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Abstract Many real-world problems are composed of several interacting compo-
nents. In order to facilitate research on such interactions, the Traveling Thief Problem
(TTP) was created in 2013 as the combination of two well-understood combinatorial
optimization problems.

With this article, we contribute in four ways. First, we create a comprehensive
dataset that comprises the performance data of 21 TTP algorithms on the full orig-
inal set of 9720 TTP instances. Second, we define 55 characteristics for all TPP
instances that can be used to select the best algorithm on a per-instance basis.
Third, we use these algorithms and features to construct the first algorithm port-
folios for TTP, clearly outperforming the single best algorithm. Finally, we study
which algorithms contribute most to this portfolio.
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1 Introduction

The complexity of operations is increasing in most companies, with several interact-
ing components having to be addressed at once. For example, the issue of scheduling
production lines (e.g., maximizing the efficiency or minimizing the cost) has direct
relationship with inventory costs, transportation costs, delivery-in-full-on-time to
customers, and hence should not be considered in isolation. In addition, optimizing
one component of the operation may negatively impact activities in other compo-
nents.

The academic traveling thief problem (TTP) (Bonyadi et al 2013) is quickly
gaining attention as an NP-hard combinatorial optimization problem that combines
two well-known subproblems: the traveling salesperson problem (TSP) and the knap-
sack problem (KP). These two components have been merged in such a way that the
optimal solution for each single one does not necessarily correspond to an optimal
TTP solution. The motivation for the TTP is to allow the systematic investigation of
interactions between two hard component problems, to gain insights that eventually
help solve real-world problems more efficiently (Bonyadi et al 2016).

Since the introduction of the TTP, many algorithms have been introduced for
solving it. While the initial approaches were rather generic hill-climbers, researchers
incorporated more and more domain knowledge into the algorithms. For example,
this resulted in deterministic, constructive heuristics, in restart strategies, and also
in problem-specific hill-climbers that try to solve the TTP holistically. While the use
of insights typically resulted in an increase in the objective scores, the computational
complexity also increased. Consequently, which one of the algorithms performs best
is highly dependent on the TTP instance at hand. To exploit this complementarity
of existing algorithms, here we study the applicability of algorithm selection (Rice
1976) to this problem.

Specifically, after describing the TTP (Section 2) and the algorithm selection
problem (Section 3), we make the following contributions:
– We analyze the performance of 21 TTP algorithms on the original set of 9720

instances created by Polyakovskiy et al (2014a) (Section 4);
– We describe characteristics of TTP instances that can be used as “features” for

determining the best algorithm for the instance (Section 5);
– We create the first algorithm portfolios for TTP, substantially improving perfor-

mance over the best single TTP algorithm (Section 6); and
– We analyze how complementary the algorithms in the portfolio are and which

algorithms are most important for achieving good performance (Section 7).

2 The travelling thief problem (TTP)

The traveling thief problem (TTP) (Bonyadi et al 2013) is a recent attempt to provide
an abstraction of multicomponent problems with dependency among components.
It combines two problems and generates a new problem with two components. In
particular, it combines the traveling salesperson problem (TSP) and the knapsack
problem (KP), as both problems are well known and have been studied for many
years in the field of optimization.

In this section, we motivate the TTP as an academic problem that addresses an
important gap in research and then define it formally.
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2.1 Motivation

In contemporary business enterprises the complexity of real-world problems has to be
perceived as one of the greatest obstacles in achieving effectiveness. Even relatively
small companies are frequently confronted with problems of very high complexity.
Some researchers investigated features of real-world problems that served to explain
difficulties that Evolutionary Algorithms (EAs) experience in solving them. For ex-
ample, Weise et al (2009) discussed premature convergence, ruggedness, causality,
deceptiveness, neutrality, epistasis, and robustness, which make optimization prob-
lems hard to solve. However, it seems that these reasons are either related to the
landscape of the problem (such as ruggedness and deceptiveness) or to the opti-
mizer itself (such as premature convergence and robustness) and do not focus on
the nature of the problem. Michalewicz and Fogel (2004) discussed a few different
reasons behind the hardness of real-world problems, including problem size, presence
of noise, multi-objectivity, and presence of constraints. Most of these features have
been captured in different optimization benchmark sets, such as TSPlib (Reinelt
1991), MIPlib (Koch et al 2011) and OR-library (Beasley 1990).

