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ABSTRACT
In order to address environmental concerns and meet growing

energy demand the development of green energy technology has

expanded tremendously. One of the most promising types of re-

newable energy is ocean wave energy. While there has been strong

research in the development of this technology to date there remain

a number of technical hurdles to overcome. This research explores

a type of wave energy converter (WEC) called a buoy. This work

models a power station as an array of fully submerged three-tether

buoys. The target problem of this work is to place buoys in a size-

constrained environment to maximise power output. This article

improves prior work by using a more detailed model and explor-

ing the search space using a wide variety of search heuristics. We

show that a hybrid method of stochastic local search combined with

Nelder-Mead Simplex direct search performs better than previous

search techniques.
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1 INTRODUCTION
Wave Energy Converters (WECs) are of interest to governments

and industry as a means of complementing other renewable energy

sources such as solar and wind-power. WECs have advantages in

terms of high availability of resource (over 90%, depending on the

location) [5] and wave energy densities of up to 60kW per square

meter of water surface in prime locations. Individual WECs in the

form of buoys can also be produced to have a high capacity for
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each unit with current proposals for units with over 1MW each [7]

– providing potential for economies of scale. Finally, WEC’s have a

low impact on aquatic life[13], comparing favourably with other

generation technologies.

This study focuses on WECs in the form of fully-submerged

buoys. Submerged buoys are one of the most promising and cost-

effective technologies for extraction of energy from waves[16]. The

buoys in this study are hollowmetallic vessels, floating a fewmeters

below the water surface and tethered to the sea floor. Energy is ex-

tracted from changes in tension on the tethers as waves propagate

through water. Buoys are usually deployed in farms or arrays con-

sisting of multiple buoys. This is done for the reason of amortizing

fixed infrastructure cost but also to take advantage of constructive

interference between buoys [4]. To maximise the energy returned

by a WEC farm buoys must be placed to exploit prevailing wave

conditions, maximise constructive interference between buoys, and

minimise destructive interference.

The interactions between buoys in a farm are complex, extensive,

and dependent on local conditions. As a consequence there is, as

yet, no simple recipe for buoy placement. Research to date on farm

design has primarily focused on the placement of semi-submerged

arrays [2]. Research on placement of fully-submerged arrays [16]

has applied two popular evolutionary algorithms, the (1+1)EA [1]

and CMA-ES [8]. This found that a (1+1)EA with simple mutation

performed better than CMA-ES. However, this earlier work used a

greatly simplified environmental model with just one wave direc-

tion and fewwave frequencies. The current paper improves on prior

work substantially in the following ways: deploying a more realistic

and practical model with 50 wave frequencies and seven different

wave directions; comparing a much broader range of heuristic

search techniques adapted to functioning with a small number of

function evaluations; exploring the use of surrogate functions in

a partial evaluation framework[3]; and conducting a preliminary

investigation of the local landscape for buoy placement. As a fair

means of comparison, we examine how various frameworks per-

form within the context of a limited (but realistic) computational

budget. Through this comparison we show that a hybrid search

consisting of stochastic local search combined with downhill search

outperforms previously published methods in terms of performance

for 16-buoy array layouts. We also describe layouts resulting from

these runs.

The remaining sections of the paper are organised as follows. In

the next section we describe the buoymodel. The optimisation prob-

lem is defined in Section 4 and the search methods to be compared

are briefly described in Section 3. Section 5 presents experimental

results and finally, Section 6 discusses these results and canvases

future work.
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Table 1: Key parameters for WECs simulated in this work

Buoy number 4, 16

Buoy radius 5m

Submergence depth 3m

Water depth 30m

Buoy mass 376 tonnes

Buoy volume 523.60m3

Tether angle 55
◦

2 MODEL FORWAVE ENERGY CONVERTERS
(WECS)

This research considers a model for a WEC consisting of a fully

submerged three-tether buoy. Each tether is anchored to a generator

placed on the sea floor. The anchors are assumed to be placed in a

triangular pattern below each buoy in a configuration that optimises

the transmission of energy from heave and surge wave motions in

the waves, through to the generators [10]. Table 1 gives relevant

details of the WECs modelled in this work.

