
A Survey of Genetic Improvement Search Spaces
Justyna Petke

Department of Computer Science

University College London

London, UK

j.petke@ucl.ac.uk

Brad Alexander

School of Computer Science

University of Adelaide

Adelaide, Australia

brad@cs.adelaide.edu.au

Earl T. Barr

Department of Computer Science

University College London

London, UK

e.barr@ucl.ac.uk

Alexander E.I. Brownlee

Computing Science and Mathematics

University of Stirling

Stirling, UK

sbr@cs.stir.ac.uk

Markus Wagner

School of Computer Science

University of Adelaide

Adelaide, Australia

markus.wagner@adelaide.edu.au

David R. White

Department of Computer Science

The University of Sheffield

Sheffield, UK

d.r.white@sheffield.ac.uk

ABSTRACT
Genetic Improvement (GI) uses automated search to improve ex-

isting software. Most GI work has focused on empirical studies

that successfully apply GI to improve software’s running time, fix

bugs, add new features, etc. There has been little research into why
GI has been so successful. For example, genetic programming has

been the most commonly applied search algorithm in GI. Is genetic

programming the best choice for GI? Initial attempts to answer

this question have explored GI’s mutation search space. This paper

summarises the work published on this question to date.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering;

KEYWORDS
Genetic Improvement, Search-based Software Engineering, Pro-

gram Repair, Search Space, GI, APR, SBSE

ACM Reference Format:
Justyna Petke, BradAlexander, Earl T. Barr, Alexander E.I. Brownlee,Markus

Wagner, and David R.White. 2019. A Survey of Genetic Improvement Search

Spaces. In Genetic and Evolutionary Computation Conference Companion
(GECCO ’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM,

New York, NY, USA, 7 pages. https://doi.org/10.1145/3319619.3326870

1 INTRODUCTION
Genetic Improvement (GI) applies search to improve existing soft-

ware [29]. GI research emerged from the field of Genetic Program-

ming (GP), and early work on parallelisation [34, 40], runtime and

energy optimisation [42], and bug fixing [2, 3] applied tree-based GP

directly to abstract syntax tree (AST) representations of software.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00

https://doi.org/10.1145/3319619.3326870

Later applications by Forrest, Weimer and Le Goues et al. [6, 24, 41]

scaled the approach to program repair by using a patch represen-

tation. This has also been adopted by Langdon et al. [15, 16], who

introduced a line-level patch representation. The results of Lang-

don’s work on improving software’s runtime have been adopted by

open source projects [19]. More recently, GI has seen commercial

deployment in companies, including live bug fixing [8, 10, 45].

Despite these successes, the question — Why and when does GI

work well? — remains open. Papers arguing for a more informed

choice of various elements of the GI approach are scarce [7, 21, 22]

and largely concerned with stating the need for further research

in this direction [13, 20, 28, 33, 43, 44]. Almost all GI work to date,

for instance, employs Genetic Programming as its key search tech-

nique [30]. Insights into GI search spaces would allow us to improve

fitness functions and search operators. Recent work has raised this

issue: Langdon and Ochoa [20] state that “the global structure of

program search spaces is little understood”; Renzullo et al. [33]

hypothesise further that “Genetic Improvement of software is more

likely to succeed when the search algorithm is well-matched to the

fitness landscape”
1
.

Modelling the Genetic Improvement search space is not an easy

task, as the set of program variants is vast. Consider three basic

line-level GI operations: delete, copy and replace. Suppose a program
has λ lines of code. Then a single application of the delete operator
can produce up to λ different program variants. The copy operation

can produce up to λ2 program variants, as an existing line of code

can be added before any existing line in the program. The swap
operation can produce up to (λ − 1) ∗ λ program variants, as an

existing line of code can be swapped with any of the remaining λ−1
lines. Therefore, the program search space for just one step (i.e., a

single mutation) of the Genetic Improvement process is of the size

of 2 ∗ λ2, i.e., O(λ2), and this complexity grows exponentially with

the number of mutations.

More generally, the search space for any GI framework can be

defined as follows: Let Λ = {λ1, · · · , λi , · · · λk } be the set of pro-
gram locations that can be mutated. LetMi = {µ1, · · · , µ j , · · · , µm }
be the list of mutations that can be applied at location λi . Then
the search space of program variants with just one modification is

1
For the definition of a fitness landscape, see Definition 2.1.

https://doi.org/10.1145/3319619.3326870
https://doi.org/10.1145/3319619.3326870

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Petke et al.

∑
i (Mi ∗ λi).

2
Given that each variant can then be further modified

by adding mutations, the search space grows exponentially, with

the exponent, n, equal to the number of mutations allowed to the

code, i.e. O((
∑
i (Mi ∗ λi))

n).

In this paper we summarise work on the topic of GI search space

analysis published to date.

2 DEFINITIONS
In order to reason about large search spaces in evolutionary com-

putation research, the concept of a fitness landscape [32] was intro-
duced:

Definition 2.1 (Fitness Landscape [27]). A landscape is a triplet

(S,V , f) where S is a set of potential solutions, i.e. a search space,

V : S → 2
S
, a neighbourhood structure, is a function that assigns

to every s ∈ S a set of neighbours V (s), and f : S → R is a fitness

function that can be pictured as the height of the corresponding

potential solutions.

