

at least one solution in one basin has a neighbor solution in the other basin.161

This assumption is based on previous basin-edges models, which also do not162

consider weighted edges [34, 36, 37].163

Figure 1 shows a simplified LON for visualization purposes, illustrating164

the basin of attraction (red circles), their local optima (big blue dots), the165

solutions that converge to the local optima when applying the local search166

(small red dots), and the edges between the local optima (black lines) that167

exist due to neighborhood. Note that sophisticated heuristics might result in168

many more interconnections between the basin of attraction than what we169

have presented in the example.170

In early works, local optima networks were exhaustively extracted on171

representative NK landscape instances [38, 34]. Additionally, some works172

investigated the correlation between LON features and the performance of173

search heuristics [39, 40, 16].174

Permutation-based problems have also been subject to LON analyzes [41].175

Besides, [35] extended the LON modeling to neutral fitness landscapes. Neu-176

tral networks are connected networks of solutions of equal fitness, with pos-177
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sibly jumps between them. The authors study two neutral versions of the178

NK landscape model, tuning the amount of neutrality. The results confirmed179

that the study of neutrality could improve the heuristic search.180

Recently, some works addressed a LON variant called Compressed Lo-181

cal Optima Network. The work proposed in [42] investigated fitness land-182

scape properties for the Number Partitioning Problem, exploring whether the183

global landscape structure of the number partitioning problem changes with184

the phase transition. In [43], the authors analyzed the network features to185

find differences between the landscape structures for the Permutation Flow-186

shop Scheduling Problem (PFSP). The results provided insights into which187

features impact the performance of an iterated local search heuristic.188

The authors in [36] investigated two hill-climbing local search procedures189

for building their corresponding LONs. The LONs were analyzed to under-190

stand the difficulty of Travelling Thief Problem (TTP) instances. Among191

others, they found that certain operators can result in LONs with discon-192

nected components and that at times potentially exploitable correlations of193

node degree, basin size, and fitness exist.194

Using a similar methodology, the first landscape analysis in the greater195

field of security investigated cryptographic S-Boxes [37]. For the chosen fit-196

ness functions and two neighbourhood operators (considered in isolation), it197

was observed that the number of local optima is substantial, and a conjec-198

ture has been made that links S-Boxes of odd dimensions to their problem199

difficulty.200

Here, we use fitness landscape analysis to study the effects that algorith-201

mic design decisions have on optimizing Boolean functions’ two important202

properties. We consider three fitness functions, two initialization strategies,203

and three neighborhood operators – the latter in isolation and combination,204

resulting in seven different neighborhoods.205

5. Creating Networks with Local Search206

In order to obtain LONs of the Boolean function optimization landscape,207

we use a local search procedure that, starting from a given initial solution,208

converges to a corresponding local optimum. Along with the initial solution,209

all the intermediate solutions leading from the initial solution to the local op-210

timum are added as the members of that local optimum’s basin of attraction.211

This procedure is repeated for each solution in the set of initial solutions. Af-212

ter that, we record all unique local optima and reconstruct the connections213
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Algorithm 1 A greedy local search heuristic

1: s← initial solution
2: while there is an improvement do
3: s∗ = s
4: for each s∗∗ in N (s) do
5: if F (s∗∗) > F (s∗) then
6: s∗ ← s∗∗

7: end if
8: end for
9: s = s∗

10: end while

between their basins of attraction.214

The local search is described in Algorithm 1; it can be used with an215

arbitrary representation and an arbitrary neighborhood relationship, where216

N (.) represents the neighborhood of the given solution. In the local search,217

a new solution is accepted only if at least one solution with a better fitness218

value is found within the entire neighborhood. Note that the algorithm is219

deterministic; if there are multiple solutions with the same fitness value,220

the algorithm will retain the first one that it encounters, while the ordering221

of the solutions in the neighborhood depends on the actual neighborhood222

relation. If no better solution is found in the initial solution neighborhood,223

the algorithm will not record the initial solution as a local optimum.224

5.1. Neighborhood Operators225

This study considers the truth table representation of Boolean functions,226

which is encoded as a bitstring. We opted to use the bitstring encoding,227

even though the related works usually report graph/tree encoding as the228

best performing one, due to two reasons. First, the properties we consider in229

our fitness functions are directly connected with the truth table representa-230

tion. Consequently, exploring neighborhoods in the bitstring encoding gives231

a direct insight into the difficulty of the problem. Contrary, having a small232

change in an encoding like the tree encoding, which represents a Boolean233

function in the form of an expression, can cause a large change in the truth234

table, thus making the algorithmic design decisions more difficult. Second,235

we explore Boolean functions up to dimension 7 (i.e., when the search space236

is 2128) and related works show that for such sizes, the bitstring encoding237

achieves the same performance [13].238
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With the bitstring encoding, we use three neighborhood variants within239