2.1 System dynamics and parameters
The WEC model calculates the energy output of WEC based on a

formula of dynamics[11] with three principle force components:

(1) The force of wave excitation (Fexc,p (t)) incorporates the
forces of incident and diffracted waves when all converters

are in a fixed position.

(2) The force of radiation(Frad,p (t)) describes the force of an
oscillating body independent of incident waves.

(3) Power take off force(Fpto,p (t)) is the force applied to the

buoys through their tethers.

Because oscillating buoys exert a force on the surrounding water

they can interact with each other at distance. Buoys can interact

not only destructively but also constructively, depending on their

relative angles and distances, and depending on the surrounding sea

conditions. In a buoy array the power accruing to a buoy number p
is characterised by Equation 1.

Mp ÜXp (t) = Fexc,p (t) + Frad,p (t) + Fpto,p (t) (1)

whereMp is the displacement of the pth buoy, ÜXp (t) is a vector of
body acceleration in heave, sway and surge. The final term, describ-

ing the power take-off system, is simulated as a linear damper and

spring. For each mooring line two control factors are applied: the

coefficient of damping Bpto and stiffness Kpto . Thus the extended
version of Equation (1) for all converters is:

((MΣ +Aσ (ω))jω + Bσ (ω) −
Kpto,Σ

ω
j + Bpto,Σ) ÜXΣ = F̂exc,Σ (2)

where AΣ(ω)) and BΣ(ω) are hydrodynamic parameters which

are derived from the semi-analytical model based on [15]. In

addition,Kpto,Σ and Bpto,Σ are control coefficients which are tuned

to provide the maximum level of isolated buoy power absorption.

In the following, two performance measures are described. To com-

pute the total power output of the layout, we utilise Equation (3):

PΣ =
1

4

( ˆF ∗exc,Σ ÜXΣ + ÜX ∗
ΣF̂exc,Σ) −

1

2

ÜX ∗
ΣB ÜX ∗

Σ (3)

The second important performance measure used here is the the

q-factor (q) of the array. q measures the efficiency of an entire array

of N as compared power output from each buoy taken in isolation.

q is defined in Equation (4) as:

q =
P∑

N · P0
(4)

In favorable circumstances q > 1 due to constructive interference,

even though the buoys extract energy from the waves. In this work

we aim to maximise the total power output: PΣ of an array of a

given size N within a constrained farm area. Because each buoy in

the array is identical the corresponding q-factor is easily derived

from the total output.

3 OPTIMISATION SETUP
The optimisation problem here can be stated as:

P∗Σ = argmaxx,yPΣ(x, y)

where PΣ(x, y) is the average power obtained by placements of the

buoys in a field at x-positions: x = [x1, . . . ,xN ] and corresponding

y positions: y = [y1, . . . ,yN ]. In the experiments here N = 16.

Constraints. All buoy positions (xi ,yi ) are constrained to a

square field of dimensions: l × w where l = w =
√
N ∗ 20000m.

This gives 20000m2
of farm-area per-buoy. In addition buoys are re-

quired to maintain a safety distance of at least 50 metres from each

other. For any layout x, y the sum-total of the inter-buoy distance

violations, measured in metres, is:

Sumdist =
∑N−1
i=1

∑N
j=i+1(dist((xi ,yi ), (x j ,yj )) − 50),

if dist((xi ,yi ), (x j ,yj )) < 50 else 0

where dist((xi ,yi ), (x j ,yj )) is the L2 (Euclidean) distance between
buoys i and j . The penalty applied to the power output (in Watts) is

( Sumdist + 1)20. This penalty is steep but continuous which allows

better handling of constraint violations during search.

Buoy placements which are outside of the farm area are handled

by repeating the placement process.

Computational Resources. This study aims to compare a diverse

set of search methods in a realistic buoy-layout optimisation setting.

The setting here assumes a limited computational time budget

of three days on a moderately high performance shared-memory

parallel platform. In this study the hardware platform are compute

nodes with 2.4GHz Intel 6148 processors and with 128GB of RAM.

In terms of software, the meta-heuristic frameworks as well as the

evaluative function for PΣ(x, y) were run in MATLAB R2017. The

used Matlab license allows us to run 12 worker threads in parallel.