Despite decades of research efforts and many articles written on Evolutionary
Computation (EC) in dedicated conferences and journals, still it is not that easy to
find applications of EC in the real-world. Michalewicz (2012) identified several rea-
sons for this mismatch between academia and the real world. One of these reasons
is that academic experiments focused on single component (single silo) benchmark
problems, whereas real-world problems are often multi-component problems. In order
to guide the community towards this increasingly important aspect of real-world op-
timization (Bonyadi et al 2016), the traveling thief problem was introduced (Bonyadi
et al 2013) in order to illustrate the complexities that arise by having multiple in-
teracting components.

A related problem is the vehicle routing problem (VRP, for an overview see Bell
and McMullen (2004); Rizzoli et al (2007)). The VRP is concerned with finding
optimal routes for a fleet of vehicles delivering or collecting items from different
locations (Dantzig and Ramser 1959; Laporte 1992). Over the years, a number of
VRP variants have been proposed, such as variants with multiple depots or with
capacity constraints. However, the insights gained there do not easily carry over
to the academic TTP, as we consider in addition to the routing problem not only
a load-dependent feature, but also the NP-hard optimisation problem of deciding
which items are to be stolen by the thieves. For discussions on how the TTP differs
from the VRP, we refer the interested reader to Bonyadi et al (2013, 2014).

Despite being a challenging problem, it is often disputed whether the TTP is
realistic enough because it only allows a single thief to travel across hundreds or
thousands of cities to collect (steal) items. In addition, the thief is required to visit
all cities, regardless of whether an item is stolen there or not. Chand and Wagner
(2016) discussed the shortcomings of the current formulation and presented a relaxed
version of the problem which allows multiple thieves to travel across different cities
with the aim of maximizing the group’s collective profit. A number of fast heuristics
were also proposed for solving the newly proposed multiple travelling thieves problem
(MTTP). It was observed that having a small number of additional thieves could
yield significant improvements of the objective scores in many cases.
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2.2 Formal Definition

We use the definition of the TTP by Polyakovskiy et al (2014a). Given is a set of
cities N = {1, . . . , n} and a set of items M = {1, . . . ,m} distributed among the
cities. For any pair of cities i, j ∈ N , we know the distance dij between them. Every
city i, except the first one, contains a set of items Mi = {1, . . . ,mi}, M = ∪

i∈N
Mi.

Each item k positioned in city i is characterized by its profit pik and weight wik,
thus the item Iik ∼ (pik, wik). The thief must visit all cities exactly once starting
from the first city and returning back to it in the end. Any item may be selected in
any city as long as the total weight of collected items does not exceed the specified
capacity W . A renting rate R is to be paid per each time unit taken to complete
the tour. υmax and υmin denote the maximal and minimum speeds that the thief
can move. The goal is to find a tour, along with a packing plan, that results in the
maximal profit.

The objective function uses a binary variable yik ∈ {0, 1} that is equal to one
when the item k is selected in the city i, and zero otherwise. Also, let Wi denote the
total weight of collected items when the thief leaves the city i. Then, the objective
function for a tour Π = (x1, . . . , xn), xi ∈ N and a packing plan P = (y21, . . . , ynmi )
has the following form:

Z(Π,P ) =
n∑
i=1

mi∑
k=1

pikyik −R

((
n−1∑
i=1

dxixi+1

υmax − νWxi

)
+ dxnx1

υmax − νWxn

)

where ν = υmax−υmin

W is a constant value defined by input parameters. The first
term is the sum of all packed items’ profits and the second term is the amount that
the thief pays for the knapsack’s rent (equal to the total traveling time along Π
multiplied by R). Within the knapsack’s rent term, the first addend is the cost for
traveling from city i to i + 1 and the second addend is the cost for traveling from
the last city back to the city with ID 1.

Note that different values of the renting rate R result in different TTP instances
that might be “harder” or “easier” to solve. For example, for small values of R
(relative to the profits), the overall rent contributes little to the final objective score.
In the extreme case R = 0, the best solution for a given TTP instance is equivalent
to the best solution of the KP component, which means that there is no need to
solve the TSP component at all. Similarly, high renting rates reduce the effect of
the profits, and in the extreme case the best solution of the TTP is the optimum
solution for the given TSP component.