Algorithm 1:240

1. The first (denoted “swap”) uses the swap operation (also known as241

“toggle”) to generate the neighborhood; the swap operation takes two242

different positions in the bitstring and exchanges them.243

2. The second variant (denoted “flip”) flips the selected bit in the bit-244

string.245

3. The third variant (denoted “insert”) uses the insertion operator; this246

operator takes a value out of the bitstring at a random position i and247

inserts it at another random position j, thus pushing the values between248

i and j by one spot to the right.249

Also, to investigate complementary capabilities, we consider the following250

four combined neighborhoods: (1) swap/flip, (2) swap/insert, (3) flip/insert,251

and (4) swap/flip/insert. Whenever we consider any of these, e.g., swap/flip,252

we first construct the neighborhood for each operator in isolation, then merge253

them in the defined order (e.g., all the swap neighbors first, then all the insert254

neighbors), and then consider this sorted sequence as the combined neighbor-255

hood that is created by considering both operators at the same time. Some256

authors also considered combined strategies by proposing algorithms that257

use local search methods based on combined neighborhood operators [44].258

However, they apply local search strategies sequentially, differently from our259

investigation: here, in each algorithm step we merge the solutions obtained260

simultaneously from all operators separately.261

As we always consider the entire neighborhood before selecting the best,262

the order of the neighborhood-operators in these combinations does not mat-263

ter, unless – as previously highlighted – the fitness of several solutions is264

identical. In that case, the algorithm will keep the first solution with the265

best fitness value it encounters, which favors first neighborhoods in the com-266

bination.267

5.2. Initialization Strategies268

In preliminary experiments, we observed that randomly sampled initial269

solutions for the subsequent hill-climbs result in very few edges in the final270

LONs. To give us a greater chance of observing connections in the LONs, and271

also for a more systematic approach, we consider “lexicographic” sampling272

(abbreviated: “lex”). This also starts with a random sample, but all subse-273

quent samples continue in lexicographic order from the first sample, based274

on the binary representation.275
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5.3. Fitness Functions for Optimization of Boolean Functions276

The first fitness function uses the nonlinearity value where the goal is to277

maximize it:278

fitness1 : Nlf . (4)

In the second fitness function, we aim to search for balanced, highly non-279

linear functions. We use a two-stage fitness in which a fitness bonus equal to280

the nonlinearity is awarded only to a perfectly balanced function; otherwise,281

the fitness is only described by the balancedness penalty. The balancedness282

penalty BAL is defined as the difference up to the balancedness (i.e., the283

number of bits that need to be changed to reach balancedness) This dif-284

ference is included in the fitness function with a negative sign to act as a285

penalty in maximization scenarios. The delta function δBAL,0 takes the value286

one when BAL = 0 and is zero otherwise.287

fitness2 : −BAL+ δBAL,0 ·Nlf . (5)

Finally, the third fitness function extends the second one to consider the288

whole Walsh-Hadamard spectrum and not only its extreme value:289

fitness3 : −BAL+ δBAL,0 · (Nlf + Indicator). (6)

The Indicator property is the normalized number of occurrences of the max-290

imal nonlinearity value in the whole spectrum (denoted #max values). Nat-291

urally, the smaller the number of such maximal values, the easier it is for the292

algorithm to reach the next nonlinearity value: Indicator = 2n− #max values
2n

.293

6. Results and Discussion294

This section analyzes the local optima networks obtained using the local295

search heuristic to reveal insights about the search space structure. Further-296

more, we study the basins of attraction and their relationship with some297

LON properties looking for additional search difficulty information.298

In our experiments, we explore the following parameters of the search299

space, which represent various design decisions that need to be made when300

setting up a heuristic search for Boolean functions:301

• Boolean functions of size 4 ≤ n ≤ 7 ;302

• three fitness functions (Equations (4), (5), and (6));303

• two initialization strategies;304
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• seven neighbourhood types (based on swap, flip, and insert);305

• number of samples (unique initial solutions).306

As it is possible to perform an exhaustive search for problem size n =307

4 – because the total number of solutions is 216 – we build the LONs by308

enumerating the search space. In other words, the Algorithm 1 is executed309

for every possible initial solution (every Boolean function in n = 4 variables).310