For each heuristic search method, we exploit parallel processing

by either evaluating individual layouts in a population in parallel

or by evaluating all wave frequencies in parallel. The dimension

of parallelism chosen was determined according to which gave the

best performance for each search method. In both cases, if there

are enough frequencies or individuals to make use of the parallel

worker threads, up to ten-fold speedups were achieved.

It should be emphasised that we are not comparing search meth-

ods for buoy placement by simply counting evaluations of PΣ(x, y).
This is because the computational cost of each evaluation varies
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greatly between search methods depending on the number of fre-

quencies considered; similarly, run times vary with the number of

buoys in the layout. We ran the experiments on dedicated compute

resources to minimise the variance of the number of evaluations

between runs of the same method and thus avoid bias due to noise

or resource contention. In these experiments the standard deviation

in the number of evaluations between trials of the same search

method is less than 5%. While this deviation might seem substantial

at first, we shall later see that the algorithms either tend to converge

well before the computation budget is used up, or their performance

variance is not significant.

The computation budget for each single optimisation run is three

days (72 hours) using 12 worker threads. In practice, this can give

engineers two rounds of what-if analyses per week.

4 META-HEURISTIC SEARCH METHODS
We list the search methods compared in this study in Table 3. All

methods are run with the computational resources described in

the previous section and each method is run for ten times, with

the best output produced by each framework measured at the end

of the trial. The bulk of experiments were run for N = 16 buoys,

although we have also conducted experiments with N = 4 buoys.

The dimension of parallelism used in each is specified in the second

column of Table 2.

Describing the table in row-order: Random Search (R-S) places

buoys at random across the search field; PE50,µ and PEf ,µ are

partial-evaluation searches (see Section 4.1) evaluating solutions (in

tournaments) on randomly selected subsets of unique frequencies;

TDA is an algorithm for placing wind-turbines described in [14].

CMA-ES applies CMA-ES to all the dimensions of the search prob-

lem with a population determined by the formula in that row; CMA-

ES (2+2) is one of the two major buoy placement search methods

in [16]. DE is differential evolution with population 50 and three dif-

ferent values for the Pcr parameter (Pcr ∈ {0.3, 0.5, 0.7}); (1+1)EAσ
and (1+1)EAs mutate one buoy’s location at a time using either a

normal distribution (σ = 100m) or a uniform distribution ([0, s]) re-
spectively ; (1+1)EA

Linear
uses a mutation step size that decreases

linearly [6]
1
; (1+1)EA

1/5 uses a step size that becomes larger if

more than 1/5th of the steps are successful in improving fitness

and it reduces the step size if less than 1/5th of steps are success-

ful; Iterative-(1+1)EA is an iterative algorithm (see Section 4.2) for

one-at-a-time buoy placement; LS+NM
allDims

is a hybrid-search

(see Section 4.3 for all hybrid methods) which follows stochastic

buoy placement with optimisation by the Nelder-Mead (NM) sim-

plex direct search [9]; NM_Norm2D and NM_Unif2D are the same

as LS+NM
allDims

but it uses NM search to refine buoy positions

one at a time rather than all-at-once; LS1 + NM2D alternates sto-

chastic placement and NM search; finally, LS3 + NM2D conducts a

three-sample local search for each buoy placement followed by NM

search. Short descriptions of the more specialised search methods

listed above follow.

4.1 Partial Evaluation
Partial Evaluation [3] saves evaluation time by evaluating the fit-

ness of an individual just partially. In our work we applied partial

1 Mutation − stepsize = (Init ialstepsize ) ∗ (1 − 0.92 ∗ iter/Maxiter ) (5)

evaluation with randomly selected subsets of frequencies in each

generation, where the number of such frequencies is fixed for the

duration of the run. We used the non-elitist µ + λEA in [3] as the

framework for driving evolution. Note that, because fitness is as-

sessed on partial information it is necessary to include a single

generation at the end of the process where each individual layout is

evaluated at all frequencies so the best-performing individual can be

selected. The cost of this last generation depends on the population.

For µ = 100, this time is substantial and 12 hours must be allocated

at the end, leaving 2.5 days to run the actual PE search algorithm.