Given an optimisation problem, each solution can be assigned

a fitness value. Usually, in evolutionary computation, the higher

the fitness value, the closer that solution is assumed to be to the

optimal one. In many cases fitness distance correlation [14] can be

used to predict the performance of genetic algorithms on problems

with known global maxima. In the fitness landscape representation

there will be an edge between two solutions if one can be reached

from another using a given transformation operator. Knowing the

geometry of a fitness landscape can thus lead to informed decisions

about which search algorithm would be best to traverse it. For

example, if it has a bell shape, then a hill-climbing algorithm might

be the most efficient.

Given the huge search space of the possible program mutations,

Ochoa et al. introduced [27] local optima networks to visualise fitness
landscapes:

Definition 2.2 (Local Optimum [27]). A local optimum is a solu-

tion s∗ such that ∀s ∈ V (s∗) f (s) < f (s∗).

Definition 2.3 (Basin of attraction [27]). The basin of attraction

of a local optimum i is the set bi = s ∈ S | LocalSearch(s) = i . The
size of the basin of attraction of a local optima i is the cardinality
of bi .

Definition 2.4 (Local optima network [27]). The local optima net-

workG = (S∗,E) is the graph where the nodes are the local optima,

and there is an edge ei j ∈ E between two local optima i and j if
there is at least a pair of direct neighbours (1-bit apart) si and sj ,
such that si ∈ bi and sj ∈ bj . That is, if there exists a pair of direct
neighbours solutions si and sj , one in each basin (bi and bj).

The LocalSearch algorithm (Algorithm 1), presented below, de-

termines local optima and therefore defines the basins of attraction.

It defines a mapping from the search space S to the set of locally

optimal solutions S∗.
The above definitions came from the field of evolutionary com-

putation. With the development of GI research, a new concept

for reasoning about mutations on software code was introduced,

namely software mutational robustness:
2
For example, for a program with 5 mutable lines of code and three classical mutation

operators (delete, copy and replace): |Mi | = 5 + 5 ∗ 5 + 4 ∗ 5 = 50 for each 1 ≤ i ≤ 5.

Algorithm 1 LocalSearch [27]

Choose initial solution s ∈ S
repeat

choose s ′ ∈ V (s) such that f (s ′) =maxx ∈V (s) f (x)
if f (s) < f (s ′) then
s ← s ′

end if
until s is a Local optimum

Definition 2.5 (Software Mutational Robustness [35]). Given a

program P , a set of mutation operatorsM , and a test suite T such

that T (P) = true , we define the software mutational robustness,
written MutRB(P ,T ,M), to be the fraction of all direct mutants

P ′ =m(P), ∀m ∈ M which both compile and pass T :

MutRB(P, T , M) =
{P ′ |m ∈ M .P ′ =m(P) ∧T (P ′) = true }

{P ′ |m ∈ M .P ′ =m(P)

Software mutation robustness aims to capture with a single value

the ratio of code mutations that do not change code functionality, as

defined by its test suite. It can be viewed as a measure of neutrality

of the search landscape.

GI search spaces are defined by the set of mutations that can be

applied to the code. Each point in the search space represents one

program variant.

Definition 2.6. In the context of GI, an n-order mutant is a pro-

gram variant with n mutations applied to it.

The aim of search space analysis is to identify what the fitness

landscape looks like. There are, however, multiple ways of defining

mutations and evaluating the fitness of a program variant in GI.

The most common mutations in GI [29] are: delete, copy and

replace applied at the abstract syntax tree (AST) or line level. A

few studies considered more fine-grained, expression level changes,

such as mutation of arithmetic expressions [11], or template-based

mutations [26]. Furthermore, both in improvement of functional

and non-functional program properties, test case result is consid-

ered in fitness evaluations. However, an effective mutation (i.e., an

individual of better fitness than the original code) in automated

program repair, for instance, only needs to pass all tests, while for

improvement of runtime such a mutation would not be considered

effective if it led to a slowdown with respect to the original code.

Moreover, certain studies in non-functional property improvement

consider approximate results [5], thus allowing for test failures.

Given the obstacles above, the study of GI search spaces is not a

trivial task. Several studies on individual programs were published

though. In this paper we summarise results on the topic published

to date.

3 METHODOLOGY
In order to gather papers on the subject of analysing GI search

spaces, we searched several digital libraries, outlined below, and

used the following criterion: the study must produce and analyse a
fixed set of program variants (reachable with a defined set of muta-
tions) regardless of the fitness of the mutated programs. The reason
for enforcing this criterion is that certain papers mention search

A Survey of Genetic Improvement Search Spaces GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

landscapes in the context of proposing new search variants or com-

paring existing approaches, and providing an argument for why

they think one approach would be better than the other. Authors

of such studies then report on the efficacy of their tools with the

number of improved program variants found within a given time

limit. We do not consider such work as studies on the analysis of

GI search spaces. Typical papers we pick clearly define the search

space and report results either for all possible mutation variants

within n mutation steps or a fraction of such a search space.

We first gathered papers from Petke et al.’s survey on GI [29]. It

covers all GI work to the end of 2015. In order to gather relevant

papers published after 2015 we searched the online libraries of

three major publishers in evolutionary computation and software

engineering, that is, ACM (ACM Digital Library [1]), IEEE (IEEE

Xplore [12]) and Springer (SpringerLink [37]). We used “genetic

improvement” as the keyword and set the 2016-2019 year range.

We also looked through the comprehensive online bibliography on

automated program repair [31] in order to find relevant papers.
3

Table 1: Number of papers on the subject of GI search spaces.
Date of search: 3 April 2019.

