Genetic Improvement of Software Efficiency: The Curse of Fitness Estimation

Mahmod A. Bokhari, Markus Wagner and Brad Alexander.
How to measure

Execution time.

1. Test suite time.
 - Test overhead!
2. User time.
3. System time.

Well, this is not complicated!
How to measure

Memory consumption.

1. Overall used/available.
2. Other metrics:
 - Native heap, Dalvik heap, stack …
 - Pss, dirty, clean swappPss …

“Pretty much every time I look at memory usage numbers with other engineers, there is always a long discussion about what they actually mean that only results in a vague conclusion.” ~ Android platform developer [1].

Well, this is complicated!
How to measure Energy.

1. Internal.
2. External.

Well, this *seems not too hard.*
Do we measure and optimise for only one platform?

Yes: go to end of presentation :)
No, stay alert!
Fragmented Ecosystems

Mind the gap – a distributed framework for enabling energy optimisation on modern smart-phones in the presence of noise, drift, and statistical insignificance

Mahmoud A. Bokhari
1 Optimisation and Logistics
University of Adelaide, Australia
2 Computer Science Department
Taibah University
Kingdom of Saudi Arabia
mahmoud.bokhari@adelaide.edu.au

Lujun Weng, Markus Wagner, Bradley Alexander
Optimisation and Logistics
University of Adelaide, Australia
lujunweng@outlook.com
markus.wagner@adelaide.edu.au
bradley.alexander@adelaide.edu.au

Below: four different phone-OS combinations, orange/blue are two different test loads (but identical across all samples) [2]:
Fragmented Ecosystems

Mind the gap – a distributed framework for enabling energy optimisation on modern smart-phones in the presence of noise, drift, and statistical insignificance

Mahmoud A. Bokhari
1 Optimisation and Logistics
University of Adelaide, Australia

2 Computer Science Department
Taibah University
Kingdom of Saudi Arabia
mahmoud.bokhari@adelaide.edu.au

Lujun Weng, Markus Wagner, Bradley Alexander
Optimisation and Logistics
University of Adelaide, Australia
lujunweng@outlook.com
markus.wagner@adelaide.edu.au
bradley.alexander@adelaide.edu.au

Wait, don’t go, it is even worse !!!
Individual runs of Rebound library (original configuration) in two experiments. The device was rebooted and recharged between the two experiments.
How to solve it

1. Run thousands … millions of trials.
How to solve it

1. Run thousands … millions of trials.
2. Use simple models or simulators.
 - Generally, describe the system in one variable (cpu utilisation, bytecode, line of code ...).
 - Noise free.
 - Deterministic.
How to solve it

1. Run thousands … millions of trials.
2. Use simple models or simulator.
 ● Traditional ways of data collection.
 ● Doesn’t capture all system behaviours.
 ● Lucky and unlucky generated solutions.
 ● Might misguide the search process.
 ● One model per device model out of more than 24000 device models.
 ● HW non-linear energy usage [3, 4].

Models are only good on what they were trained for.
How to solve it

In-vivo and offline optimisation of energy use in the presence of small energy signals – A case study on a popular Android library

Mahmoud A. Bokhari
Optimisation and Logistics, School of Computer Science, The University of Adelaide, Australia

Brad Alexander
Optimisation and Logistics, School of Computer Science, The University of Adelaide, Australia

Markus Wagner
Optimisation and Logistics, School of Computer Science, The University of Adelaide, Australia

They are only good on what they were trained for.
How to solve it

In-vivo and offline optimisation of energy use in the presence of small energy signals – A case study on a popular Android library

They are only good on what they were trained for.
Proposed Solution

- Data collection.
 - Considers different system states.
 - R3-validation approach [6].
Proposed Solution

- Data collection.
- ML for GI.
 - Repeated patterns (background processes).
 - Voltage variations.
 - Garbage Collection (GC) impacts.
Proposed Solution

- Data collection.
- ML for GI.
 - Repeated patterns (background processes).
 - Voltage variations.
 - Garbage Collection (GC) impacts.
 -
- ML models + *in-vivo* optimisation (expensive fitness function/surrogate-assisted optimisation [7]).
 - Adaptive models that get re-calibrated as the optimisation proceeds.
 - Select representatives of solutions for the *in-vivo* optimisation.
 - E.g. unseen solutions can trigger new interesting system states (unseen behaviours).
 - *In-vivo* keeps the real behaviour of the system engaged in the search process.
References

[1] Stackoverflow, accessed on July 2020, How do I discover memory usage of my application in Android?