In larger sizes, we conduct a sampling process using a fixed sample size, which311

is the number of unique initial solutions: for each solution, we run Algorithm 1312

until no further improvements are possible.1313

Note that, because both our fitness functions (nonlinearity, balancedness,314

and the Walsh-Hadamard spectrum) and our neighbourhood enumeration315

here require fully defined functions (so that we can enumerate the complete316

neighbourhood), small structural changes would be necessary to transfer our317

approach to partially defined Boolean functions that do not define all 2n318

possible solutions.319

6.1. Topological Properties of Local Optima Networks320

In Tables 3 and 4, we show graph properties that are often used for321

LON analyses [34]. In particular, we extract the following metrics. nv and ne322

represent the number of vertices (or nodes) and the number of edges of the323

generated LON, respectively. As in many other studies, we do not consider324

weights in the edges. z is the average degree. C is the average clustering325

coefficient. Cr is the average clustering coefficient of corresponding random326

graphs (i.e., random graphs with the same number of vertices and mean327

degree). b is the average basin size. l is the average shortest path length328

between any two local optima. π is the connectivity, which indicates if the329

LON is a connected graph. Finally, S is the number of connected components330

(sub-graphs).331

In Table 3, we report on the exhaustive search for Boolean functions with332

size n = 4. We compare the three fitness functions fitness1, fitness2, and333

fitness3 using the seven neighborhood operators. We find that the number334

of vertices (nv) for flip, swap is the same for the three functions, and this335

behavior also occurs with swapflip and swapflipinsert, which indicates that336

1While it is possible to calculate the fitness values of all 232 solutions in case of
n = 5, it is not possible to conduct this many hill-climbs, including all neighborhood
calculations, which are needed to create the networks.
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the local optima and the distinct starting points are the same for these oper-337

ators. However, except for flip and swap on the three functions, the actual338

LONs are quite different, with the number of edges (ne) ranging between339

about 14 000 and 650 000.340

The average degrees (z) are higher for combined neighborhoods than for341

the isolated operators. A higher number of edges (ne) can also be noted for342

the combined neighborhoods on fitness2 and fitness3. Besides, the fitness1343

function results in greater average degree than fitness2 and fitness3. Inter-344

estingly, the LON consists of only one component for almost all instances345

for fitness2 and fitness3 (with the exception of flip and swap for fitness2346

function). In combination with the observed high mean degree and small min-347

imum distances between nodes, this can mean that a Tabu Search [45, 46]348

with restarts or a Memetic Algorithm [47] with built-in local searches, or349

even an approach with explicit niching might be able to perform well and350

explore the entire network.351

Table 4 shows the results using 10 000 lexicographic-ordered samples (i.e.,352

for n ≥ 5), where a “sample” refers to a sampled starting point and a sub-353

sequent deterministic hill-climb. We typically find several hundreds of local354

optima. This indicates that there is a very large number of local optima in355

the landscape.2356

Next, with the clustering coefficient (C) of a node i, we measure how357

close its neighbors are to being a clique, and it characterizes the extent to358

which nodes adjacent to node i are connected to each other. This determines,359

together with l, whether a graph is a small-world network (in which nodes360

are highly clustered yet the path length between them is small). We can361

observe in both tables that the LONs show a significantly higher degree of362

local clustering than their corresponding random graphs (Cr). This means363

that the local optima are connected in two ways: dense local clusters and364

sparse interconnections, which can be difficult to find and exploit for all op-365

erators. Besides this, all connected LONs in both tables have a small minimal366

path length l on average, i.e., any pair of local optima can be connected by367

traversing only a few other local optima.5mm]368

Additionally, for n = 4, we briefly investigate the extent to which sampled369

2We do not report on the results of the LONs based on random initial solutions
(and the subsequent hill-climbs), as these consisted of hundreds or even thousands of
disconnected components.
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landscapes are representative of the entire problem. To do so, we sample the370

landscapes, extract the graph properties, and calculate the correlations. The371

resulting graph properties can be seen in Table .6 in the Appendix. Table 5372

reports the Spearman correlation coefficient between the sampled landscapes373

and the completely enumerated landscapes. When the correlation is higher374

than 0.4, then we highlight it in light blue. As one might expect, random375

initialization can be used to roughly estimate of the number of components376

(S). Generally, for the lex initialization, the 10 000 samples results in higher377

correlations than for the 1 000 case; in some of the later experiments, we still378

consider 1 000 samples due to the size of the neighborhood. In detail, lex379

shows a high correlation coefficient (with the complete enumeration) for the380

degree, and it ranges between 0.4 and 0.5 for both clustering coefficient (C)381

and number of components (S).382
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Samples Initialization nv ne z C Cr b l π S
1, 000 lex -0.0623 0.1891 0.8638 0.1670 0.0675 0.2181 -0.2018 0.2582 0.3173

random -0.0172 0.2468 0.1955 -0.2335 0.2709
10, 000 lex -0.1807 0.2073 0.9210 0.5187 0.2338 0.4150 0.1632 0.3920 0.3738

random -0.0046 0.3290 0.3451 -0.3966 -0.2441 0.4353

Table 5: Spearman correlation coefficient between exhausted and sampled landscapes for
n = 4 for both lex and random initialization with 1 000 and 10 000 samples. Highlighted
values present correlation higher than 0.4

