
Predicting Good Configurations for
GitHub and Stack Overflow Topic Models

Christoph Treude and Markus Wagner
School of Computer Science

University of Adelaide
{christoph.treude|markus.wagner}@adelaide.edu.au

Abstract—Software repositories contain large amounts of tex-
tual data, ranging from source code comments and issue descrip-
tions to questions, answers, and comments on Stack Overflow.
To make sense of this textual data, topic modelling is frequently
used as a text-mining tool for the discovery of hidden semantic
structures in text bodies. Latent Dirichlet allocation (LDA) is a
commonly used topic model that aims to explain the structure of
a corpus by grouping texts. LDA requires multiple parameters
to work well, and there are only rough and sometimes conflicting
guidelines available on how these parameters should be set. In
this paper, we contribute (i) a broad study of parameters to
arrive at good local optima for GitHub and Stack Overflow
text corpora, (ii) an a-posteriori characterisation of text corpora
related to eight programming languages, and (iii) an analysis
of corpus feature importance via per-corpus LDA configuration.
We find that (1) popular rules of thumb for topic modelling
parameter configuration are not applicable to the corpora used
in our experiments, (2) corpora sampled from GitHub and Stack
Overflow have different characteristics and require different
configurations to achieve good model fit, and (3) we can predict
good configurations for unseen corpora reliably. These findings
support researchers and practitioners in efficiently determining
suitable configurations for topic modelling when analysing textual
data contained in software repositories.

Index Terms—Topic modelling, corpus features, algorithm
portfolio.

I. INTRODUCTION

Enabled by technology, humans produce more text than ever
before, and the productivity in many domains depends on how
quickly and effectively this textual content can be consumed.
In the software development domain, more than 8 million
registered users have contributed more than 38 million posts
on the question-and-answer forum Stack Overflow since its
inception in 2008 [1], and 67 million repositories have been
created on the social developer site GitHub which was founded
in the same year [2]. The productivity of developers depends
to a large extent on how effectively they can make sense of
this plethora of information.

The text processing community has invented many tech-
niques to process large amounts of textual data, e.g., through
topic modelling [3]. Topic modelling is a probabilistic tech-
nique to summarise large corpora of text documents by auto-
matically discovering the semantic themes, or topics, hidden
within the data. To make use of topic modelling, a number of
parameters have to be set.

Agrawal et al. [4] provide a recent overview of literature
on topic modelling in software engineering. In the 24 articles

SO:Ruby

SO:C

SO:C++

SO:Java

SO:Python

SO:JavaScript

SO:CSS,HTML

GH:C

GH:C++

GH:Ruby
GH:Java

GH:Python

GH:CSS,HTML

GH:JavaScript

Fig. 1: Clustered corpora in 2d. The colour encodes the cluster
assigned to each corpus. GH/SO refer to GitHub and Stack
Overflow. The axes do not have any particular meaning in
projections like these.

they highlight, 23 of 24 mention instability in a commonly
used technique to create topic models, i.e., with respect to the
starting conditions and parameter choices. Despite this, all use
default parameters, and only three of them perform tuning of
some sort—all three use some form of a genetic algorithm.

Even researchers who apply optimisation to their topic
modelling efforts do not “learn” higher-level insights from
their tuning, and there is very limited scientific evidence on
the extent to which tuning depends on features of the corpora
under analysis. For example, is the tuning that is needed for
data from Stack Overflow different to the tuning needed for
GitHub data? Does textual content related to some program-
ming languages require different parameter settings compared
to the textual content which discusses other programming lan-
guages? In this paper, we employ techniques from Data-Driven
Software Engineering (DSE) [5] and Data Mining Algorithms
Using/Used-by Optimizers (DUO) [6] on 40 corpora sampled
from GitHub and 40 corpora sampled from Stack Overflow
to investigate the impact of per-corpus configuration on topic
modelling. We ask two research questions:

RQ1 What are the optimal topic modelling configurations
for textual corpora from GitHub and Stack Overflow?

RQ2 Can we automatically select good configurations for
unseen corpora based on their features alone?

We find that (1) popular rules of thumb for topic modelling
parameter configuration are not applicable to textual corpora
mined from software repositories, (2) corpora sampled from
GitHub and Stack Overflow have different characteristics
and require different configurations to achieve good model
fit, and (3) we can predict good configurations for unseen
corpora reliably based on corpus features. Figure 1 shows
the corpora used in our experiments clustered in 2d based on
their features after applying principal component analysis. The
figure illustrates that textual corpora related to different pro-
gramming languages and corpora taken from different sources
(GitHub and Stack Overflow) can indeed be distinguished
based on their features. Even across sources, the language-
specific characteristics of the documents persist and corpora
belonging to similar programming languages are close to each
other. Moreover, the programming languages are in the vicinity
of their spiritual ancestors and successors (e.g., C and C++).1

We use this finding as a starting point for ad hoc per-corpus
configuration of topic modelling of textual corpora mined from
software repositories. Our predictions outperform the baseline
by 4% and are less than 1% away from the virtual best solver.

These findings provide insight into the impact of corpus
features on topic modelling in software engineering. They in-
form future work about efficient ways of determining suitable
configurations for topic modelling, ultimately making it easier
and more reliable for developers and researchers to understand
the large amounts of textual data they are confronted with.

This article is structured as follows. First, we provide
an introduction to topic modelling in Section II. Then, we
describe in Section III our data collection, and we provide
a first statistical characterisation of the data. In Section IV,
we report on our tuning on individual corpora. Section V
provides insights gained from our per-corpus configuration and
from the per-corpus parameter selection. Section VI identifies
threats which may affect the validity of our findings, before
we discuss related work in Section VII. Finally, we conclude
with a summary and by outlining future work.

II. TOPIC MODELLING

Topic modelling is an information retrieval technique which
automatically finds the overarching topics in a given text
corpus, without the need for tags, training data, or prede-
fined taxonomies [7]. Topic modelling makes use of word
frequencies and co-occurrence of words in the documents in a
corpus to build a model of related words [3]. Topic modelling
has been applied to a wide range of artefacts in software
engineering research, e.g., to understand the topics that mobile
developers are talking about [8], to prioritise test cases [9], and
to detect duplicate bug reports [10].

The technique most commonly used to create topic models
is Latent Dirichlet Allocation (LDA), a three-level hierarchical
Bayesian model, in which each item of a collection is modelled

1See Section III-C for details.

as a finite mixture over an underlying set of topics [3]. A docu-
ment’s topic distribution is randomly sampled from a Dirichlet
distribution with hyperparameter α, and each topic’s word
distribution is randomly sampled from a Dirichlet distribution
with hyperparameter β. α represents document-topic density—
with a higher α, documents contain more topics—while β
represents topic-word density—with a higher β, topics contain
most of the words in the corpus [11]. In addition, the number
of topics—usually denoted as k—is another parameter needed
to create a topic model using LDA. While many studies use
the default settings for these parameters (α = 1.0, β = 0.01,
k = 100; other sources suggest α = 50/k and β = 0.1 [12]),
in recent years, researchers have found that the defaults do
not lead to the best model fit and have investigated the use of
optimisation to determine good parameter values (e.g., [4]).
To measure model fit, researchers have employed perplexity,
the geometric mean of the inverse marginal probability of each
word in a held-out set of documents [13], which we also use in
this work. Low perplexity means the language model correctly
guesses unseen words in test data.