We provide a brief example in the following (see Figure 1); full details are given
by Polyakovskiy et al (2014a). Each city but the first has an assigned set of items,
e.g., city 2 is associated with item I21 of profit p21 = 20 and weight w21 = 2, and with
item I22 of profit p22 = 30 and weight w22 = 3. Let us assume that the maximum
weight W = 3, the renting rate R = 1 and υmax and υmin are set as 1 and 0.1,
respectively. Then the optimum objective value is Z(Π,P ) = 50 when to tour is
Π = (1, 2, 4, 3, 1) and when items I32 and I33 are picked up (total profit of 80).
As the thief’s knapsack has a weight of 2 on the way from city 3 back to city 1,
this reduces the speed and results in an increased cost of 15. Consequently, the final
objective value is Z(Π,P ) = 80−1 ·(5+6+4)−1 ·

(
6

1− 1.0−0.1
3 ·2

)
= 80−15−15 = 50.
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Fig. 1: Illustrative example for a TTP instance (taken from Polyakovskiy et al
(2014a), with permission)

2.3 Algorithms for TTP

In the following, we provide a historical overview of approaches to the TTP. As we
shall later see, none of these algorithms dominates all others.

In the original article in which the TTP is defined, Bonyadi et al (2013) used
exhaustive enumeration on instances with four cities and six items in order to demon-
strate the interconnected components. A year later, Polyakovskiy et al (2014a) cre-
ated a set of instances with up to almost 100,000 cities and 1,000,000 items, rendering
exhaustive enumeration no longer feasible.

It were also Polyakovskiy et al (2014a) who proposed the first set of heuristics for
solving the TTP. Their general approach was to solve the problem using two steps.
The first step involved generating a good TSP tour by using the classical Chained
Lin-Kernighan heuristic (Applegate et al 2003). The second step involved keeping
the tour fixed and applying a packing heuristic for improving the solution. Their first
approach was a simple heuristic (SH) which constructed a solution by processing and
picking items that maximized the objective value according to a given tour. Items
were picked based on a score value that was calculated for each item to estimate how
good it is according to the given tour. They also proposed two iterative heuristics,
namely the Random Local Search (RLS) and (1+1)-EA, which probabilistically
flipped a number of packing bits. After each iteration the solution was evaluated and
if an improvement was noted, the changes were kept; otherwise they were ignored.

Bonyadi et al (2014) experimentally investigated the interdependency between
the TSP and knapsack components of the TTP. They proposed two heuristic ap-
proaches named Density-based Heuristic (DH) and CoSolver. DH is again a two-
phased approach similar to SH from Polyakovskiy et al (2014a), and it also ignores
any dependencies between the TSP and Knapsack components. In contrast to this,
CoSolver is a method inspired by coevolution based approaches. It divides the prob-
lem into sub-problems where each sub-problem is solved by a different module of the
CoSolver. The algorithm revises the solution through negotiation between its mod-
ules. The communication between the different modules and sub-problems allows for
the TTP interdependencies to be considered. A comparison across several bench-
mark problems showed the superiority of CoSolver over DH. This was especially
evident for larger instances.

Mei et al (2014b) also investigated the interdependencies between the TSP and
knapsack components. They analysed the mathematical formulation to show that
the TTP problem is not additively separable. Since the objectives of the TSP and
knapsack components are not fully correlated, one cannot expect to achieve compet-
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itive results by solving each component in isolation. The authors used two separate
approaches for solving the TTP: a cooperative coevolution based approach similar
to CoSolver, and a memetic algorithm called MATLS which attempts to solve the
problem as a whole. The memetic algorithm, which considered the interdependencies
in more depth, outperformed cooperative coevolution. Both works by Bonyadi et al
(2014) and Mei et al (2014b) highlight the importance of considering interdepen-
dencies between the TTP components as this will allow for the generation of more
competitive solutions.

Faulkner et al (2015) investigated multiple operators and did a comprehensive
comparison with existing approaches. They proposed a number of operators, such
as Bitflip and PackIterative, for optimising the packing plan given a particular
tour. They also proposed Insertion for iteratively optimising the tour given a par-
ticular packing. They combined these operators in a number of simple (S1–S5) and
complex (C1–C6) heuristics that outperformed existing approaches. The main ob-
servation was that there does not yet seem to be a single best algorithmic paradigm
for the TTP. Their individual operators, however, were quite beneficial in improving
the quality of results. While the proposed operators seem to have certain benefits,
the simple and complex heuristics did not consider the interdependencies between
the TTP components, since all of these approaches were multi-step heuristics. Sur-
prisingly, their best approach was a rather simple restart approach name S5 that
combines good TSP tours with the fast PackIterative.

Wagner (2016) recently investigated the use of swarm intelligence approaches
with the so-called Max-Min Ant System (MMAS, by Stützle and Hoos (2000)).
Wagner investigated the impact of two different TSP-specific local search (ls) opera-
tors and of “boosting” TTP solutions using TTP-specific local search. The resulting
approaches focus less on short TSP tours, but more on good TTP tours, which can
be longer. This allowed them to outperform the previous best approaches MATLS
and S5 on relatively small instances with up to 250 cities and 2000 items.