Figures 2 to 7 present the obtained networks for Boolean functions with383

size n = 4 to n = 7.384

We can see in Figures 2, 4, and 6 that swap and insert LONs, for example,385

present local dense connected components for fitness1 function, while, in386

Figures 3, 5, and 7 for flipinsert, swapflipinsert, swapflip, and swapinsert, for387

examples, LONs are connected graphs for almost all fitness functions (except388

in swapinsert for fitness1). The LONs for n = 5, n = 6, and n = 7 with lex389

initialization using 10 000 samples are connected graphs for almost all fitness390

functions and operators. For this reason, we suppressed them in this paper.391

f
it
n
es
s 1

flip insert swap

f
it
n
es
s 2

flip insert swap

f
it
n
es
s 3

flip insert swap

Figure 2: LON graphs on exhaustive n = 4 with the three fitness functions for operators
flip, insert, swap.
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f
it
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es
s 1

flipinsert swapflipinsert swapflip swapinsert

f
it
n
es
s 2

flipinsert swapflipinsert swapflip swapinsert

f
it
n
es
s 3

flipinsert swapflipinsert swapflip swapinsert

Figure 3: LON graphs on exhaustive n = 4 with the three fitness functions for combination
using operators flipinsert, swapflipinsert, swapflip, and swapinsert.

6.2. Distribution of Degree392

To characterize the networks visually, we provide three types of plots for393

our search space: (1) the cumulative degree distribution; (2) the correlation394

between the degree of local optima and their corresponding basin sizes; and395

(3) the correlation between the fitness of local optima and their corresponding396

basin sizes.397

For the first one, the cumulative degree distribution function represents398

the probability P (k) that a random node has a degree larger than k.399

Let us start with n = 4. In the left columns of Figure 8 (for neighborhoods400

in isolation) and of Figure 9 (for neighborhoods in combination), we can see401

that the degree distributions hardly decay for small degrees for all the three402

single operators type and fitness functions, while their dropping rate is very403

high for high degrees, presenting short tails to the right. This behavior shows404

that there are few nodes with a large number of neighbors. However, most405

parts of the local optima have a small number of connections. A benefit of406

these few nodes with high connectivity is that these efficiently connect the407

entire landscape: a search at a random node has more chances to move to408
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f
it
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flip insert swap

f
it
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s 2

flip insert swap

f
it
n
es
s 3

flip insert swap

Figure 4: LON graphs for lex initialization on n = 5 with fitness functions fitness1,
fitness2 and fitness3 using 1 000 samples for all three operators: flip, insert, swap.

one of these high degree nodes, and then to another node, which can be an409

efficient way to search the entire network.410

Local search strategies on networks have been investigated according to411

the degree distribution [48], particularly because some real-world network412

present properties in the topological structure that can be described by a413

power-law, or a scale-free degree distribution P (k) = k−α, where α ∈ [2, 3] is414

a scaling parameter.415

Aiming to study the cumulative degree distribution more strictly, we use416

the Kolmogorov-Smirnov test to investigate the adequacy of power-law [49]417

and exponential models [50]3. The test is performed on all distributions shown418

with a significance level of 0.1. When the p − value > 0.1, the test fails to419

reject power-law and exponential as plausible distribution models.420

Considering the distributions reported in Figure 8 for n = 4, none of421

them fits power-law nor exponential models. For Figures .13, .14, .15, and .16422

(see Appendix) with 1 000 samples, the n = 6 instances using lexicographic423

3originally proposed by [34] to describe the degree distributions for NK models
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f
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f
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Figure 5: LON graphs for lex initialization on n = 5 with fitness functions fitness1,
fitness2 and fitness3 using 1 000 samples for combination using operators flipinsert,
swapflipinsert, swapflip, and swapinsert.

sampling (lex) and fitness2 function type for flip operator, and fitness1424

function type for swap operator, fit a power-law. For Figures .17, .18, .19,425

and .20 (see Appendix) with 10 000 samples the n = 5 instances for fitness2426

function type using lexicographic sampling (lex) for flip operator fit a power-427

law, as well as for the same instance considering the fitness3 function type.428

The remaining instances do not fit a power-law nor an exponential model.429

The degree distribution contributes to search a power-law graph more430

rapidly, assuming that the number of edges per node varies from node to431

node, i.e., its edges do not allow us uniformly sample the graph, but they432

preferentially lead to high degree nodes [36]. This means that a landscape433

with few nodes and a high degree enables that a search at a given node chosen434

at random presents more chances to move to one of these high degree nodes435

instead to another node, which can efficiently search the entire network.436

To summarize our analyzes of degree distributions, as most instances437

cannot be represented with the straightforward interpretation from power-438

law models, another way to analyze the difficulty of the search space for the439

heuristics is to consider the size of the basins of attraction – which we will440
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f
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Figure 6: LON graphs for lex initialization on n = 6 with fitness functions fitness1,
fitness2 and fitness3 using 1 000 samples for all three operators: flip, insert, swap.