Source Found Relevant

Petke et al.[29] (citations) 222 4

Published after 2015

APR online bibliography 106 2

Filters:

exact keyword: “genetic improvement"

year range: 2016-2019

Full Text and Metadata

Computer Science (SpringerLink only)

IEEE Xplore 42 1

ACM Digital Library 46 3

SpringerLink 42 4

Total (without repetitions) 14

4 SEARCH SPACE ANALYSIS
In the following two subsections, we summarise the results of GI

search space analysis in the literature, presented in the papers

found through our searches, presented in Table 1. We categorise

the papers into two sets: those that deal with improvement of non-

functional properties, such as runtime or energy consumption, and

those that deal with functional property improvement, such as bug

fixing. Unless stated otherwise, the search space considered in the

next section is formed by the most commonly used three operators:

delete, copy and replace, performed at either line or abstract syntax

tree (AST) level.

3
We found this to be an effective and efficient approach when looking for literature

on APR, as phrases such as “fixing”, “repair”, “automated”, “automatic”, “software” and

“program” have been used interchangeably in the field, thus returning thousands of

irrelevant searches from the digital libraries.

4.1 Search space analysis for non-functional
improvement

Langdon et al. [18, 21] presented fitness landscapes for first-order

GI mutations (see Definition 2.6) applied to three large real-world

programs. A subset of the codebase was considered for each piece

of software, ranging from a few hundred to a few thousand lines of

code. Specialised BNF-like notationwas used to prevent compilation

errors, further decreasing the number of locations where mutation

could be applied. Nevertheless, up to 61,775 possible executable

delete, copy and replace line-level mutations were considered. Faith-

fulness to the original program was established by running a test

suite on each of the evolved software variants and comparing the

results with the original outputs. The lowest compilation rate was

reported in the case of the BWA bioinformatics tool: 23% of the

evolved changes led to executable programs. It’s worth noting that

89% of those produced no change to the original program. The

highest compilation rate was observed for the StereoCamera pro-

gram: 95% of mutations led to executable programs in this case.

Moreover, 62% of the mutations did not change the output, 0.93% of

which produced faster software variants. This investigation points

to a neutral program landscape of single mutations with relatively

few changes leading to faster software variants. It is hard to draw

general conclusions, however, as two of the three systems came

from the field of bioinformatics and were written in C and C++,

while the third system was a CUDA image processing program. Fur-

thermore, restrictions were put on the number of lines considered

for mutation imposed by the specialised BNF grammar and initial

profiling to determine the most time-consuming parts of code.

Bruce et al. [5] investigated the GI search space for energy con-

sumption optimisation. They were the first to consider synergistic

effects between mutations and the first to consider approximate

solutions in this context. Bruce et al. used four real-world bench-

marks, form the PARSEC benchmark set [4], each consisting of

several thousand lines of code. By using the specialised BNF-like

notation (developed by Langdon, first used by Langdon and Har-

man [15]), between 34% and 40% of each benchmark’s lines of code

were candidates for mutation. Roughly twice as many first-order

mutations were randomly generated to investigate the search space

(28000 in total), which constituted up to 0.2% of the whole search

space. Each of the three types of mutations was selected with equal

probability. Only 1.36% of all mutations considered led to improved

software variants, with an average of an impressive 33.90% energy

consumption reduction. For the investigation of synergistic effects,

15% of all pairwise combinations of effective modifications was

chosen at random. Results showed significant interactions between

the modifications, with 12% of pairs leading to energy reductions

greater than reductions obtained by the sum of each of the two

modifications if applied separately, while 38.5% of pairs leading to

less energy reductions than the best of the two modifications con-

sidered. These results point to a flat search landscape with relatively

few local optima.

Haraldsson et al. [11] looked at the search landscape of more

fine-grained program modifications for a bioinformatics program.

Table 2 lists the applied mutations. Over 4297 mutation points

were identified in >8k lines of C and C++ code. The search space

was explored by performing a ten-step random walk away from

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Petke et al.

the original program. This process was repeated 100 times. The

authors concluded that execution time generally does not degrade

as program variants become more dissimilar from the original,

yet the compilation rate drops significantly with no compilable

program variants after 9 steps. The authors also sampled 2265

unique first-order mutants from previous experiments and looked at

the variation in runtime of those that compiled (1622 in total): most

ran to completion in similar time, confirming findings reported by

Langdon and Petke [21] and pointing to a neutral search landscape.

A related study [9] used similar fine-grained modifications in a

random walk for three small Python programs. This focused on the

number of test cases passed for the program mutants, rather than

execution time. Most first-order mutants of the original program

ran and successfully passed their test suites. A large number of first-

order mutants caused all tests to fail, with some rare mutations

causing only a small subset of tests to fail.

Table 2: Set of program modifications used by Haraldsson
et al. [11]. Any member of a given set can be swapped with
another member of the same set.