In this work, we set out to investigate to what extent
the optimal parameter settings for topic modelling depend
on characteristics of the corpora being modelled. All our
experiments were conducted with the LDA implementation
Mallet, version 2.0.8.2

III. GITHUB AND STACK OVERFLOW CORPORA

We now describe how we collected the documents used in
our research. We define the features that we use to describe
them, and we characterise them based on these features.

A. Data Collection

To cover different sources and different content in our cor-
pora, we sampled textual content related to eight programming
languages from GitHub and Stack Overflow. We selected the
set of languages most popular across both sources: C, C++,
CSS, HTML, Java, JavaScript, Python, and Ruby. As Stack
Overflow has separate tags for HTML and HTML5 while
GitHub does not distinguish between them, we considered both
tags. Similarly, Stack Overflow distinguishes Ruby and Ruby-
on-Rails, while GitHub does not.

For each programming language, we collected 5,000 doc-
uments which we stored as five corpora of 1,000 documents
each to be able to generalise beyond a single corpus. Our
sampling and pre-processing methodology for both sources is
described in the following.

Stack Overflow sampling. We downloaded the most recent
5,000 threads for each of the eight programming languages
through the Stack Overflow API. Each thread forms one
document (title + body + optional answers, separated by a
single space).

Stack Overflow pre-processing. We removed line
breaks (\n and \r), code blocks (content surrounded
by <pre><code>), and all HTML tags from the documents.

2http://mallet.cs.umass.edu/download.php, last accessed on 24 December
2018.

http://mallet.cs.umass.edu/download.php

In addition, we replaced the HTML symbols " &
> and < with their corresponding character, and we
replaced strings indicating special characters (e.g., ')
with double quotes. We also replaced sequences of whitespace
with a single space.

GitHub sampling. We randomly sampled README.md files
of GitHub repositories that used at least one of the eight
programming languages, using a script which repeatedly picks
a random project ID between 0 and 120,000,000 (all GitHub
repositories had an ID smaller than 120,000,000 at the time of
our data collection). If the randomly chosen GitHub repository
used at least one of the eight programming languages, we
determined whether it contained a README file (cf. [14]) in
the default location (https://github.com/〈user〉/〈project〉/blob/
master/README.md). If this README file contained at least
100 characters and no non-ASCII characters, we included its
content as a document in our corpora.

GitHub pre-processing. Similar to the Stack Overflow pre-
processing, we removed line breaks, code blocks (content sur-
rounded by at least 3 backticks), all HTML tags, single back-
ticks, vertical and horizontal lines (often used to create tables),
and comments (content surrounded by <!-- ... -->). We
also removed characters denoting sections headers (# at the
beginning of a line), characters that indicate formatting (*,),
links (while keeping the link text), and badges (links preceded
by an exclamation mark). In addition, we replaced the HTML
symbols " & > and < with their corre-
sponding character, and we replaced strings indicating special
characters (e.g., ') with double quotes. We also replaced
sequences of whitespace with a single space.

B. Features of the Corpora

We are not aware of any related work that performs per-
corpus configuration of topic modelling and uses the features
of a corpus to predict good parameter settings for a particular
corpus. As mentioned before, Agrawal et al. [4] found that
only a small minority of the applications of topic modelling
to software engineering data apply any kind of optimisation,
and even the authors who apply optimisations do not “learn”
higher-level insights from their experiments. While they all
conclude that parameter tuning is important, it is unclear to
what extent the tuning depends on corpus features. To enable
such exploration, we calculated the 24 corpus features listed
in Table I (each feature is calculated twice, once with and
once without taking into account stopwords3 to account for
potential differences between feature values with and without
stopwords, e.g., affecting the number of unique words).

We computed the number of characters in each entire
corpus as well as the number of characters separately for each
document in a corpus. To aggregate the number of characters
per document to corpus level, we created separate features
for their median and their standard deviation. This allowed
us to capture typical document length in a corpus as well as

3We used the “Long Stopword List” from https://www.ranks.nl/stopwords,
last accessed on 24 December 2018.

diversity of the corpus in terms of document length. Similarly,
we calculated the number of words and the number of unique
words for each corpus and for each document.

While these features capture the basic characteristics of a
document and corpus in terms of length, they do not capture
the nature of the corpus. To capture this, we relied on the
concept of entropy. As described by Koutrika et al. [15],
“the basic intuition behind the entropy is that the higher a
document’s entropy is, the more topics the document covers
hence the more general it is”. To calculate entropy, we used
Shannon’s definition [16]:

−
∑
i

pi log pi (1)

where pi is the probability of word number i appearing in
the stream of words in a document. We calculated the entropy
for each corpus and each document, considering the textual
content with and without stopwords separately. Note that the
runtime for calculating these values is at least Ω(n) since the
frequency of each word has to be calculated separately.

C. Descriptive Statistics

While we have defined many corpus features, it is un-
clear how correlated these are, and whether the same rela-
tionships hold for GitHub README files and Stack Over-
flow discussions. Figure 2 shows the correlations based on
Pearson product-moment correlation coefficients between the
24 features and clustered with Wards hierarchical clustering
approach.4 As expected, the entropy-based features are corre-
lated, as are those based on medians and standard deviations—
this becomes particularly clear when we consider the relation-
ships across all corpora (Figure 2c).

There are, however, differences between the two sources
GitHub and Stack Overflow. For example, the stdevDocu-
mentEntropy across the GitHub corpora is less correlated with
the other features than among the Stack Overflow corpora. A
reason for this could be that the README files from GitHub
are different in structure from Stack Overflow threads. Also,
the median-based feature values of the GitHub corpora are less
correlated with the other features than in the Stack Overflow
case. We conjecture this is because the README files vary
more in length than in the Stack Overflow case, where thread
lengths are more consistent.

Next, we will investigate differences between the program-
ming languages. As we have 24 features and eight program-
ming languages across two sources, we will limit ourselves to
a few interesting cases here.