Proportionately less time is needed for smaller populations. In the

meantime, two kinds of mutations are used. Firstly, the position of

buoys are mutated based on uniformly distributed random numbers

in a circle (r = l/16) with a radius of 18(m) and 35(m) for 4 and 16

buoys respectively. Secondly, a normal distribution is employed for

resampling the buoys location with σ = 10(m) (PE − N ).

4.2 Iterative 1+1EA
In contrast to the other (1+1)EA algorithms described in Table 2

the Iterative (1+1)EA method positions buoys one after the other.

Each buoy is placed using a (1+1)EA-like search starting from the

previously placed buoy. Step size decreases linearly during search

(see Equation 5). For each buoy the search stops either when the

new buoy has a q-factor of ≤ 1.0, or when a preset number of

mutation steps is reached. The latter is done in order to limit the

time spent in the local search as further buoys remain to be placed.

4.3 Hybrid Search
In pursuit of a more informed search heuristic, a brief studywas con-

ducted to sample the marginal energy gain resulting from adding a

new buoy to the neighbourhood of buoys that have already been

placed. Figure 1 shows the results of this landscape analysis for

placing a fourth buoy near three previously placed buoys. Areas

of high energy output are shown in yellow, while the blue chasms

represent closeness constraint violations.
2

Two important properties are apparent from these graphs. First,

is that the landscape, though multi-modal, is smooth. This means

that a search with a local search component may be beneficial. The

second property is that, due to positive reinforcement effects, peak

energy output is often in the neighbourhood of previously placed

buoys. This indicates that it might be good to start the search near

a previously placed buoy.

These observations have informed the design of the last five

search methods in Table 2. The first of these is LS+NM
allDims

,

described in Algorithm 1.

This algorithm repeatedly adds buoys at random offsets from the

previous one followed by a Nelder-Mead local search on all buoy

positions. The Nelder-Mead local search is limited to 10 iterations

so that the outer while loop has time to build and test repeated

configurations until the time budget for buoy placement runs out.

Inside the for loop the buoys are placed one at a time with each

successive buoy being placed at a distance, sampled from a normal

distribution, from the previous buoy. In this algorithm the normal

2
In fact, the actually underlying 4-buoy layout is the result of comprehensive 4-buoy

layout optimisations. For each of the four figures, one buoy was removed and then the

landscape mapped using a grid search. This figure confirms that the underlying layout

was indeed a local optimum with respect to single-buoy mutations.
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Table 2: Summary of the searchmethods used in this paper. All methods are given the same computational budget. Parallelism
can be expressed as per-individual or per-frequency depending on the number of individuals in the population (see Section 3).

Abbreviation Parallelism Description

R-S per-frequency Random Search

PE50,µ per-individual Partial Evaluation[3], all frequencies (PEFull ), population µ ∈ {10, 50, 100}
PEf ,µ per-individual Partial Evaluation [3], partial frequencies, f ∈ {1, 4, 16}, µ ∈ {10, 50, 100}
TDA per-individual Algorithm for optimising wind turbine placement from [14]

CMA-ES per-individual CMA-ES[8] all dimensions, µ =′ 4 + int(3 ∗ loд(D))ndim , σ = 0.17 ∗Area
CMA-ES (2+2) per-individual Setup for CMA-ES from [16], σ = 20m

CMA − ESPF (2+2) per-frequency All settings are based on [16]

DEPcr per-individual Differential evolution [12], µ = 50, F = 0.5, Pcr ∈ {0.3, 0.5, 0.7, 0.9}
1+1EAσ per-frequency 1+1EA(all dimensions), mutation step size with σ ∈ 3, 10, 30(m)

1+1EAs per-frequency 1+1EA (all dimensions) with uniform mutation in range [0, s] with s = 30 from [16]

1+1EA
Linear

per-frequency 1+1EA (all dimensions) with linearly decaying mutation step size [6]

1+1EA
1/5 per-frequency 1+1EA (all dimensions) with adaptive step size [6]

Iterative 1+1EA per-frequency Iterative local search - buoys are placed in sequence using best of local neighborhood search,

σ = 100(m) for inserting the new buoy, Mutation step size= (l/10) decreased lineally (Eq.5),

Stopping Criteria for optimising each buoy based on power and number of mutations

LS+NM
allDims

per-frequency Local sampling + Nelder-Mead search in all Dimensions

NM_Norm2D per-frequency Buoys placed in sequence using Nelder-Mead search, Initial placement normally distributed from

last buoy position, MaxFunEvals=30, for inserting the new buoy σ = 100(m)
NM_Unif2D per-frequency Buoys placed randomly and then refined using Nelder-Mead Initial placement uniformly distributed

from last buoy position, MaxFunEvals=30.