El Yafrani and Ahiod (2016) studied and compared different approaches for solv-
ing the TTP from a metaheuristics perspective. Two heuristic algorithms were pro-
posed, including a memetic algorithm (MA2B) and one using simulated annealing
(CS2SA). The results show that the new algorithms were competitive to S5 and
MATLS on a range of larger TTP instances.

Lastly, we would like to mention that no efficient complete solver for the TTP is
known. One of the reasons for this appears to be the fact that even when the tour
is kept fixed, packing is NP-hard (Polyakovskiy and Neumann 2015).

Note that most articles so far used the single-objective TTP formulation “TTP1”
from Bonyadi Bonyadi et al (2013), however, multi-objective considerations of prob-
lems with interconnected components are becoming increasingly popular. For exam-
ple, Blank et al (2017) investigated a variant of the multi-objective “TTP2”, however,
they neglected the value drop effect defined in the original TTP2 and they used their
study was limited to self-constructed problem instances. Yafrani et al (2017) created
an approach that generates diverse sets of TTP/TTP1 solutions, while being compet-
itive with the state-of-the-art single-objective algorithms. A more general discussion
of a multi-objective approach to interconnected problems can be found in Klamroth
et al (2017).
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Compute Instance
Features f : I → Rn

Instance i

Based on f(i),
select Algorithm A ∈ P

Solve Instance i
with Algorithm A

Algorithm
Portfolio P

Fig. 2: Workflow of Algorithm Selection

3 Algorithm Selection

As we shall see in Section 4, no algorithm dominates all other algorithms on all
instances. One way to exploit this complementarity of the algorithms is to use algo-
rithm selection (Rice 1976; Huberman et al 1997) to select a well-performing algo-
rithm on a per-instance base.

3.1 Problem Statement

The algorithm selection problem is to find a mapping from problem instances I to
algorithms P. This is realized by computing numerical characteristics – so-called
instance features f(i) – that describe a problem instance i ∈ I, and then learning a
mapping from the resulting feature space to algorithms. Figure 2 shows the general
workflow of algorithm selection.

We will describe instance features for the TTP later (in Section 5), but a simple
feature is, e.g., the number of cities. Based on these instance features, we will select
an algorithm from a portfolio of the 21 TTP algorithms we described in Section 4.2
to solve the instance at hand.

The selection step is typically realized with machine learning methods. Based
on gathered training data (i.e., instance features and performance data on training
instances), we learn a machine learning model that maps from instance features to
a well-performing algorithm.

3.2 Popular Algorithm Selection Approaches

One of the first successful algorithm selection procedures for satisfiability prob-
lems (Biere et al 2009) was SATzilla (Xu et al 2008). It mainly used two concepts:
(i) Learning an empirical performance model (Leyton-Brown et al 2002; Hutter et al
2014) to predict the performance of an algorithm for a given instance and select
the algorithm with the best predicted performance; and (ii) Static algorithm sched-
ules (Xu et al 2008; Kadioglu et al 2011; Hoos et al 2015), which run a sequence
of algorithms with a runtime budget each. SATzilla uses such a static schedule for
“pre-solving”, to solve easy instances without the overhead of computing features.

Other approaches include
– classification models (e.g., ME-ASP by Maratea et al (2014), 3S by Kadioglu

et al (2011), and CSHC by Malitsky et al (2013)) that directly learn a mapping
from instance features to good algorithms;
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– pairwise classification models (e.g., the more recent version of SATzilla (Xu et al
2011)), which learns a binary classifier for each pair of algorithms, weighting each
training instance by the performance difference between the two algorithms (and
thereby emphasizing instances for which the two algorithms’ performances differ
a lot);

– unsupervised clustering (e.g., ISAC by Kadioglu et al (2010)) to partition in-
stances in the feature space into homogeneous subsets and then select the best-
performing algorithm of the cluster a new instance is closest to; and

– recommender systems (e.g., Mısır and Sebag (2013)) to recommend an algorithm
given only partial training data.

For a thorough overview on algorithm selection procedures, we refer the interested
reader to Smith-Miles (2008); Kotthoff (2014).