In Figure 3, we start with a few easy-to-compute character-
istics. For example, we see in the first row that GitHub docu-
ments are about twice as long as Stack Overflow discussions
(see corpusWords). The distribution in the union shows this as
well, with the left and the right humps (largely) coming from
the two different sources. The trend remains the same if we
remove stop words (see the second row). This already shows

4Implementation provided by asapy [17], https://github.com/mlindauer/
asapy, last accessed on 24 December 2018.

https://www.ranks.nl/stopwords
https://github.com/mlindauer/asapy
https://github.com/mlindauer/asapy

TABLE I: Features of Corpora. Features include the number of characters, words, and unique words as well as entropy,
calculated separately for entire corpora and single documents.

scope

corpus document document
(agg. via median) (agg. via std dev)

#
ch

ar
ac

te
rs with stopwords:

corpusCharacters
without stopwords:
corpusCharacters-
NoStopwords

with stopwords:
medianDocumentCharacters
without stopwords:
medianDocumentCharacters-
NoStopwords

with stopwords:
stdevDocumentCharacters
without stopwords:
stdevDocumentCharacters-
NoStopwords

#
w

or
ds

with stopwords:
corpusWords
without stopwords:
corpusWords-
NoStopwords

with stopwords:
medianDocumentWords
without stopwords:
medianDocumentWords-
NoStopwords

with stopwords:
stdevDocumentWords
without stopwords:
stdevDocumentWords-
NoStopwords

#
un

iq
ue

w
or

ds

with stopwords:
corpusUniqueWords
without stopwords:
corpusUniqueWords-
NoStopwords

with stopwords:
medianDocumentUniqueWords
without stopwords:
medianDocumentUniqueWords-
NoStopwords

with stopwords:
stdevDocumentUniqueWords
without stopwords:
stdevDocumentUniqueWords-
NoStopwords

en
tr

op
y

with stopwords:
corpusEntropy
without stopwords:
corpusEntropy-
NoStopwords

with stopwords:
medianDocumentEntropy
without stopwords:
medianDocumentEntropy-
NoStopwords

with stopwords:
stdevDocumentEntropy
without stopwords:
stdevDocumentEntropy-
NoStopwords

that we could tell the two sources apart with good accuracy by
just considering either one of these easy-to-compute features.
Despite this, the reliable classification of a single document
does not appear to be as straightforward based on just the
number of unique words that are not stop words: we can see
in the third row that the two distributions effectively merged.

Looking at entropy, which is significantly more time-
consuming to compute, we can see the very same character-
istics (see bottom two rows in Figure 3). As seen before in
Figure 2, entropy and word counts are correlated, but not as
strongly with each other than some of the other measures.

Interestingly, GitHub documents contain fewer stop words
(about 40%) than Stack Overflow documents (almost 50%).
This seems to show the difference of the more technical
descriptions present in the former in contrast to the sometimes
more general discussion in the latter, which is reflected in the
higher entropy of GitHub content compared to Stack Overflow
content.

Next, we briefly investigate the heavy (right) tail of the
Stack Overflow characteristics. It turns out that this is caused
by the C and C++ corpora. These are about 20-30% longer
than the next shorter ones on Ruby, Python, Java, with the
shortest documents being on HTML, JavaScript and CSS.
Roughly the same order holds for the entropy measures on
the Stack Overflow data.

In the entropy characteristics of GitHub corpora, we note
a bi-modal distribution. This time, Python joins C and C++
on the right-hand side, with all 15 corpora having a corpusEn-
tropyNoStopwords value between 12.20 and 12.30. The closest
is then a Java corpus with a value of 12.06. We speculate
that software written in languages such as Python, Java, C,
and C++ tends to be more complex than software written in

HTML or CSS, which is reflected in the number of topics
covered in the corresponding GitHub and Stack Overflow
corpora measured in terms of entropy.

Lastly, we cluster the corpora in the feature space using a k-
means approach. As pre-processing, we use standard scaling
and a principal component analysis to two dimensions. To
guess the number of clusters, we use the silhouette score on
the range of 2 to 12 in the number of clusters. It turns out the
individual languages per source can be told apart using this
clustering almost perfectly (Figure 4), and the two sources
GitHub and Stack Overflow can be distinguished perfectly—
we see this as a good starting point for ad hoc per-corpus
configuration of topic modelling. Even across sources, the
language-specific characteristics of the documents persist and
similar languages are near each other (see Figure 1). Moreover,
the programming languages are in the vicinity of their spiritual
ancestors and successors.

IV. PER-CORPUS OFFLINE TUNING

Many optimisation methods can be used to tune LDA
parameters. As mentioned before, three works identified in
a recent literature review [4] performed tuning, in particular,
using genetic algorithms.

LDA is sensitive to the starting seed, and this noise can
pose a challenge to many optimisation algorithms as the
optimiser gets somewhat misleading feedback. Luckily, in
recent years, many automated parameter optimisation methods
have been developed and published as software packages. Gen-
eral purpose approaches include ParamILS [18], SMAC [19],
GGA [20], and the iterated f-race procedure called irace [21].
The aim of these is to allow a wide range of parameters
to be efficiently tested in a systematic way. For example,

(a) GitHub corpora

(b) Stack Overflow corpora

(c) Union

Fig. 2: Correlations of features for each of the sources and
for the union of GitHub and Stack Overflow corpora. Darker
fields correspond to a larger correlation between the features.
X-labels are omitted as they follow the order (optimised to
co-locate correlated features) of the y-labels.

irace’s procedure begins with a large set of possible parameter
configurations, and tests these on a succession of examples. As
soon as there is sufficiently strong statistical evidence that a
particular parameter setting is sub-optimal, then it is removed
from consideration (the particular statistical test used in the
f-race is the Friedman test). In practice, a large number of
parameter settings will typically be eliminated after just a few
iterations, making this an efficient process.

To answer our first research question What are the opti-
mal topic modelling configurations for textual corpora from
GitHub and Stack Overflow?, we use irace 2.3 [21].5 We give
irace a budget of 10,000 LDA runs, and we allow irace to
conduct restarts if convergence is noticed. Each LDA run has
a computation budget of 1,000 iterations, which is based on
preliminary experiments to provide very good results almost
independent of the CPU time budget. The LDA performance is
measured in the perplexity (see Section II). In the final testing

5The irace Package, http://iridia.ulb.ac.be/irace, last accessed on 24 Decem-
ber 2018.

GitHub Stack Overflow Union

co
rp

us
W

or
ds

co
rp

us
W

or
ds

-
N

oS
to

pw
or

ds

m
ed

ia
nD

oc
um

en
t-

U
ni

qu
eW

or
ds

-
N

oS
to

pw
or

ds
co

rp
us

E
nt

ro
py

-
N

oS
to

pw
or

ds

m
ed

ia
nD

oc
um

en
t-

E
nt

ro
py

-
N

oS
to

pw
or

ds

Fig. 3: Characteristics of the corpora. Top: three features based
on word counts; bottom: two features based on entropy. These
violin plot are an alternative to box plots, and they indicate
with thickness how common values are.

phase, the best configurations per corpus (as determined by
irace) are run 101 times to achieve stable average performance
values with a standard error of the mean of 10%. In our
following analyses, we consider the median of these 101 runs.