explore next.441

6.3. Basin Size Correlation442

Our “matrices of plots” present the basin correlation in the middle and443

right columns, i.e., Figure 8 and Figure 9 show this for n = 4, and Fig-444

ures 10, 11, and 12 show these for the larger values of n. A particular focus445

of the last three mentioned figures is the difference of 1 000 samples to 10 000446

samples.447

Let us again start with n = 4 in Figures 8 and 9. Firstly, flips and swaps448

seem to result in almost perfectly identical LONs. This is interesting, as the449

flips generate neighbors with the same Hamming distance to the original,450

and swaps generate neighbors with the Hamming distances 0 or 2.451

Secondly, the swapinsert (green) neighborhood typically results in very452

different LONs, as we have already seen in the earlier tables: the local op-453

tima are significantly less interconnected. This might result from using two454

operators that result in neighbors with the Hamming distance 0 or 2 in com-455

bination with the lexicographic sampling. Also, it appears that the use of the456

flip operator results in significantly greater basins of attraction – however, as457
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Figure 7: LON graphs for lex initialization on n = 6 with fitness functions fitness1,
fitness2 and fitness3 using 1 000 samples for combination using operators flipinsert,
swapflipinsert, swapflip, and swapinsert.

we are using the lexicographic sampling of the initial solutions, this comes458

to no big surprise.459

Thirdly, we can observe that the three different fitness functions resulted460

in quite different landscapes, and in particular, fitness1 is quite different461

from the other two. We can see some correlations for fitness1 of basin size462

with degree and fitness. At first sight, it is not clear how this information can463

be used in a heuristic. However, if techniques like self-adaptation and restarts464

are used in combination with fitness1, then the progress achieved over time465

can be used in online control to indicate the expected achievable solution466

quality. Moreover, it should be possible to estimate this characteristic in a467

search heuristic with restarts to influence the amount of perturbation that is468

performed on the current best solution (i.e., to provide the first solution for469

the next hill-climb): if a solution resulted after a local search presents poor470

fitness, then a not-too-small perturbation should be applied to determine the471

initial point for the next run, aiming to increase chances to escape the small,472

bad basin of attraction. Note that the opposite does not hold, meaning that473

a large perturbation does not guarantee success. For fitness2 and fitness3,474
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however, the correlation is a lot weaker and hence might be difficult to exploit.475

Lastly, let us highlight a few interesting aspects of the landscapes when476

n is larger, i.e., in Figures 10, 11, and 12. For example, we can observe477

(except in the case of n = 6) that the distance from the black distributions478

to the blue ones (factor 10 increase in samples) is roughly the same across479

all experiments -— in particular, this applies (roughly) to both dimensions480

in all three figures. If the increase would be limited to a shift in the y-axis,481

then this would mean that the 10-fold increase in samples does not uncover482

different structures (as expressed in different degree distributions) in the483

landscape. However, the increase along the x-axis means that the rate of484

uncovering new structures is relatively stable. We believe that the number485

of samples has yet to be further increased as the degree distributions do not486

show signs of convergence yet. n = 6 with swaps or inserts shows significantly487

different behavior, and it might be the case that substructures have not been488

discovered during a local search that resulted in interconnections between489

the local optima. This warrants additional future research.490

Besides this, we can generally observe good correlations of degrees and491

basin sizes when inserts or swaps are used for n = 5 and n = 6. We can492

also observe that for n = 7 only inserts seem to provide a decent correlation493

of degrees and basin sizes that might be exploitable, as mentioned above.494

Also, as before, the fitness of local optima seems to only carry some possibly495

exploitable information in the case of flips.496

These experimental results can summarize some insights regarding the497

search improvements. The topological properties for fitness2 and fitness3498

are LON of only one component for almost all instances, presenting high499

mean degree and small minimum distances between nodes. Besides, the lo-500

cal optima are connected as dense local clusters and sparse interconnections,501

which can be difficult to exploit. Some heuristics such as Tabu Search with502

restarts or a Memetic Algorithm with built-in local searches, or even an503

approach with explicit niching might be able to explore the entire network504

searching for promising solutions. According to the basin distribution there505

are few nodes with a large number of neighbors connecting the entire land-506

scape: a search at a random node has more chances to move to one of these507

high degree nodes, and then to another node, which can be an efficient way508

to search the entire network. Moreover flip operator seems to provide more509

information using basin size and fitness of local optima correlation than the510

others operators.511
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Figure 8: Statistical measures on exhaustive n = 4 with the three fitness functions for
operators flip (black), insert (blue), swap (red): Cumulative degree distribution in a log-
log scale (left), Correlation between the degree of local optima and their corresponding
basin sizes (middle), and Correlation between the fitness of local optima and their
corresponding basin sizes (right).