Description Operations

Numerical constants increment or decrement by 1

Arithmetic operators +,−, ∗, /,%

Arithmetic operators + =,− =, ∗ =, /=

Incremental operators ++,−−

Relational operators <, >, <=, >=,==, ! =

Bit assignments & =, | =

Bit operators &, |

Sidiroglou et al. [36] presented search spaces for loop perfora-

tion of seven C and C++ programs from the PARSEC benchmark

test suite [4]. Loop perforation provides a general technique to

trade accuracy for performance by transforming loops to execute a

subset of their iterations. Even though Sidiroglou et al.’s work was

not presented as Genetic Improvement, such modifications could

happen in the typical GI framework. Loop perforation rates of 0.25,

0.50, 0.75 and 1 were used. Authors were able to explore the search

space exhaustively, with the largest experiment finishing within

three days. Graphical representations of all the software variants

were created, showing that one can typically achieve a two-fold

speed-up, at the cost of around 5% loss of output accuracy. It is

not clear, however, how close each of the program variants are

in the search space and what percentage led to faster, acceptable

solutions.

Published investigations into the GI search space have thus far

been restricted to C/C++, CUDA and Python code; little comparison

between the impact of programming language on search space

structure has been performed.

4.2 Search space analysis for functional
improvement

The main focus of search space analysis has been on spaces for

automated program repair. For example, the exhaustive first-order

mutation search space exploration for the triangle program pub-

lished only in 2017 [22]. In all such studies only the pass or failure

of a test case on compilable program variants is considered for the

purpose of fitness evaluation, in contrast to work on non-functional

property improvement.

Schulte et al. [35] considered three mutation operators (swap,
delete, and replace), at the AST and assembly language level. They

generated 200 first-order mutants of each of their 22 small C bench-

mark programs and showed that overall 36.8% of mutants are neu-

tral, i.e., still pass all the programs’ test cases. Moreover, mutational

robustness scores (see Definition 2.5) were all over 21%. Moreover,

they generated mutants that are up to 250 neutral steps away from

the original program, containing less than 200 lines of code. They

also controlled for size to avoid bloat (i.e., only mutants leading

to variants that do not increase the original program size were

considered). They repeated this process 100 times and reported that

mutational robustness of such programs increases with the muta-

tional distance away from the original program. Authors conclude

that there are large neutral landscapes around any given program

that are easily traversible using iterative mutation. They also con-

sidered Haskell, OCaml and C++ implementations for four small

sorting programs, showing that high mutational robustness also

occurs in those programming languages. Finally, authors generated

5000 neutral variants for 11 small buggy programs and reported

that for 9 out of 10 programs there exists a program variant that

fixes a bug in such a neutral mutation landscape. This suggests GI

methods should be designed to explore neutral networks.

The most thoroughly studied program for the purpose of explo-

ration of the Genetic Improvement search space is the C implemen-

tation of the triangle program
4
[17, 22, 38]. Given the lengths of

three sides of a triangle, the program classifies it as either scelene,

isosceles, equilateral, or not a triangle.

Langdon et al. [17] considered the mutation of swapping compar-

ison operators only and investigated mutations up to fourth-order.

Given 17 comparisons and 6 comparison operators, over 1.5 million

program variants were created. 16% of all first-order mutants passed

all the 14 test cases with 21% failing only on one. These numbers

dropped rapidly to 0.06% (all pass) and 0.83% (one test case fails) for

all program variants with four mutations. It is worth mentioning

that the test set was carefully picked to cover all the branches and

all Boolean sub-expressions in the if statements.

Langdon et al. [22] provided the most comprehensive study of

the fitness landscape of the triangle program. Among other exper-

iments, they generated and ran all possible 6
17

program variants.

They discovered 9215 mutants that pass all the test cases, with 78%

of them failing five test cases. They found a bell-shaped distribu-

tion of the fitness landscape and thus ran a hill climber on every

program variant close to the original and a sample of higher-order

mutants. They noticed that only 0.24% points in the search space

of fourth-order mutants cannot reach a program variant passing

all test cases. Moreover, for most programs that fail five test cases

the hill climbing algorithm could find program variants failing just

two test cases.

Given the huge search space for the possible program mutations,

Langdon et al. [22] also used local optima networks (see Defini-

tion 2.4) to visualise the fitness landscape of the triangle program.

4
Full implementation of the trianlge program is provided in [17].

A Survey of Genetic Improvement Search Spaces GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

The same approach was used by by Veerapen et al. [38], who addi-

tionally analysed the tcas program. Figure 1 shows the local optima

network obtained from 100 runs of the LocalSearch Algorithm 1

and their first 1000 iterations for the triangle program.

Figure 1: Local optima network for the triangle pro-
gram [22]. Red edges connect program variants that pass all
test cases, pink fail 1, green 2, purple 3, orange 4, & brown 5.

Veerapen et al. [38, 39] differentiated between mutations of

Boolean and comparison operators. They used an iterated local

search algorithm that starts from a locally-optimal solution and

then alternates between a random mutation and a best-improving

hill-climber. The algorithm was run 1000 times (for each set of

allowed mutations) and stopped after 10000 steps. All generated

local optima networks showed high level of neutrality. In the case

of triangle when both Boolean and comparison mutations were

considered, only 31% runs found a global optimum, with most get-

ting stuck on plateau with two failing test cases. However, in all

the other cases the success rate was around 90%. This shows that

neutrality of the landscapes for the triangle and tcas programs

does not prevent search to easily find paths to a program variant

for which all test cases pass.

Neutrality of Genetic Improvement search spaces has been ob-

served in the work on automated software repair also on larger

real-world software systems.