Our parameter ranges are wider than what has been con-
sidered in the literature (e.g., [12]), and are informed by our
preliminary experiments: number of topics k ∈ [3, 1000], α ∈
[0.001, 200.0], β ∈ [0.001, 200.0]. As an initial configuration
that irace can consider we provide it with k = 100, α = 1.0,
and β = 0.01, which are Mallet’s default values.

This set of experiments is performed on a compute node
with Intel(R) Xeon(R) E7-4870 CPUs with 1 TB RAM.
Determining a well-performing configuration for each corpus
takes 30-36 hours on a compute node with 80 cores with 80x-
parallelisation. The total computation time required by the per-
corpus optimisations is about 30 CPU years.

As an example, we show in Figure 5 the final output of
irace when optimising the parameters for one of the five
corpora related to C and taken from GitHub CGitHub-1.
For comparison, the seeded default configuration achieves a
median perplexity of 342.1. The configuration evolved to one
with a large number of topics, and a very large β value. We
observe that the perplexity values are very close to each to

http://iridia.ulb.ac.be/irace

Ruby

C

C++
Java

CSS

HTML

Python

JavaScript

(a) GitHub corpora

Ruby

C

C++

Java

CSS

HTML

Python

JavaScript

(b) Stack Overflow corpora

Fig. 4: Clustered corpora in 2d. The colour encodes the cluster assigned to each corpus. The dimensionality reductions for
both sources were conducted independent of each other, thus resulting in arrangements different from the one in Figure 1.

Testing configurations: (the first number is the configuration ID)
topics alpha beta

288 628 10.474 55.835
847 550 4.958 68.056
1408 562 3.745 23.961
1558 556 3.884 21.293
1575 496 11.660 39.552
Testing of elite configurations: (medians of 101 independent runs)

288 847 1408 1558 1575
236.7 236.3 235.9 235 234.2

Fig. 5: irace results for the corpus CGitHub-1. The upper block lists the configurations returned by irace.

each other (at about 234 to 237, or 31% below Mallet’s default
performance) even though the configurations vary.

We show the results in Table II. It turns out that the corpora
from both sources and from the eight programming languages
require different parameter settings in order to achieve good
perplexity values—and thus good and useful “topics”. While
the α values are at least (almost always) in the same order
of magnitude as the seeded default configuration (k = 100,
α = 1.0, β = 0.01), the β values deviate significantly from it,
as does the number of topics, confirming recent findings by
Agrawal et al. [4].

For example, the numbers of topics addressed in the GitHub
corpora is significantly higher (based on the tuned and aver-
aged configurations for good perplexity values) than in the
Stack Overflow corpora. This might be due to the nature of
the README files of different software projects in contrast
to potentially a more limited scope of discussions on Stack
Overflow. Also, the Stack Overflow corpora appear to vary
a bit more (standard deviation is 22% of the mean) than the
GitHub corpora (16%).

When it comes to the different programming languages,
we observe that the number of topics in Python / C / C++
is highest for the GitHub corpora, which appears to be

highly correlated with the outstanding values of corpusEn-
tropyNoStopwords of these corpora observed in Section III-C.
Similarly, the corpora with lowest entropy (i.e., CSS / HTML
/ JavaScript) appear to require the smallest number of topics
for good perplexity values.

Other interesting observations are that the β values vary
more among the Stack Overflow corpora. The α values are
mostly comparable across the two sources.

Summary: Popular rules of thumb for topic modelling
parameter configuration are not applicable to textual
corpora from GitHub and Stack Overflow. These cor-
pora have different characteristics and require different
configurations to achieve good model fit.

V. PER-CORPUS CONFIGURATION

An alternative to the tuning of algorithms is that of selecting
an algorithm from a portfolio or determining an algorithm con-
figuration, when an instance is given. This typically involves
the training of machine learning models on performance data
of algorithms in combination with instances given as feature
data. In software engineering, this has been recently used as an

TABLE II: Results of tuning (number of topics k, α, β) for eight programming languages from two sources, with the goal of
minimising perplexity.

k α β perplexity
source langauge mean stdev mean stdev mean stdev mean stdev

GitHub

C 521.2 73.7 3.94 4.35 68.4 35.8 236.5 6.5
C++ 577.4 173.6 1.75 1.20 61.7 32.9 228.4 5.2
CSS 455.4 34.1 1.52 0.82 36.7 16.0 236.7 7.8
HTML 439.2 37.0 0.93 0.09 45.4 17.6 236.6 8.6
Java 480.2 76.0 1.81 0.89 44.6 37.1 226.0 3.1
JavaScript 484.0 19.9 1.59 0.57 23.4 18.2 238.1 2.7
Python 529.0 43.7 1.51 0.27 32.9 14.9 257.4 10.9
Ruby 505.4 28.0 2.41 1.49 89.1 37.0 213.9 6.0

all 499.0 81.0 1.93 1.80 50.3 32.4 234.2 13.3

Stack Overflow

C 377.0 34.3 0.95 0.35 51.8 55.1 202.9 4.5
C++ 337.6 29.6 3.33 3.30 97.4 61.8 199.3 3.0
CSS 196.2 24.2 1.01 0.96 18.1 15.3 184.1 2.7
HTML 244.4 18.1 2.45 2.33 76.4 69.5 196.7 5.9
Java 349.8 49.1 0.85 0.46 10.0 8.2 223.9 2.5
JavaScript 252.8 34.5 4.24 3.66 50.9 44.0 213.6 2.0
Python 295.8 47.3 1.10 0.18 67.6 78.6 229.0 4.0
Ruby 269.3 33.1 2.11 2.72 64.0 52.4 215.9 7.3

all 283.7 61.9 2.06 2.37 57.6 57.4 207.8 14.2

all 379.4 128.7 2.00 2.12 54.4 47.8 219.5 19.1

approach for the Software Project Scheduling Problem [22],
[23]. The field of per-instance configuration has received much
attention recently, and we refer the interested reader to a recent
updated survey article [24]. The idea of algorithm selection is
that given an instance, an algorithm selector selects a well-
performing algorithm from a (often small) set of algorithms,
the so-called portfolio.

To answer our second research question Can we automat-
ically select good configurations for unseen corpora based
on their features alone?, we study whether we can apply
algorithm selection to LDA configuration to improve its per-
formance further than with parameter tuning only. We take
from each language and each source the tuned configuration of
each first corpus (sorted alphabetically), and we consider our
default configuration, resulting in a total of 17 configurations
named gh.C, ... so.C, ... and default. As common in the area
of algorithm portfolios, we treat these different configurations
as different algorithms and try to predict which configuration
should be used for a new given instance—“new” are now all
corpora from both sources. Effectively, this will let us test
which tuned corpus-configuration performs well on others. A
similar approach was used by Wagner et al. to investigate
the importance of instance features in the context of per-
instance configuration of solvers for the minimum vertex cover
problem [25], for the traveling salesperson problem [26], and
for the traveling thief problem [27].