LS1 + NM2D per-frequency Local Sampling + Nelder Mead search. Buoys placed at random offset from previous buoy and

placement refined by Nelder-Mead search. [9], Stopping criteria for NM for optimising added buoy

(Tolerance=0.1% ∗ Power ), σ = 100m (inserting buoys) and step size based on Equation 5

LS3 + NM2D per-frequency Repeated local sampling + Nelder Mead search. Placements sampled at three random offsets from

previous location, best placement used as starting point for Nelder-Mead search.

Figure 1: The wave farm’s power landscape for the insertion
of the last buoy of 4-buoy layout into locations across the
farm area. Dashed lines show the locations of the local op-
tima for adding a fourth buoy.

distribution has σ = 100m, which is an educated guess informed

by the landscape mapping in Figure 1. Note that, for this algorithm,

the Eval function is parallelised on a per-frequency basis.

The next two search methods in Table 2 are: NM_Norm
2D and

NM_Unif
2D are greedy algorithms that, like LS+NM

allDims
, place

buoys one at a time at a random offset from the previous buoy.

However, in these algorithms the NM_Search is run to optimise

each buoy position before proceeding to the next buoy placement.

The time budget for each NM_Search phase is: 3days/N so that

there is equal time devoted to each buoy placement. Note that

in this algorithm the call: Eval([x1, ...,x−i],[y1, ...,y−1]) is implicitly

passed the arguments for the buoys placed to date so that it can

evaluate the new buoy position [xi ,yi ] with respect to these. Also

note that, due to the shorter evaluation time for smaller numbers

of buoys this equal time allocation results in more search iterations

for earlier buoys which serves as a good foundation for the rest of

the search. The algorithm for NM_Norm
2D (normally-distributed

offset σ = 100m) is shown in Algorithm 2. NM_Unif
2D (uniformly-

distributed offset in range [0, size]) differs from this only in the

sampling approach.

The last two searchmethods in Table 2 are: LS1+NM2D and LS3+
NM2D . The algorithm for LS3+NM2D is shown inAlgorithm 3. This

algorithm makes three samples of the neighbourhood surrounding

the last buoy and conducts NM_Search from the sampled point

giving the highest energy. The stopping condition for NM_Search is
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Algorithm 1 LS+NM
allDims

1: procedure Local Sampling + Nelder-Mead Search (all

Dims)

2: Initialization
3: size =

√
N ∗ 20000 ▷ Farm size

4: x = [x1, . . . ,xN ] = ⊥ ▷ x-positions

5: y = [y1, . . . ,yN ] = ⊥ ▷ y-positions

6: lastx=size/2; lasty=0 ▷ first buoy position

7: bestEnergy = 0 ▷ Best energy so far

8: bestLayout = [x, y] ▷ Best layout so far

9: search
10: while stillTime() do ▷ Iterative search

11: for i in [1, ..,N ] do
12: while not valid (x, y) do
13: xi = randn(σ ) + lastx ▷ new buoy position

14: yi = randn(σ ) + lasty ▷ new buoy position

15: end while
16: lastx= xi ; lasty= yi ▷ Update last buoy position

17: end for
18: ([x, y], energy)= NM_Search(Eval, [x, y]) ▷ Local search
19: if thenenergy > bestEnergy ▷ If better?