Renzullo et al. [33] looked at Linux utility programs, containing

a few hundred lines of C code. They started with a buggy software

variant. Next, they selected 10 AST nodes from each program. They

generated all possible first-order mutants and all possible pairwise

combinations of mutations at the selected AST nodes. The operators

used were delete, copy and swap. This process was repeated 4 times,

creating 20200 software variants for each program under study. For

four out of five pieces of software, over 70% of variants did not

compile (only 7% variants of zune failed to compile). This shows

the importance of using grammars to restrict the search space for

software improvements. Between 3% to 18% of software variants

were neutral. Ratio between the neutral and non-neutral variants

varied significantly, depending on the program. Moreover, between

0.14% to 0.60% of 202000 software variants led to a repair. Authors

also looked at unique repairs. Overall, over twice as many second-

order mutants led to a repair than first-order ones. However, most

of them were discovered in the look program, where in all 11

cases at least one mutation was a neutral one. This result shows

the importance of traversing the neutral (under test-equivalence)

program variants in order to find improved software.

Long and Rinard [25] analysed the search space of patches in

the automated program repair field. Although they did not con-

sider typical GI techniques, their results shed some insight into

program search space investigations. Long and Rinard considered

two tools for automated program repair: Prophet, which uses a

fixed set of templates derived from human-written patches, and

SPR, which uses a set of transformations, such as introduction of

an if condition to avoid the execution of a faulty statement. To

the best of our understanding, they define the search spaces as the

total number of possible transformations for the first x statements,

as found by the error localiser. They consider the first 100, 200,

300 and 2000 statements. Authors also provided two extensions

to SPR and Prophet, that is, condition synthesis extension (which

considers certain binary comparison operators) and value replace-

ment extension (which introduces certain variable and constant

replacements).
5
These additional transformations further increased

the search spaces considered. It is, however, unclear whether all

transformations allowed for both systems were considered as the

search space. For example, one of the transformations in SPR is

statement replacement. With 2000 statements, that is 4 ∗ 106 possi-

ble transformations. SPR usually uses prioritisation heuristics to

rank most likely transformations. Nevertheless, search space sizes

are reported in the paper, with the size of the largest one in the

order of 10
5
.

Long and Rinard ran SPR and Prophet with these 16 different

settings on a set of eight large real-world open source C programs

with 69 defects (considering all mutations for the 100, 200, 300 and

2000 statements output by the error localiser). They distinguished

plausible and correct patches as follows: plausible patches pass all

the test cases, while the correct ones matched the corresponding

developer patches. They concluded that correct patches are sparse

while plausible ones are orders of magnitude more abundant. They

also concluded that larger search spaces (i.e., allowing for more

transformations) leads to more plausible patches and less correct

patches being found. It is worth noting, however, that there is

no universal definition of a correct patch. It is thus difficult to

tell whether certain patches that were labelled as “incorrect” truly

were so. Le Goues et al. [23] provided examples of correct patches

evolved by their system that differed from the developer ones. In

that study each automatically generated patch was validated on

a held-out test suite, compared with a developer-provided one,

and validated manually. For Angelix, for instance, four patches

syntactically matched the developer-produced one, whilst manual

analysis revealed additional two (50% increase) correct patches that

were different from the developer-derived ones. This shows the

importance of validating results generated by GI.

Martinez and Monperrus [26] took a more formal approach to-

wards defining the search space for automated program repair tools.

In particular, they proposed a probabilistic model for the median

number of attempts needed to find a repair shape that fixes a given

bug. They analysed twomodels, one consisting of 41 change actions,

5
Details of these two extensions can be found in Long and Rinard [25].

GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic Petke et al.

such as “statement insertion”, and extended it to another model

consisting of 173 change actions such as “statement insertion of

an if statement”. A repair shape is defined as an unordered tuple

of change actions. Authors mined 14 open source Java projects,

containing 62000 code changes, called transactions, consisting of

1.2 million changes at the AST level. They considered the space

of various fix transactions based on their size. For example, they

abstracted repair shapes consisting of single AST changes, 5-AST

level changes etc. They consider the search space to be composed

as follows: number of statements identified by a fault localisation

algorithm × number of repair shapes × number of instantiations of

a repair shape. Based on the distribution of repair shapes on one

project, they computed a probability distribution model for repair

shapes and applied it to the remaining 13 projects, calculating the

median number of attempts needed to find the correct repair shape.

Overall, Martinez and Monperrus conclude: using probability

distributions over change actions could significantly decrease run-

time of tools for automated program repair; the more abstract the

repair shape (with fewer choices) the more likely a correct repair

shape will be found (therefore, relying on precise repair actions

used in program synthesis alone decreases chances of finding the

right fixes); and certain repair shapes are impossible to find due to

their size (larger than 4 AST nodes for the model with 173 repair

actions). Therefore, there is a limit to what can be improved using

an automated approach and you need heuristics to combine repair

actions as a random template-based approach is unlikely to find

correct fixes requiring more than 4 AST changes.

5 SUMMARY
Despite the wide range of successful applications of GI, the question

about which search algorithm is most efficient and effective for GI

is yet to be answered. We identified 14 published studies on the

subject to date, shedding some initial light on how GI search spaces

look like. These are usually defined by the most commonly used

mutation operators (i.e. delete, copy and replace) on either AST or

line-level, with a few considering mutations at the expression level.

Furthermore, the definition of effective mutations differs between

studies on non-functional and functional property improvement.

In the former case the assumption is that all test cases pass in the

first instance whilst simultaneously improving the non-functional

property of interest. In automated program repair, however, a suc-

cessful mutation needs to just pass all the test cases. This lack of

unified framework and unified benchmark set makes it harder to

draw general conclusions.