As algorithm selection is often implemented using machine
learning [28], [29], we need two preparation steps: (i) instance
features that characterise instances numerically, (ii) perfor-
mance data of each algorithm on each instance. We have
already characterised our corpora in Section III-B, so we only
need to run each of the 17 configurations on all corpora.

Fig. 6: Results of 17 given configurations across all corpora.

Figure 6 provides an overview of the performance of the
17 configurations when run across all corpora.6 As we can
see, a per-corpus configuration is necessary to achieve the
lowest perplexity values in topic modelling (Figure 6). Many
configuration corpora can be optimised (within 5%) with a
large number of configurations (Figure 7, red), however, a par-
ticular cluster of Stack Overflow corpora requires specialised
configurations.

The average perplexity of the 17 configurations is 227.3.
The single best configuration across all data is so.Java (tuned
on one of the five Stack Overflow Java corpora) with an

6gh.CSS and gh.JavaScript crashed on two corpora: we assigned as a result
the maximum value observed (321.2).

SO:Ruby

SO:C

SO:C++

SO:Java

SO:Python

SO:JavaScript

SO:CSS,HTML

GH:C

GH:C++

GH:Ruby

GH:Java

GH:Python

GH:CSS,HTML

GH:JavaScript

Fig. 7: Results of per-corpus configuration. Hardness: pro-
jected into 2d feature space (see Section III-C), the colour
encodes the number of configurations that perform within
5% of the best performance. The arrangement of instances
is identical to that in Figure 1.

average perplexity value of 222.9; the default configuration
achieves an average of 250.3 (+12%).

Based on all the data we have, we can simulate the so-called
virtual best solver, which would pick for each corpus the best
out of the 17 configurations. This virtual best solver has an
average perplexity of 217.9, which is 2% better than so.Java
and 14% better than the default configuration.

Lastly, let us look into the actual configuration selection.
Using the approach of SATZilla’11 [30] as implemented in
AutoFolio [31], we train a cost-sensitive random forest for
each pair of configurations, which then predicts for each pair
of configurations the one that will perform better. The overall
model then proposes the best-performing configuration. In our
case, we use this approach to pick one of the 17 configurations
given an instance that is described by its features. The trained
model’s predictions achieve an average perplexity of 219.6:
this is a 4% improvement over the average of the 17 tuned
configurations, and it is less than 1% away from the virtual
best solver.

We are interested in the importance of features in the
model—not only to learn about the domain, but also as the
calculation of instance features forms an important step in
the application of algorithm portfolios. The measure we use
is the Gini importance [32] across all cost-sensitive random
forests models, that can predict for a pair of solvers which
one will perform better [30]. Figure 8 reveals that there is
not a single feature, but a large set of features which together
describe a corpus. It is therefore hardly possible to manually
come up with good “rules of thumb” to choose the appropriate
configuration depending on the corpus features—even though
many of the features are correlated (see Section III-C).

Fig. 8: Gini importance, features from Table I.

Interestingly, the expensive-to-compute entropy-based fea-
tures are of little importance in the random forests (1x 9th, 1x
15th). This is good for future per-corpus configuration, as the
others can be computed very quickly.

Summary: We can predict good configurations for
unseen corpora reliably. Our predictions outperform
the default configuration by 14%, the best tuned single
configuration by 4%, and they are less than 1% away
from the virtual best solver.

VI. THREATS TO VALIDITY

As with all empirical studies, there are a number of threats
that may impair the validity of our results.

Threats to construct validity concern the suitability of our
evaluation metrics. Following many other works, we have
used perplexity, the geometric mean of the inverse marginal
probability of each word in a held-out set of documents [13],
to measure the fit of our topic models. Perplexity is not the
only metric which can be used to evaluate topic models, and a
study by Chang et al. [33] found that surprisingly, perplexity
and human judgement are often not correlated. Future work
will have to investigate the prediction of good configurations
for textual software engineering corpora using other metrics,
such as conciseness or coherence. The optimal may differ
depending on the objective of the topic model, e.g., whether
topics are shown to end users or whether they are used as input
for another machine learning algorithm. In addition, selecting
different corpus features might have led to different results.
We selected easy-to-compute features as well as entropy as a
starting point—studying the effect of other features is part of
our future work.

Threats to external validity affect the generalisability of our
findings. We cannot claim that our findings generalise beyond
the particular corpora which we have considered in this work.
In particular, our work may not generalise beyond GitHub

README files and Stack Overflow threads, and also not
beyond the particular programming languages we considered
in this work. In addition, the amount of data we were able to
consider in this work is necessarily limited. Choosing different
documents might have resulted in different findings.

Threats to internal validity relate to errors in implementation
and experiments. We have double-checked our implementation
and experiments and fixed errors which we found. Still, there
could be additional errors which we did not notice.

VII. RELATED WORK

We summarise related work on the application of topic mod-
elling to software artefacts, organised by the kind of data that
topic modelling was applied to. We refer readers to Agrawal et
al. [4] for an overview of the extent to which parameter tuning
has been employed by software engineering researchers when
creating topic models. To the best of our knowledge, we are the
first to explore whether good configurations for topic models
can be predicted based on corpus features.

A. Topic modelling of source code and its history
In one of the first efforts to apply topic modelling to soft-

ware data, Linstead et al. [34] modelled Eclipse source code
via author-topic models with the goal of mining developer
competencies. They found that their topic models were useful
for developer similarity analysis. Nguyen et al. [35] also
applied topic modelling to source code, but for the purpose
of defect prediction. The goal of their work was to measure
concerns in source code, and then use these concerns as input
for defect prediction. They concluded that their topic-based
metrics had a high correlation with number of bugs.

With the goal of automatically mining and visualising API
usage examples, Moritz et al. [36] introduced an approach
called ExPort. They found that ExPort could successfully
recommend complex API usage examples based on the use of
topic modelling. The goal of work by Wang and Liu [37] was
to establish a project overview and to bring search capability
to software engineers. This work also applied topic modelling
to source code, and resulted in an approach which can support
program comprehension for Java software engineers.

Thomas et al. [9] focused their work on a subset of
source code—test cases. The goal of their work was static
test case prioritisation using topic models, and it resulted
in a static black-box test case prioritisation technique which
outperformed state-of-the-art techniques.

Applying topic modelling to source code history, Chen et
al. [38]’s goal was to study the effect of conceptual concerns
on code quality. They found that some topics were indeed more
defect-prone than others. Hindle et al. [39], [40] looked at
commit-log messages, aiming to automatically label the topics
identified by topic modelling. They presented an approach
which could produce appropriate, context-sensitive labels to
support cross-project analysis of software maintenance ac-
tivities. Finally, Corley et al. [41] applied topic modelling
to change sets with the goal of improving existing feature
location approaches, and found that their work resulted in good
performance.