7. Conclusions512

Boolean functions are interesting mathematical objects that are widely513

used in many domains. Heuristics play an important role in their construc-514

tion. However, little is known about the actual problem difficulty and the515

effect of various design decisions. This paper conducted a fitness landscape516

analysis (FLA) to study the effect of various decisions on the optimization517

of cryptographic properties. We investigated Boolean functions considering a518

different number of function sizes, three fitness functions, seven neighborhood519

operators used in isolation as well as in combination, and two initialization520

strategies.521

We presented and analyzed the local optima networks (LONs) obtained522
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Figure 9: Statistical measures on exhaustive n = 4 with the three fitness functions for
combination using operators flipinsert (black), swapflipinsert (blue), swapflip (red), and
swapinsert (green): Cumulative degree distribution in a log-log scale (left), Correlation
between the degree of local optima and their corresponding basin sizes (middle), and
Correlation between the fitness of local optima and their corresponding basin sizes (right).

using a local search heuristic to investigate the search space structure. Fur-523

thermore, we studied the degree distribution and the correlation between the524

basins of attraction with some LON properties looking for additional infor-525

mation about the search difficulty, considering scenarios (e.g., combinations526

of neighborhoods) not investigated before.527

We have observed (1) that the naive fitness function results in LONs with528

disconnected components, (2) which can typically be avoided by moving to529

other fitness functions. However, (3) we then appear to lose a correlation530

of basin size and LON degrees. (4) For our largest n = 7 (i.e., when the531

search space is 2128), inserts appear to provide the largest possible exploitable532

correlation of basin sizes, local optima degrees, and local optima fitness.533

In this paper, we concentrated on Boolean functions with 4 to 7 variables.534

In future work, we plan to extend our analysis up to 10 variables (i.e., up535
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Figure 10: Statistical measures for lex initialization on n = 5 with fitness functions
fitness2 and fitness3 using 1 000 (black) and 10 000 (blue) samples for all three oper-
ators: Cumulative degree distribution in a log-log scale (left), Correlation between the
degree of local optima and their corresponding basin sizes (middle), and Correlation
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Figure 11: Statistical measures for lex initialization on n = 6 with fitness functions
fitness2 and fitness3 using 1 000 (black) and 10 000 (blue) samples for all three oper-
ators: Cumulative degree distribution in a log-log scale (left), Correlation between the
degree of local optima and their corresponding basin sizes (middle), and Correlation be-
tween the fitness of local optima and their corresponding basin sizes (right). Note that,
in a few cases in the left column, no black line can be drawn as not enough points exist
for a log-log plot.
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Figure 12: Statistical measures for lex initialization on n = 7 with fitness functions
fitness2 and fitness3 using 1 000 (black) and 10 000 (blue) samples for all three oper-
ators: Cumulative degree distribution in a log-log scale (left), Correlation between the
degree of local optima and their corresponding basin sizes (middle), and Correlation
between the fitness of local optima and their corresponding basin sizes (right).



to 1 024 bits), which will require new approaches for evaluating complete536

neighborhoods.537
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Appendix with Supplemental Material698

We make use of the appendix in order to provide additional visualizations of699

the results. In particular:700

1. n = 4: Table .6 shows the metrics when considering the sample process701

for n = 4 for both lex and random initialization with 1 000 and 10 000702

samples.703

2. n = 5: Figure .13 shows the difference between the two initialization704

strategies, which we had not visualized before. Figure .14 shows the705

complex neighborhoods for 1 000 samples.706

3. n = 6: Figure .15 shows the individual neighborhoods for 1 000 samples.707

Figure .16 shows the complex neighborhoods for 1 000 samples.708

4. Figures .17-.20 show, for 10 000 samples, the results for the neighbor-709

hoods in isolation and in combination for fitness2 and fitness3.710
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Samples Initialization Function Operator nv ne z C Cr b l π S

1 000 lex fitness1
flip 121 520 8.5950 0.3526 0.0858 9.0000 − 0 2
insert 438 3363 15.3562 0.5590 0.0381 2.8607 − 0 13
swap 306 1948 12.7320 0.6407 0.0424 4.7516 − 0 14
flipinsert 182 2494 27.4066 0.5753 0.1508 6.6374 2.0764 1 1
swapflip 306 3514 22.9673 0.4806 0.0763 4.7516 3.0680 1 1
swapflipinsert 363 5279 29.0854 0.4869 0.0807 4.3140 2.9272 1 1
swapinsert 363 3325 18.3196 0.6810 0.0492 4.3140 − 0 11

fitness2
flip 185 849 9.1784 0.3165 0.0494 5.2973 − 0 2
insert 626 5660 18.0831 0.4115 0.0297 2.0272 − 0 11
swap 379 2236 11.7995 0.5123 0.0292 4.3140 − 0 20
flipinsert 185 2132 23.0486 0.4563 0.1244 5.4216 − 0 2
swapflip 379 3416 18.0264 0.4235 0.0458 4.3140 − 0 2
swapflipinsert 382 4208 22.0314 0.4484 0.0578 4.2749 − 0 2
swapinsert 382 3005 15.7330 0.5823 0.0392 4.2749 − 0 19