Nevertheless, from the existing work on the program search

spaces in the Genetic Improvement context, the following obser-

vations were made: Programs contain large neutral spaces around

them that could be explored to improve program’s both functional

and non-functional properties. Heuristics, such as Genetic Program-

ming, are needed to explore combinations of program mutations.

By considering probabilities of occurrence over program mutations,

one can speed up the search for good solutions. It is impossible

to exhaustively explore the search space of real-world program

variants, yet there exist several connections between local optima

that the search should explore. Approximation yields more, yet still

acceptable, solutions within the program search space.

There are several gaps in the literature. For example, the impact

of the programming language on the search space is yet to be ex-

plored. In contrast to studies of search landscapes for non-functional

improvement, automated program repair literature covered a wide

range of programs and programming languages (assembly, Haskell,

C++ to name a few). Another issue concerns fitness evaluation that

relies on Boolean test case results. This could explain the largely

neutral landscapes, rugged around local optima. Therefore, we ar-

gue that more fine-grained fitness functions should be considered,

to better guide the underlying search algorithms in Genetic Im-

provement.

ACKNOWLEDGMENTS
The work in this paper was funded by the UK EPSRC [grants

EP/P023991/1 and EP/J017515/1]; and Australian Research Council

Project DE160100850.

REFERENCES
[1] ACM. 2019. Digital Library. http://dl.acm.org/. (2019).

[2] Andrea Arcuri. 2008. On the automation of fixing software bugs. In 30th Inter-
national Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May
10-18, 2008, Companion Volume, Wilhelm Schäfer, Matthew B. Dwyer, and Volker

Gruhn (Eds.). ACM, 1003–1006. https://doi.org/10.1145/1370175.1370223

[3] Andrea Arcuri and Xin Yao. 2008. A novel co-evolutionary approach to au-

tomatic software bug fixing. In Proceedings of the IEEE Congress on Evolution-
ary Computation, CEC 2008, June 1-6, 2008, Hong Kong, China. IEEE, 162–168.
https://doi.org/10.1109/CEC.2008.4630793

[4] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The

PARSEC benchmark suite: characterization and architectural implications. In

17th International Conference on Parallel Architecture and Compilation Techniques,
PACT 2008, Toronto, Ontario, Canada, October 25-29, 2008, Andreas Moshovos,

David Tarditi, and Kunle Olukotun (Eds.). ACM, 72–81. https://doi.org/10.1145/

1454115.1454128

[5] Bobby R. Bruce, Justyna Petke, Mark Harman, and Earl T. Barr. 2017. Approximate

Oracles and Synergy in Software Energy Search Spaces. (2017). Accepted to TSE.

[6] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues.

2009. A genetic programming approach to automated software repair. In Genetic
and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal,
Québec, Canada, July 8-12, 2009, Franz Rothlauf (Ed.). ACM, 947–954. https:

//doi.org/10.1145/1569901.1570031

[7] Saemundur O. Haraldsson. 2017. Genetic improvement of software: from program
landscapes to the automatic improvement of a live system. Ph.D. Dissertation.

University of Stirling, UK. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.

725136

[8] Saemundur O. Haraldsson, John R. Woodward, and Alexander E. I. Brownlee.

2017. The Use of Automatic Test Data Generation for Genetic Improvement in a

Live System. In 10th IEEE/ACM International Workshop on Search-Based Software
Testing, SBST@ICSE 2017, Buenos Aires, Argentina, May 22-23, 2017. IEEE, 28–31.
https://doi.org/10.1109/SBST.2017.10

[9] Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and

David Cairns. 2017. Exploring Fitness and Edit Distance of Mutated Python

Programs. In Genetic Programming, James McDermott, Mauro Castelli, Lukas

Sekanina, Evert Haasdijk, and Pablo García-Sánchez (Eds.). Springer International

Publishing, Cham, 19–34.

[10] Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and

Kristin Siggeirsdottir. 2017. Fixing bugs in your sleep: how genetic improvement

became an overnight success. InGenetic and Evolutionary Computation Conference,
Berlin, Germany, July 15-19, 2017, Companion Material Proceedings, Peter A. N.
Bosman (Ed.). ACM, 1513–1520. https://doi.org/10.1145/3067695.3082517

[11] Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, Albert V.

Smith, and Vilmundur Gudnason. 2017. Genetic improvement of runtime and

its fitness landscape in a bioinformatics application. In Genetic and Evolutionary
Computation Conference, Berlin, Germany, July 15-19, 2017, Companion Material
Proceedings, Peter A. N. Bosman (Ed.). ACM, 1521–1528. https://doi.org/10.1145/

3067695.3082526

[12] IEEE Xplore. 2019. Digital Library. http://ieeexplore.ieee.org/Xplore/home.jsp.

(2019).

[13] Colin G. Johnson and John R. Woodward. 2015. Fitness as Task-relevant

Information Accumulation. In Genetic and Evolutionary Computation Confer-
ence, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Pro-
ceedings, Sara Silva and Anna Isabel Esparcia-Alcázar (Eds.). ACM, 855–856.

https://doi.org/10.1145/1370175.1370223
https://doi.org/10.1109/CEC.2008.4630793
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1569901.1570031
https://doi.org/10.1145/1569901.1570031
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725136
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.725136
https://doi.org/10.1109/SBST.2017.10
https://doi.org/10.1145/3067695.3082517
https://doi.org/10.1145/3067695.3082526
https://doi.org/10.1145/3067695.3082526

A Survey of Genetic Improvement Search Spaces GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

https://doi.org/10.1145/2739482.2768428

[14] Terry Jones and Stephanie Forrest. 1995. Fitness Distance Correlation as a

Measure of Problem Difficulty for Genetic Algorithms. In Proceedings of the 6th
International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 15-19,
1995, Larry J. Eshelman (Ed.). Morgan Kaufmann, 184–192.