B. Topic modelling of bug reports and development issues

Software engineering researchers have also applied topic
modelling to bug reports and development issues, to answer a
wide variety of research questions. In one of the first studies in
this area, Linstead and Baldi [42] found substantial promise
in applying statistical text mining algorithms, such as topic
modelling, for estimating bug report quality. To enable this
kind of analysis, they defined an information-theoretic measure
of the coherence of bug reports.

The goal of Nguyen et al. [43]’s application of topic
modelling to bug reports was the detection of duplicates. They
employed a combination of information retrieval and topic
modelling, and found that their approach outperformed state-
of-the-art approaches. In a similar research effort, Klein et
al. [10]’s work also aimed at automated bug report dedu-
plication, resulting in a significant improvement over previ-
ous work. As part of this work, the authors introduced a
metric which measures the first shared topic between two
topic-document distributions. Nguyen et al. [44] applied topic
modelling to a set of defect records from IBM, with the goal
of inferring developer expertise through defect analysis. The
authors found that defect resolution time is strongly influenced
by the developer and his/her expertise in a defect’s topic.

Not all reports entered in a bug tracking system are nec-
essarily bugs. Pingclasai et al. [45] developed an approach
based on topic modelling which can distinguish bug reports
from other requests. The authors found that their approach was
able to achieve a good performance. Zibran [46] also found
topic modelling to be a promising approach for bug report
classification. His work explored the automated classification
of bug reports into a predefined set of categories.

Naguib et al. [47] applied topic modelling to bug reports
in order to automatically issue recommendations as to who a
bug report should be assigned to. Their work was based on
activity profiles and resulted in a good average hit ratio.

In an effort to automatically determine the emotional state of
a project and thus improve emotional awareness in a software
development team, Guzman and Bruegge [48] applied topic
modelling to textual content from mailing lists and Confluence
artefacts. They found that their proposed emotion summaries
had a high correlation with the emotional state of a project.

Layman et al. [49] applied topic modelling to NASA space
system problem reports, with the goal of extracting trends in
testing and operational failures. They were able to identify
common issues during different phases of a project. They
also reported that the process of selecting the topic mod-
elling parameters lacks definitive guidance and that defining
semantically-meaningful topic labels requires non-trivial effort
and domain expertise.

Focusing on security issues posted in GitHub repositories,
Zahedi et al. [50] applied topic modelling to identify and
understand common security issues. They found that the
majority of security issues reported in GitHub issues was
related to identity management and cryptography.

C. Topic modelling of Stack Overflow content

Linares-Vásquez et al. [51] conducted an exploratory anal-
ysis of mobile development issues, with the goal of extracting
hot topics from Stack Overflow questions related to mobile
development. They found that most questions included topics
related to general concerns and compatibility issues. In a
similar more recent effort, Rosen and Shihab [8] set out to
identify what mobile developers are asking about on Stack
Overflow. They identified various frequently discussed topics,
such as app distribution, mobile APIs, and data management.

Looking beyond the scope of mobile development, Barua et
al. [7] contributed an analysis of topics and trends on Stack
Overflow. They found that topics of interest ranged widely
from jobs to version control systems and C# syntax. Zou et
al. [52] applied topic modelling to Stack Overflow data with
a similar goal, i.e., to understand developer needs. Among
other findings, they reported that the most frequent topics were
related to usability and reliability.

Allamanis and Sutton [53]’s goal was the identification of
programming concepts which are most confusing, based on an
analysis of Stack Overflow questions by topic, type, and code.
Based on their work, they were able to associate programming
concepts and identifiers with particular types of questions.
Aiming at the identification of API usage obstacles, Wang and
Godfrey [54] studied questions posted by iOS and Android
developers on Stack Overflow. Their topic modelling analysis
revealed several iOS and Android API classes which appeared
to be particularly likely to challenge developers.

Campbell et al. [55] applied topic modelling to content
from Stack Overflow as well as project documentation, with
the goal of identifying topics inadequately covered by project
documentation. They were able to successfully detect such
deficient documentation using topic analysis. As part of the
development of a recommender system, Wang et al. [56]
set out to recommend Stack Overflow posts to users which
are likely to concern API design-related issues. Their topic
modelling approach was able to achieve high accuracy.

D. Topic modelling of other software artefacts

Source code, bug reports, and Stack Overflow are not the
only sources which researchers have applied topic modelling
to. Other sources include usage logs, user feedback, service
descriptions, and research papers. We briefly highlight related
papers in this subsection.

Bajracharya and Lopes [57], [58]’s goal was to understand
what users search for. To achieve this, they mined search topics
from the usage log of the code search engine Koders. They
concluded that code search engines provide only a subset of
the various information needs of users.

Aiming at the extraction of new or changed requirements
for new versions of a software product, Galvis Carreño and
Winbladh [59] applied topic modelling to user feedback cap-
tured in user comments. Their automatically extracted topics
matched the ones that were manually extracted.

Nabli et al. [60] applied topic modelling to cloud service
descriptions with the goal of making it more efficient to

discover relevant cloud services. They were able to improve
the effectiveness of existing approaches.

In one of the first papers to report the application of topic
modelling to software engineering data, Asuncion et al. [61]
applied topic modelling to a variety of heterogeneous software
artefacts, with the goal of improving traceability. They imple-
mented several tools based on their work, and concluded that
topic modelling indeed enhances software traceability.

Finally, Sharma et al. [62] applied topic modelling to
abstracts of research papers published in the Requirements
Engineering (RE) conference series. Their work resulted in the
identification of the structure and composition of requirements
engineering research.

VIII. CONCLUSIONS AND FUTURE WORK

Topic modelling is an automated technique to make sense
of large amounts of textual data. To understand the impact
of parameter tuning on the application of topic modelling to
software development corpora, we employed techniques from
Data-Driven Software Engineering [5] to 40 corpora sampled
from GitHub and 40 corpora sampled from Stack Overflow,
each consisting of 1,000 documents. We found that (1) popular
rules of thumb for topic modelling parameter configuration
are not applicable to the corpora used in our experiments,
(2) corpora sampled from GitHub and Stack Overflow have
different characteristics and require different configurations
to achieve good model fit, and (3) we can predict good
configurations for unseen corpora reliably.