fitness3
flip 173 802 9.2717 0.3259 0.0588 5.5954 − 0 2
insert 630 5630 17.8730 0.4157 0.0301 2.0397 − 0 9
swap 387 2334 12.0620 0.5106 0.0333 4.2765 − 0 19
flipinsert 173 2054 23.7457 0.4820 0.1400 5.7977 − 0 2
swapflip 387 3650 18.8630 0.4224 0.0459 4.2765 − 0 2
swapflipinsert 390 4470 22.9231 0.4484 0.0600 4.2385 − 0 2
swapinsert 390 3131 16.0564 0.5924 0.0409 4.2385 − 0 19

1 000 random fitness1
flip 972 1 0.0021 0.0000 0.0000 3.1173 − 0 971
insert 835 0 0.0000 0.0000 0.0000 2.1449 − 0 835
swap 972 1 0.0021 0.0000 0.0000 2.6173 − 0 971
flipinsert 987 0 0.0000 0.0000 0.0000 2.5502 − 0 987
swapflip 972 1 0.0021 0.0000 0.0000 2.6173 − 0 971
swapflipinsert 987 3 0.0061 0.0000 0.0000 2.5380 − 0 984
swapinsert 987 2 0.0041 0.0000 0.0000 2.5380 − 0 985

fitness2
flip 803 0 0.0000 0.0000 0.0000 2.9178 − 0 803
insert 692 0 0.0000 0.0000 0.0000 2.2934 − 0 692
swap 832 6 0.0144 0.0000 0.0000 2.9075 − 0 826
flipinsert 832 0 0.0000 0.0000 0.0000 2.9014 − 0 832
swapflip 832 8 0.0192 0.0000 0.0000 2.9123 − 0 824
swapflipinsert 832 10 0.0240 0.0000 0.0000 2.9038 − 0 822
swapinsert 832 8 0.0192 0.0000 0.0000 2.8990 − 0 824

fitness3
flip 803 0 0.0000 0.0000 0.0000 2.9178 − 0 803
insert 704 0 0.0000 0.0000 0.0000 2.2884 − 0 704
swap 844 6 0.0142 0.0000 0.0000 2.8945 − 0 838
flipinsert 844 0 0.0000 0.0000 0.0000 2.8886 − 0 844
swapflip 844 8 0.0190 0.0000 0.0000 2.8993 − 0 836
swapflipinsert 844 12 0.0284 0.0000 0.0000 2.8910 − 0 832
swapinsert 844 10 0.0237 0.0000 0.0000 2.8863 − 0 834

10 000 lex fitness1
flip 732 6286 17.1749 0.3105 0.0233 14.2514 2.9103 1 1
insert 3574 71540 40.0336 0.3816 0.0113 3.3898 − 0 11
swap 1785 32130 36.0000 0.4864 0.0199 7.3647 − 0 14
flipinsert 938 37871 80.7484 0.4886 0.0855 11.9872 2.1088 1 1
swapflip 1785 52112 58.3888 0.3814 0.0326 7.3647 3.1423 1 1
swapflipinsert 2035 88221 86.7037 0.3988 0.0429 6.8590 3.0030 1 1
swapinsert 2035 62664 61.5862 0.5420 0.0302 6.8590 − 0 14

fitness2
flip 1835 13696 14.9275 0.2121 0.0085 5.3232 − 0 2
insert 5289 99516 37.6313 0.2836 0.0072 2.1624 − 0 8
swap 3797 56380 29.6971 0.3364 0.0078 4.3303 − 0 14
flipinsert 1812 48743 53.8002 0.2743 0.0299 5.5425 2.9435 1 1
swapflip 3796 75460 39.7576 0.2920 0.0105 4.3314 4.2448 1 1
swapflipinsert 3840 107445 55.9609 0.2797 0.0147 4.2745 3.8454 1 1
swapinsert 3841 87823 45.7292 0.3417 0.0118 4.2734 − 0 14

fitness3
flip 1707 13253 15.5278 0.2230 0.0082 5.6473 − 0 2
insert 5281 99007 37.4956 0.2841 0.0070 2.1888 − 0 9
swap 3777 58117 30.7742 0.3377 0.0079 4.3818 − 0 14
flipinsert 1683 47481 56.4242 0.2861 0.0336 5.9673 2.8311 1 1
swapflip 3776 78943 41.8130 0.2926 0.0110 4.3829 4.1114 1 1
swapflipinsert 3819 111198 58.2341 0.2819 0.0153 4.3263 3.7668 1 1
swapinsert 3820 89878 47.0565 0.3470 0.0123 4.3251 − 0 14