[15] William B. Langdon and Mark Harman. 2010. Evolving a CUDA kernel from an

nVidia template. In Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2010, Barcelona, Spain, 18-23 July 2010. IEEE, 1–8. https://doi.org/10.1109/
CEC.2010.5585922

[16] William B. Langdon and Mark Harman. 2015. Optimizing Existing Software

With Genetic Programming. IEEE Trans. Evolutionary Computation 19, 1 (2015),

118–135. https://doi.org/10.1109/TEVC.2013.2281544

[17] William B. Langdon, Mark Harman, and Yue Jia. 2010. Efficient multi-objective

higher order mutation testing with genetic programming. Journal of Systems and
Software 83, 12 (2010), 2416–2430. https://doi.org/10.1016/j.jss.2010.07.027

[18] William B. Langdon, Brian Yee Hong Lam, Marc Modat, Justyna Petke, and Mark

Harman. 2017. Genetic improvement of GPU software. Genetic Programming and
Evolvable Machines 18, 1 (2017), 5–44. https://doi.org/10.1007/s10710-016-9273-9

[19] William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman.

2015. Improving CUDA DNA Analysis Software with Genetic Programming.

In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2015, Madrid, Spain, July 11-15, 2015, Sara Silva and Anna Isabel Esparcia-Alcázar
(Eds.). ACM, 1063–1070. https://doi.org/10.1145/2739480.2754652

[20] William B. Langdon and Gabriela Ochoa. 2016. Genetic improvement: A key

challenge for evolutionary computation. In IEEE Congress on Evolutionary Com-
putation, CEC 2016, Vancouver, BC, Canada, July 24-29, 2016. IEEE, 3068–3075.
https://doi.org/10.1109/CEC.2016.7744177

[21] William B. Langdon and Justyna Petke. 2017. Software is not fragile. In First
Complex Systems Digital Campus World E-Conference 2015. Springer, 203–211.

[22] William B. Langdon, Nadarajen Veerapen, and Gabriela Ochoa. 2017. Visualising

the Search Landscape of the Triangle Program. In Genetic Programming - 20th
European Conference, EuroGP 2017, Amsterdam, The Netherlands, April 19-21, 2017,
Proceedings (Lecture Notes in Computer Science), JamesMcDermott, Mauro Castelli,

Lukás Sekanina, Evert Haasdijk, and Pablo García-Sánchez (Eds.), Vol. 10196.

96–113. https://doi.org/10.1007/978-3-319-55696-3_7

[23] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.

2017. S3: syntax- and semantic-guided repair synthesis via programming by

examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, Eric Bodden,
Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman (Eds.). ACM, 593–604.

https://doi.org/10.1145/3106237.3106309

[24] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.

GenProg: A Generic Method for Automatic Software Repair. IEEE Trans. Software
Eng. 38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[25] Fan Long andMartin C. Rinard. 2016. An analysis of the search spaces for generate

and validate patch generation systems. In Proceedings of the 38th International
Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016,
Laura K. Dillon, Willem Visser, and Laurie Williams (Eds.). ACM, 702–713. https:

//doi.org/10.1145/2884781.2884872

[26] Matias Martinez and Martin Monperrus. 2015. Mining software repair models for

reasoning on the search space of automated program fixing. Empirical Software
Engineering 20, 1 (2015), 176–205. https://doi.org/10.1007/s10664-013-9282-8

[27] Gabriela Ochoa, Marco Tomassini, Sébastien Vérel, and Christian Darabos. 2008.

A study of NK landscapes’ basins and local optima networks. In Genetic and
Evolutionary Computation Conference, GECCO 2008, Proceedings, Atlanta, GA,
USA, July 12-16, 2008, Conor Ryan and Maarten Keijzer (Eds.). ACM, 555–562.

https://doi.org/10.1145/1389095.1389204

[28] Justyna Petke. 2017. New operators for non-functional genetic improvement. In

Genetic and Evolutionary Computation Conference, Berlin, Germany, July 15-19,
2017, Companion Material Proceedings, Peter A. N. Bosman (Ed.). ACM, 1541–1542.

https://doi.org/10.1145/3067695.3082520

[29] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, David R. White, Wood-

ward, and John R. Woodward. 2017. Genetic Improvement of Software: a

Comprehensive Survey. IEEE Transactions on Evolutionary Computation (2017).

https://doi.org/10.1109/TEVC.2017.2693219

[30] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, David R. White, Wood-

ward, and John R. Woodward. 2017. Genetic Improvement of Software: a

Comprehensive Survey: Supplemental Material: Core Papers on Genetic Im-

provement. IEEE Transactions on Evolutionary Computation (2017). https:

//ieeexplore.ieee.org/abstract/document/7911210/media

[31] Program-repair.org. 2019. Online library on automated program repair.

http://program-repair.org/bibliography.html. (2019).