These findings play an important role in efficiently deter-
mining suitable configurations for topic modelling. State-of-
the-art approaches determine the best configuration separately
for each corpus, while our work shows that corpus features
can be used for the prediction of good configurations. Our
work demonstrates that source and context (e.g., programming
language) matter in the textual data extracted from software
repositories. Corpora related to the same programming lan-
guage naturally form clusters, and even content from related
programming languages (e.g., C and C++) are part of the same
clusters. This finding opens up interesting avenues for future
work: after excluding source code, why is the textual content
that software developers write about the same programming
language still more similar than textual content written about
another programming language? In addition to investigating
this, in our future work, we will expand our exploration of the
relationship between features and good configurations for topic
modelling, using larger and more diverse corpora as well as
additional features and a longitudinal approach [63]. We will
also make our approach available to end users through tool
support and conduct qualitative research to determine to what
extent the discovered topics make sense to humans.

Acknowledgments. Our work was supported by the Australian
Research Council projects DE180100153 and DE160100850.
We acknowledge the support by the HPI Future SOC Lab,
who granted us access to their computing resources.

REFERENCES

[1] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “Sotorrent: Reconstruct-
ing and analyzing the evolution of stack overflow posts,” in Proc. of the
Int’l. Conf. on Mining Software Repositories, 2018, pp. 319–330.

[2] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
GitHub: Transparency and collaboration in an open software repository,”
in Proc. of the Conf. on Computer Supported Cooperative Work, 2012,
pp. 1277–1286.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, no. Jan, pp. 993–1022,
2003.

[4] A. Agrawal, W. Fu, and T. Menzies, “What is wrong with topic
modeling? and how to fix it using search-based software engineering,”
Information and Software Technology, vol. 98, pp. 74–88, 2018.

[5] V. Nair, A. Agrawal, J. Chen, W. Fu, G. Mathew, T. Menzies, L. Minku,
M. Wagner, and Z. Yu, “Data-driven search-based software engineering,”
in Proc. of the Int’l. Conf. on Mining Software Repositories, 2018, pp.
341–352.

[6] A. Agrawal, T. Menzies, L. L. Minku, M. Wagner, and Z. Yu, “Better
software analytics via ”duo”: Data mining algorithms using/used-by
optimizers,” CoRR, vol. abs/1812.01550, 2018.

[7] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[8] C. Rosen and E. Shihab, “What are mobile developers asking about? a
large scale study using stack overflow,” Empirical Software Engineering,
vol. 21, no. 3, pp. 1192–1223, 2016.

[9] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein, “Static test
case prioritization using topic models,” Empirical Software Engineering,
vol. 19, no. 1, pp. 182–212, 2014.

[10] N. Klein, C. S. Corley, and N. A. Kraft, “New features for duplicate
bug detection,” in Proc. of the Int’l. Working Conf. on Mining Software
Repositories, 2014, pp. 324–327.

[11] P. Luangaram and W. Wongwachara, “More Than Words: A Textual
Analysis of Monetary Policy Communication,” Puey Ungphakorn Insti-
tute for Economic Research, PIER Discussion Papers 54, Feb. 2017.

[12] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proc. of the
National academy of Sciences, vol. 101, no. suppl 1, pp. 5228–5235,
2004.

[13] M. Hoffman, F. R. Bach, and D. M. Blei, “Online learning for latent
dirichlet allocation,” in Advances in neural information processing
systems, 2010, pp. 856–864.

[14] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, “Cat-
egorizing the content of GitHub README files,” Empirical Software
Engineering, 2019.

[15] G. Koutrika, L. Liu, and S. Simske, “Generating reading orders over
document collections,” in Proc. of the Int’l. Conf. on Data Engineering,
2015, pp. 507–518.

[16] C. E. Shannon, “A mathematical theory of communication,” Bell system
technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[17] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky,
A. Frechétte, H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and
J. Vanschoren, “Aslib: A benchmark library for algorithm selection,”
Artificial Intelligence Journal, vol. 237, pp. 41–58, 2016.

[18] F. Hutter, H. H. Hoos, and T. Stützle, “Automatic algorithm configuration
based on local search,” in Proc. of the National Conf. on Artificial
Intelligence, 2007, pp. 1152–1157.

[19] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in Proc. of the
Int’l. Conf. on Learning and Intelligent Optimization, 2011, pp. 507–
523.

[20] C. Ansótegui, M. Sellmann, and K. Tierney, “A gender-based genetic
algorithm for the automatic configuration of algorithms,” in Proc. of
the Int’l. Conf. on Principles and Practice of Constraint Programming,
2009, pp. 142–157.

[21] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, “A racing
algorithm for configuring metaheuristics,” in Proc. of the Genetic and
Evolutionary Computation Conf., 2002, pp. 11–18.

[22] X.-N. Shen, L. L. Minku, N. Marturi, Y.-N. Guo, and Y. Han, “A q-
learning-based memetic algorithm for multi-objective dynamic software
project scheduling,” Information Sciences, vol. 428, pp. 1–29, 2018.

[23] X. Wu, P. Consoli, L. Minku, G. Ochoa, and X. Yao, “An evolutionary
hyper-heuristic for the software project scheduling problem,” in Proc. of
the Parallel Problem Solving from Nature, 2016, pp. 37–47.

[24] L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” in Data Mining and Constraint Programming. Springer, 2016,
pp. 149–190.

[25] M. Wagner, T. Friedrich, and M. Lindauer, “Improving local search in
a minimum vertex cover solver for classes of networks,” in Proc. of the
Congress on Evolutionary Computation, 2017, pp. 1704–1711.

[26] S. Nallaperuma, M. Wagner, and F. Neumann, “Analyzing the effects of
instance features and algorithm parameters for maxmin ant system and
the traveling salesperson problem,” Frontiers in Robotics and AI, vol. 2,
p. 18, 2015.

[27] M. Wagner, M. Lindauer, M. Mısır, S. Nallaperuma, and F. Hutter,
“A case study of algorithm selection for the traveling thief problem,”
Journal of Heuristics, vol. 24, no. 3, pp. 295–320, 2018.

[28] K. A. Smith-Miles, “Cross-disciplinary perspectives on meta-learning
for algorithm selection,” ACM Computing Surveys, vol. 41, no. 1, pp.
6:1–6:25, 2009.

[29] P. Kerschke, H. H. Hoos, F. Neumann, and H. Trautmann, “Automated
algorithm selection: Survey and perspectives,” Evolutionary Computa-
tion, vol. 27, no. 1, pp. 3–45, 2019, pMID: 30475672.

[30] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown, “Hydra-MIP: Auto-
mated algorithm configuration and selection for mixed integer program-
ming,” in Proc. of the RCRA Workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion at the
Int’l. Joint Conf. on Artificial Intelligence (IJCAI), 2011.

[31] M. Lindauer, H. Hoos, F. Hutter, and T. Schaub, “Autofolio: An auto-
matically configured algorithm selector,” Artificial Intelligence Research,
vol. 53, pp. 745–778, 2015.

[32] L. Breimann, “Random forests,” Machine Learning Journal, vol. 45, pp.
5–32, 2001.