20: bestEnergy = energy ▷ Update energy

21: bestLayout = x, y] ▷ Update layout

22: end if
23: end while
24: return bestLayout ▷ Final Layout

25: end procedure

Algorithm 2 NM_Norm
2D

1: procedure Nelder-Mead Search (2 Dims)

2: Initialization
3: size =

√
N ∗ 20000 ▷ Farm size

4: x = [x1, . . . ,xN ] = ⊥ ▷ x-positions

5: y = [y1, . . . ,yN ] = ⊥ ▷ y-positions

6: lastx=size/2; lasty=0 ▷ first buoy position

7: search
8: for i in [1, ..,N ] do
9: while not valid (x, y) do
10: xi = randn(σ ) + lastx ▷ new buoy position

11: yi = randn(σ ) + lasty ▷ new buoy position

12: end while
13: ([xi ,yi ], energy)=
14: NM_Search(Eval([x1, ...,xi−1],[y1, ...,yi−1]), [xi ,yi ])
15: lastx= xi ; lasty= yi ▷ Update last buoy position

16: end for
17: return [x, y] ▷ Final Layout

18: end procedure

also different from previous algorithms with a stopping tolerance

of 0.1% in the energy output. Compared to earlier approaches, this

NM_Search configuration devotes relatively little time to the search

for early buoy placements, which tend to converge fast, and more

to the later buoy placements which converge slowly. Note that

the stopping tolerance was tuned to make sure the algorithm’s

Algorithm 3 LS3 + NM2D

1: procedure Local Sampling + Nelder-Mead Search (2 Dims)

2: Initialization
3: size =

√
N ∗ 20000 ▷ Farm size

4: x = [x1, . . . ,xN ] = ⊥ ▷ x-positions

5: y = [y1, . . . ,yN ] = ⊥ ▷ y-positions

6: lastx=size/2; lasty=0 ▷ first buoy position

7: search
8: for i in [1, ..,N ] do
9: iters = 3 ▷ Number of local samples

10: bestx = 0; besty = 0; bestEnergy = 0

11: for j in [1, .., iters] do
12: while not valid (x, y) do
13: xi = randn(σ ) + lastx ▷ new buoy position

14: yi = randn(σ ) + lasty ▷ new buoy position

15: end while
16: energy = Eval([x1, . . . ,xi−1,xi ,y1, . . . ,yi−1,yi ])
17: if energy > bestEnergy then
18: bestx = xi ; besty = yi
19: bestEnergy = energy
20: end if
21: end for
22: ([xi ,yi ], energy)=
23: NM_Search(Eval([x1...xi−1],[y1...yi−1]), [bestx, besty])
24: lastx= xi ; lasty= yi ▷ Update last buoy position

25: end for
26: return [x, y] ▷ Final Layout

27: end procedure

running time is close to three days. The LS1 + NM2D is identical

to LS3 + NM2D but with iters = 1.

5 EXPERIMENTS
In this section, we report on the results of our experiments. The

search methodologies can be divided into single-solution and

population-based methods. In the latter group the sizes of pop-

ulations used vary from 2 to 100 depending on the algorithm.

Figures 2 and 3 show box-and-whiskers plots for the power

output of the best individuals resulting from all the configurations

of the all the search heuristics shown in Table 2 for determining

well-performing 16-buoy layout. Note that, Figure 3 is a subplot of

Figures 2 showing the outputs for all the variations of PE. The PE

variations shown in Figure 2 are full-frequency evaluation variants

of the µ + λ algorithm used for PE with uniform and normally

distributed mutation, respectively.

The first observation from both figures is that the differences

in the mean output attained by all methods is less than 20%. This

shows that even the most naive search methods are able to obtain

non-trivial power outputs. The second observation is that with the

limited number of function evaluations at hand highly adaptive

search heuristics such as CMA-ES and DE only perform moder-

ately well. One potential reason for this is that small number of

evaluations possible, in the order of 300 full evaluations of 16 buoy

layouts in three days, gives little time for these methods to learn
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Figure 2: The comparison of the all proposed ideas results from 16-buoy layout in terms of the best layout per each experiment.
With regard to the median performance , LS3 + NM2D can overcome other methods .
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Figure 3: The optimisation results of Partial Evaluation
methodwith three population sizes:µ = 10, 50, 100 and differ-
ent wave frequencies are used (1, 4, 16 and 50(f )) for 16-buoy
layout.

the search landscape.
3
Another observation is that the (1+1)EAs

3
Early experiments with four buoy layouts – which allow thousands of evaluations –

show CMA-ES performing at least as well as other methods.

and the buoy-at-a-time placement algorithms (with local search) all

perform well. The best performing algorithms are the LS1 + NM2D
and LS3 +NM2D which are hybrid searches with settings informed

by the landscape. Of these two, the LS3 + NM2D , which does the

local sampling appears to have a slightly higher mean performance

but the difference is not significant with this sample size. The best

performance overall of 7608600 Watts is given by one of the runs

of LS1 + NM2D .