10 000 random fitness1
flip 9698 11 0.0023 0.0000 0.0000 3.1448 − 0 9687
insert 8335 29 0.0070 0.0000 0.0000 2.1445 − 0 8306
swap 9698 93 0.0192 0.0003 0.0000 2.6172 − 0 9606
flipinsert 9831 88 0.0179 0.0000 0.0000 2.5442 − 0 9743
swapflip 9697 130 0.0268 0.0005 0.0000 2.6176 − 0 9569
swapflipinsert 9828 194 0.0395 0.0002 0.0000 2.5308 − 0 9635
swapinsert 9829 153 0.0311 0.0000 0.0000 2.5305 − 0 9676

fitness2
flip 8033 5 0.0012 0.0000 0.0000 2.9512 − 0 8028
insert 6848 28 0.0082 0.0000 0.0000 2.3112 − 0 6820
swap 8332 534 0.1282 0.0061 0.0000 2.9399 − 0 7881
flipinsert 8353 43 0.0103 0.0000 0.0000 2.9251 − 0 8310
swapflip 8326 744 0.1787 0.0084 0.0000 2.9455 − 0 7774
swapflipinsert 8325 1108 0.2662 0.0115 0.0000 2.9348 − 0 7559
swapinsert 8331 881 0.2115 0.0108 0.0000 2.9292 − 0 7648

fitness3
flip 8033 4 0.0010 0.0000 0.0000 2.9512 − 0 8029
insert 6963 29 0.0083 0.0000 0.0000 2.3078 − 0 6934
swap 8445 505 0.1196 0.0065 0.0000 2.9275 − 0 8010
flipinsert 8468 40 0.0094 0.0000 0.0000 2.9127 − 0 8428
swapflip 8438 690 0.1635 0.0082 0.0000 2.9333 − 0 7899
swapflipinsert 8437 1058 0.2508 0.0102 0.0000 2.9230 − 0 7679
swapinsert 8444 853 0.2020 0.0097 0.0000 2.9172 − 0 7769

Table .6: General LON and basins’ statistics for n = 4 with 1 000 and 10 000 samples,
considering lex and random initialization. A dash is shown when l cannot be computed
as multiple disconnected components exist.
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Figure .14: Statistical measures for lex initialization on n = 5 with the three fitness func-
tions for combination using operators flipinsert (black), swapflipinsert (blue), swapflip
(red), and swapinsert (green) using 1 000 samples: Cumulative degree distribution in
a log-log scale (left), Correlation between the degree of local optima and their corre-
sponding basin sizes (middle), and Correlation between the fitness of local optima and
corresponding basin sizes (right).
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Figure .15: Statistical measures for lex initialization on n = 6 with the three fitness
functions for operators flip (black), insert (blue), swap (red) using 1 000 samples: Cu-
mulative degree distribution in a log-log scale (left), Correlation between the degree of
local optima and their corresponding basin sizes (middle), and Correlation between the
fitness of local optima and corresponding basin sizes (right).
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Figure .16: Statistical measures for lex initialization on n = 6 with fitness functions
fitness2 and fitness3 for combination using operators flipinsert (black), swapflipinsert
(blue), swapflip (red), and swapinsert (green) using 1 000 samples: Cumulative degree
distribution in a log-log scale (left), Correlation between the degree of local optima and
their corresponding basin sizes (middle), and Correlation between the fitness of local
optima and corresponding basin sizes (right).
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Figure .17: Statistical measures for lex initialization on n = 5 with fitness functions
fitness2 and fitness3 for operators flip (black), insert (blue), swap (red) using 10 000
samples: Cumulative degree distribution in a log-log scale (left), Correlation between
the degree of local optima and their corresponding basin sizes (middle), and Correlation
between the fitness of local optima and corresponding basin sizes (right).
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Figure .18: Statistical measures for lex initialization on n = 5 with fitness functions
fitness2 and fitness3 for combination using operators flipinsert (black), swapflipinsert
(blue), swapflip (red), and swapinsert (green) using 10 000 samples: Cumulative degree
distribution in a log-log scale (left), Correlation between the degree of local optima and
their corresponding basin sizes (middle), and Correlation between the fitness of local
optima and corresponding basin sizes (right).
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Figure .19: Statistical measures for lex initialization on n = 6 with fitness functions
fitness2 and fitness3 for operators flip (black), insert (blue), swap (red) using 10 000
samples: Cumulative degree distribution in a log-log scale (left), Correlation between
the degree of local optima and their corresponding basin sizes (middle), and Correlation
between the fitness of local optima and corresponding basin sizes (right).
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Figure .20: Statistical measures for lex initialization on n = 6 with fitness functions
fitness2 and fitness3 for combination using operators flipinsert (black), swapflipinsert
(blue), swapflip (red), and swapinsert (green) using 10 000 samples: Cumulative degree
distribution in a log-log scale (left), Correlation between the degree of local optima and
their corresponding basin sizes (middle), and Correlation between the fitness of local
optima and corresponding basin sizes (right).