[33] J. Chang, J. Boyd-Graber, S. Gerrish, C. Wang, and D. M. Blei,
“Reading tea leaves: How humans interpret topic models,” in Proc. of
the Int’l. Conf. on Neural Information Processing Systems, 2009, pp.
288–296.

[34] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
eclipse developer contributions via author-topic models,” in Proc. of the
Int’l. Workshop on Mining Software Repositories, 2007, pp. 30–33.

[35] T. T. Nguyen, T. N. Nguyen, and T. M. Phuong, “Topic-based defect
prediction (NIER Track),” in Proc. of the Int’l. Conf. on Software
Engineering, 2011, pp. 932–935.

[36] E. Moritz, M. Linares-Vásquez, D. Poshyvanyk, M. Grechanik,
C. McMillan, and M. Gethers, “Export: Detecting and visualizing api
usages in large source code repositories,” in Proc. of the Int’l. Conf. on
Automated Software Engineering, 2013, pp. 646–651.

[37] T. Wang and Y. Liu, “Infusing topic modeling into interactive program
comprehension: An empirical study,” in Annual Computer Software and
Applications Conference, vol. 2, 2017, pp. 260–261.

[38] T.-H. Chen, S. W. Thomas, M. Nagappan, and A. E. Hassan, “Explaining
software defects using topic models,” in Proc. of the Int’l. Working
Conf. on Mining Software Repositories, 2012, pp. 189–198.

[39] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos, “Automated
topic naming to support cross-project analysis of software maintenance
activities,” in Proc. of the Int’l. Working Conf. on Mining Software
Repositories, 2011, pp. 163–172.

[40] ——, “Automated topic naming,” Empirical Software Engineering,
vol. 18, no. 6, pp. 1125–1155, 2013.

[41] C. S. Corley, K. Damevski, and N. A. Kraft, “Changeset-based topic
modeling of software repositories,” IEEE Transactions on Software
Engineering, 2019.

[42] E. Linstead and P. Baldi, “Mining the coherence of gnome bug reports
with statistical topic models,” in Proc. of the Int’l. Working Conf. on
Mining Software Repositories, 2009, pp. 99–102.

[43] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun,
“Duplicate bug report detection with a combination of information
retrieval and topic modeling,” in Proc. of the Int’l. Conf. on Automated
Software Engineering, 2012, pp. 70–79.

[44] T. T. Nguyen, T. N. Nguyen, E. Duesterwald, T. Klinger, and P. San-
thanam, “Inferring developer expertise through defect analysis,” in
Proc. of the Int’l. Conf. on Software Engineering, 2012, pp. 1297–1300.

[45] N. Pingclasai, H. Hata, and K.-i. Matsumoto, “Classifying bug reports
to bugs and other requests using topic modeling,” in Proc. of the Asia-
Pacific Software Engineering Conference - Volume 02, 2013, pp. 13–18.

[46] M. F. Zibran, “On the effectiveness of labeled latent dirichlet allocation
in automatic bug-report categorization,” in Proc. of the Int’l. Conf. on
Software Engineering Companion, 2016, pp. 713–715.

[47] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee
recommendation using activity profiles,” in Proc. of the Int’l. Working
Conf. on Mining Software Repositories, 2013, pp. 22–30.

[48] E. Guzman and B. Bruegge, “Towards emotional awareness in software
development teams,” in Proc. of the Joint Meeting on Foundations of
Software Engineering, 2013, pp. 671–674.

[49] L. Layman, A. P. Nikora, J. Meek, and T. Menzies, “Topic modeling of
NASA space system problem reports: Research in practice,” in Proc. of
the Int’l. Conf. on Mining Software Repositories, 2016, pp. 303–314.

[50] M. Zahedi, M. A. Babar, and C. Treude, “An empirical study of
security issues posted in open source projects,” in Proc. of the Hawaii
Int’l. Conf. on System Sciences, 2018, pp. 5504–5513.

[51] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An exploratory
analysis of mobile development issues using stack overflow,” in Proc. of
the Int’l. Working Conf. on Mining Software Repositories, 2013, pp. 93–
96.

[52] J. Zou, L. Xu, W. Guo, M. Yan, D. Yang, and X. Zhang, “An
empirical study on stack overflow using topic analysis,” in Proc. of
the Int’l. Working Conf. on Mining Software Repositories, 2015, pp.
446–449.

[53] M. Allamanis and C. Sutton, “Why, when, and what: Analyzing stack
overflow questions by topic, type, and code,” in Proc. of the Int’l. Work-
ing Conf. on Mining Software Repositories, 2013, pp. 53–56.

[54] W. Wang and M. W. Godfrey, “Detecting api usage obstacles: A study
of ios and android developer questions,” in Proc. of the Int’l. Working
Conf. on Mining Software Repositories, 2013, pp. 61–64.

[55] J. C. Campbell, C. Zhang, Z. Xu, A. Hindle, and J. Miller, “Deficient
documentation detection: A methodology to locate deficient project
documentation using topic analysis,” in Proc. of the Int’l. Working
Conf. on Mining Software Repositories, 2013, pp. 57–60.

[56] W. Wang, H. Malik, and M. W. Godfrey, “Recommending posts con-
cerning api issues in developer q&a sites,” in Proc. of the Int’l. Working
Conf. on Mining Software Repositories, 2015, pp. 224–234.

[57] S. Bajracharya and C. Lopes, “Mining search topics from a code search
engine usage log,” in Proc. of the Int’l. Working Conf. on Mining
Software Repositories, 2009, pp. 111–120.

[58] S. K. Bajracharya and C. V. Lopes, “Analyzing and mining a code search
engine usage log,” Empirical Software Engineering, vol. 17, no. 4-5, pp.
424–466, 2012.

[59] L. V. Galvis Carreño and K. Winbladh, “Analysis of user comments:
An approach for software requirements evolution,” in Proc. of the
Int’l. Conf. on Software Engineering, 2013, pp. 582–591.

[60] H. Nabli, R. B. Djemaa, and I. A. B. Amor, “Efficient cloud service
discovery approach based on lda topic modeling,” Journal of Systems
and Software, vol. 146, pp. 233–248, 2018.

[61] H. U. Asuncion, A. U. Asuncion, and R. N. Taylor, “Software trace-
ability with topic modeling,” in Proc. of the Int’l. Conf. on Software
Engineering - Volume 1, 2010, pp. 95–104.

[62] R. Sharma, P. Aggarwal, and A. Sureka, “Insights from mining eleven
years of scholarly paper publications in requirements engineering (re)
series of conferences,” SIGSOFT Software Engineering Notes, vol. 41,
no. 2, pp. 1–6, 2016.

[63] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target?
a longitudinal case study of just-in-time defect prediction,” IEEE Trans-
actions on Software Engineering, vol. 44, no. 5, pp. 412–428, 2018.