Examining the PE methods in Figure 3, it appears that variants

with lower number of frequencies sampled seem to perform better.

These variants are able to perform many more evaluations than

those sampling higher numbers of frequencies, at the cost of having

a less informed and more noisy evaluative function. From both fig-

ures it appears that there is no clear advantage accruing to methods

with larger population sizes. This is likely to be a product of the

limited number of evaluations available. Overall there seems to

be an advantage in evaluating on fewer frequencies and using a

smaller population.

To examine how the various search methods converged the

average fitness of the best individuals in each population were

recorded for each method. These results are plotted in Figures 4

for partial evaluation and 5 for all others. Note that, in both sets of

plots the averages were obtained by fully evaluating the population

at the sampled time and extracting the best performing individual

for that run — in case of PE, this happened in post-processing. The

top row of Figure 4 is ordered by the number of frequencies. As can
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be seen there is a clear decrease in the speed of optimisation as the

number of sampled frequencies increases. Moreover the relative

advantage in speed of optimisation for small populations becomes

more marked for more evaluated frequencies. In the second row,

ordered by population, the speed of evolution is highest for the

lowest population but starts off a lower base.

In Figure 5 the distinct groups of algorithms are observable. The

PE full frequency heuristics start with relatively good performance

but have relatively flat fitness curves. Next the CMA-ES variants

progress quickly from a low base and then flatten out in perfor-

mance. The DE and 1+1EA variants, respectively, follow smoother

and higher curves. Finally, the LS1 + NM2D starts off a very low

base (below the x-axis) and steps up steeply with initial buoy place-

ments followed by Nelder-Mead search (the shallow-sloping steps).

The overall result of this hybrid algorithm is slightly better overall

than the other methods.

Finally, the layout of wave-buoy’s produced by the algorithms

offers some interesting insight into the features of these highly

productive individuals. Figure 6 shows the most productive indi-

vidual layout found in all the search runs. This layout is built by

the algorithm from the x-axis upwards with buoys numbered in

the figure in order of placement. It is clear that the initial place-

ment order forms an almost straight diagonal line from the bottom

sloping upwards to the right. The buoys then start to slope left-

wards toward the front. These placement make sense in terms of

placement of adjoining buoys in the peaks of the power landscape.

Note that buoy 8 is placed in front of the others which reduces the

energy output of the buoys behind before buoy 9 and 10 are placed

in the original diagonal pattern. At this point, options that do not

interfere negatively with other buoys in this layout are exhausted

so a second front of buoys has started to form that alternates in the

y-dimension with the original front so as to minimise the impact of

negative interference. It should be noted that this zig-zag pattern of

farm layout is observable in results of many of the high-performing

runs. Another feature common to many runs is the formation of

the second row of buoys, often started before first row is complete.

It is not clear if the early formation of this second row is an artifact

of stochastic nature of the hybrid search heuristics or there are

fundamental properties of the problem that drive this behaviour, at

least in constrained environments.
4

6 CONCLUSIONS
In this investigation, several evolutionary optimisation algorithms

are applied and evaluated for maximising the total captured power

of 16 buoy layouts using an improved and detailed evaluative func-

tion. The optimisation environment is challenging, with a very

limited number of full evaluations possible within the evaluation

budget. Because the algorithms explored have diverse behaviour in

terms of evaluative costs algorithms were compared in the realistic

scenario of searching within a generous time budget on a multi-core

machine.

The methods that performed best were hybrids of stochastic

buoy placements and uphill local search. One advantage of these

search strategies is the one-at-a-time buoy placements reduced the

4
In experiments with four buoys there is no formation of a second front.

dimensionality of the search space to just the next buoy. A poten-

tial disadvantage of this greedy placement approach is that it al-

lows no backtracking to improve the positions of previously placed

buoys. However, preliminary experiments with global optimisation

of these best buoy layout have yielded very little improvement,

indicating that substantial improvement will involve more than

simply tuning the discovered layout.