[32] Christian M. Reidys and Peter F. Stadler. 2002. Combinatorial Landscapes. SIAM
Rev. 44, 1 (2002), 3–54. https://doi.org/10.1137/S0036144501395952

[33] Joseph Renzullo, Stephanie Forrest, Westley Weimer, and Melanie Moses. 2018.

Neutrality and Epistasis in Program Space. In Genetic Improvement Workshop,
co-located with ICSE 2018.

[34] Conor Ryan and Paul Walsh. 1997. Paragen II: Evolving Parallel Transforma-

tion Rules. In Computational Intelligence, Theory and Applications, International
Conference, 5th Fuzzy Days, Dortmund, Germany, April 28-30, 1997, Proceedings
(Lecture Notes in Computer Science), Bernd Reusch (Ed.), Vol. 1226. Springer, 573.

https://doi.org/10.1007/3-540-62868-1_166

[35] Eric M. Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and Stephanie For-

rest. 2014. Software mutational robustness. Genetic Programming and Evolvable
Machines 15, 3 (2014), 281–312. https://doi.org/10.1007/s10710-013-9195-8

[36] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin C.

Rinard. 2011. Managing performance vs. accuracy trade-offswith loop perforation.

In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-19) and ESEC’11: 13th European Software Engineering Conference
(ESEC-13), Szeged, Hungary, September 5-9, 2011, Tibor Gyimóthy and Andreas

Zeller (Eds.). ACM, 124–134. https://doi.org/10.1145/2025113.2025133

[37] SpringerLink. 2019. Online search platform. http://link.springer.com/. (2019).

[38] Nadarajen Veerapen, Fabio Daolio, and Gabriela Ochoa. 2017. Modelling genetic

improvement landscapes with local optima networks. In Genetic and Evolutionary
Computation Conference, Berlin, Germany, July 15-19, 2017, Companion Material
Proceedings, Peter A. N. Bosman (Ed.). ACM, 1543–1548. https://doi.org/10.1145/

3067695.3082518

[39] Nadarajen Veerapen and Gabriela Ochoa. 2018. Visualising the global structure

of search landscapes: genetic improvement as a case study. Genetic Program-
ming and Evolvable Machines 19, 3 (2018), 317–349. https://doi.org/10.1007/

s10710-018-9328-1

[40] Paul Walsh and Conor Ryan. 1995. Automatic conversion of programs from serial

to parallel using Genetic Programming - The Paragen System. In In Proceedings
of ParCo’95. NorthHolland, 2–2.

[41] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.

Automatically finding patches using genetic programming. In 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada,
Proceedings. IEEE, 364–374. https://doi.org/10.1109/ICSE.2009.5070536

[42] David R. White. 2009. Genetic Programming for Low-Resource Systems. Ph.D.

Dissertation. University of York.

[43] David R. White. 2016. Guiding Unconstrained Genetic Improvement. In Genetic
and Evolutionary Computation Conference, GECCO 2016, Denver, CO, USA, July
20-24, 2016, Companion Material Proceedings, Tobias Friedrich, Frank Neumann,

and Andrew M. Sutton (Eds.). ACM, 1133–1134. https://doi.org/10.1145/2908961.

2931688

[44] David Robert White and Jeremy Singer. 2015. Rethinking Genetic Improvement

Programming. In Genetic and Evolutionary Computation Conference, GECCO 2015,
Madrid, Spain, July 11-15, 2015, Companion Material Proceedings, Sara Silva and
Anna Isabel Esparcia-Alcázar (Eds.). ACM, 845–846. https://doi.org/10.1145/

2739482.2768426

[45] Yue Jia, Ke Mao, Mark Harman. [n. d.]. Finding and fixing software bugs auto-

matically with SapFix and Sapienz. https://code.fb.com/developer-tools/finding-

and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/. ([n. d.]).

https://doi.org/10.1145/2739482.2768428
https://doi.org/10.1109/CEC.2010.5585922
https://doi.org/10.1109/CEC.2010.5585922
https://doi.org/10.1109/TEVC.2013.2281544
https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1007/s10710-016-9273-9
https://doi.org/10.1145/2739480.2754652
https://doi.org/10.1109/CEC.2016.7744177
https://doi.org/10.1007/978-3-319-55696-3_7
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1007/s10664-013-9282-8
https://doi.org/10.1145/1389095.1389204
https://doi.org/10.1145/3067695.3082520
https://doi.org/10.1109/TEVC.2017.2693219
https://ieeexplore.ieee.org/abstract/document/7911210/media
https://ieeexplore.ieee.org/abstract/document/7911210/media
https://doi.org/10.1137/S0036144501395952
https://doi.org/10.1007/3-540-62868-1_166
https://doi.org/10.1007/s10710-013-9195-8
https://doi.org/10.1145/2025113.2025133
https://doi.org/10.1145/3067695.3082518
https://doi.org/10.1145/3067695.3082518
https://doi.org/10.1007/s10710-018-9328-1
https://doi.org/10.1007/s10710-018-9328-1
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.1145/2908961.2931688
https://doi.org/10.1145/2908961.2931688
https://doi.org/10.1145/2739482.2768426
https://doi.org/10.1145/2739482.2768426

	Abstract
	1 Introduction
	2 Definitions
	3 Methodology
	4 Search Space Analysis
	4.1 Search space analysis for non-functional improvement
	4.2 Search space analysis for functional improvement

	5 Summary
	Acknowledgments
	References