This work also explored partial evaluation by frequency and

showed that a small number of frequencies and a small population

yielded the best results in terms of search but still less effective

overall than other methods.

Finally from many observations of different optimal layouts and

analysing the landscapes of the farms, it appears that a positive

hydrodynamic interaction can be obtained if buoys are placed at a

relative angle of approximately 45 degrees. This observation might

be exploited in the initialisation phase.

This work can be carried in several potential directions. First

new, more informed hybrid algorithms can be developed. It may

be possible to combine smarter initialisation with iterative local

search. Variants of partial evaluation can be used that evaluate on

the energy from a sample of buoys rather than frequencies. If care-

fully designed such an algorithm may allow the productive use of

crossover as a way of combining individuals with complementary

partial fitnesses. There is also scope to apply this work to an even

more refined model with more wave directions and non-uniform

water depth. Finally, the optimisation can be extended to incorpo-

rate a cost model based on sharing tether points, accounting for the

different tether angles and tether lengths that this analysis would

entail.

Our code, layouts, and auxiliary material are publicly available:

https://cs.adelaide.edu.au/~optlog/research/energy.php
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Figure 4: The PEperformance comparison of different number ofwave frequency (1, 4, 16 and 50)with three size of populations
(µ =10, 50 and 100) results from 16-buoy layout based on the average computational time.
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APPENDIX WITH SUPPLEMENTARY MATERIAL
We make use of the appendix in order to report on our preliminary experiments on 4-buoy layouts. These eventually lead to the landscape

mapping in Section 4.3. In particular, we show for the 4-buoy scenario the relative similarity of good layouts produced by very different

approaches. Also, we show the runtime performance as well as the final performance of various approaches.

For the 16-buoy case, we provide a detailed listing of the most important outcomes of the experiments for future comparisons.

6.1 Layouts with 4 buoys
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Figure 7: The three best optimisation results of 4-buoy layout which are obtained by three very different algorithms: (a) LS +
NMallDims , (b) (1+1)EA with linear mutation step size and (c) CMA-ES (µ = 10). The absorbed energy by each generator is
characterised by colours.
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6.2 Layouts with 16 buoys

Table 3: The performance comparison of various heuristics for the 16-buoy case, based onmaximum,median andmean power
output layout of the best solution per experiment (Std = standard deviation). The computational budget for each run is 72 hours
times 12 worker threads. Shown are the results of 10 independent runs.

Methods PE-Full (Uniform) PE-Full(Normal) DE
µ = 10 µ = 50 µ = 100 µ = 10 µ = 50 µ = 100 Pcr = 0.3 Pcr = 0.5 Pcr = 0.9

Max 6974948 6900024 6952017 6957388 6948746 6892210 7179681 7025873 7079962

Median 6859475 6839557 6851342 6853987 6812866 6816282 6944795 6999356 6983523

Mean 6856337 6821864 6860037 6869586 6837972 6822553 6971231 6981195 6994172

Std 48701 61880 50377 61153 70048 52911 89244 41931 48943

Methods (1+1)EA Iterative-(1+1)EA NM2D LS + NMallDims
Mu-s=3 Mu-s=10 Mu-s=30 Linear 1/5 rule Uniform Normal

Max 7008380 7402584 7351112 7437481 7425665 7370972 7380318 7267242 7094642

Median 6927230 7297465 7278120 7317408 7354589 7354589 7193110 7136712 6839911

Mean 6908203 7292035 7275118 7330286 7343858 7274989 7205098 7108693 6823836

Std 83157 77794 51745 60803 59690 54380 83944 116380 198512

Methods LS1 + NM2D TDA CMA-ES R-S (1 + 1)EAS (2+2)CMA-ES LS3 + NM2D

Max 7608600 7148655 7118996 6825723 7370389 7205956 7587758

Median 7409029 7057564 7053351 6658523 7214263 7073295 7459614
Mean 7427027 7005873 7038352 6676831 7236977 7080011 7426742

Std 129780 133977 84859 63883 67406 49771 123603
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