As was shown in the 2015 ICON challenge on algorithm selection1, there currently
exist two state-of-the-art algorithm selection approaches. The first is the pairwise
classification version of SATzilla (Xu et al 2011), which won the ICON Challenge.
The second is the automatic algorithm selection method AutoFolio system (Lindauer
et al 2015). AutoFolio uses the flexible FlexFolio framework (Hoos et al 2014), which
combines several different algorithm selection methods, and searches for the best
suited algorithm selection approach (and its hyperparameter settings) for a given
algorithm selection scenario using algorithm configuration (Hutter et al 2009) via
the model-based configurator SMAC (Hutter et al 2011). For example, AutoFolio
determines whether classification or a regression approach will perform better and
in case of classification, how to set the hyperparameters of a random forest classi-
fier (Breimann 2001). As shown by Lindauer et al (2015), AutoFolio often chooses the
pair-wise classification approach of SATzilla, but it is more robust than other algo-
rithm selection approaches since it can also switch to other approaches if necessary.
As a result, AutoFolio established state-of-the-art performance on several different
domains in the algorithm selection library (Bischl et al 2016) and performed best on
two out of three tracks of the ICON challenge.

In this section, we focused on algorithm selection for hard combinatorial problem
solving, since TTP is also a hard combinatorial problem. However, there also exists
work on algorithm selection in other fields, such as meta-learning for machine learning
algorithms (Vilalta and Drissi 2002; Brazdil et al 2008; Smith-Miles 2008; van Rijn
et al 2015).

4 Benchmarking of TTP Algorithms

An important step toward the creation of algorithm portfolios is the conduct of
experiments where one determines the performance of algorithms on the available
problem instances. To this end, we introduce in this section the originally defined
set of TTP instances, and we outline the experimental setup and the results.

1 http://challenge.icon-fet.eu/

http://challenge.icon-fet.eu/
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4.1 Introduction of Benchmark Instances

For our investigations, we use the set of TTP instances defined by Polyakovskiy et al
(2014a).2 In these instances, the two components of the problem have been balanced
in such a way that the near-optimal solution of one sub-problem does not dominate
over the optimal solution of another sub-problem.

The characteristics of the original 9,720 instances vary widely. We outline the
most important ones in the following:3

– The instances have 51 to 85,900 cities, based on instances from the TSPlib
by Reinelt (1991).

– For each TSP instance, there are three different types of knapsack problems:
uncorrelated, uncorrelated with similar weights and bounded strongly correlated
types, where the last type has been shown to be difficult for different types of
knapsack solvers by Martello et al (1999); Polyakovskiy et al (2014a). In the un-
correlated case, weights wik and profits pik of item k are uniformly distributed
random integer values in

[
1, 103]. In the uncorrelated with similar weights case,

wik and pik are integer values within
[
103, 103 + 10

]
and

[
1, 103]. In the corre-

lated case, wik are integer values within
[
1, 103] and the corresponding profit is

pik = wik + 100.
– For each TSP and KP combination, the number of items per city (referred to as

an item factor) is F ∈ {1, 3, 5, 10}. Note that all cities of a single TTP instance
have the same number of items, except for the first city (which is also the last
city), where no items are available.

– For each instance, the renting rate R that links both subproblems is chosen
in such a way that at least one TTP solution with an objective value of zero
exists. This is achieved by the instances’ authors Polyakovskiy et al (2014a)
by setting each instance’s individual renting rate R = Z(POP T )

TIME(Πlinkern,POP T ) ,
where Z

(
POPT

)
corresponds to the optimal profit of the KP component and

TIME
(
Π linkern, POPT

)
denotes the total traveling time along the near-optimal

TSP tour Π linkern obtained via the Chained Lin-Kernighan heuristic while pick-
ing the items according to the optimal KP component’s solution POPT .

– Lastly, for each TTP configuration of the above-mentioned characteristics 10
different instances exist where the knapsack capacity is varied.

The sheer size of this original TTP instance set makes comprehensive experimen-
tal evaluations computationally expensive and the high-dimensional space of charac-
teristics further complicates comparisons. For this reason, different researchers have
selected different subsets, with each subset having (intentionally or unintentionally) a
particular bias. For example, only the very first article by Polyakovskiy et al (2014a)
considered the entire set of 9720 instances. Mei et al (2014a) focused on 30 larger in-
stances with 11849 to 33810 cities. Faulkner et al (2015) covered a wider range using
72 instances with 195 to 85900 cities, and Wagner (2016) used 108 instances with
51 to 1000 cities. Based on these individual and incomplete glimpses at algorithm
performance, it is difficult to grasp the full picture.

2 As available at the TTP project page: http://cs.adelaide.edu.au/~optlog/research/
ttp.php

3 For a more detailed description, we refer the interested reader to Polyakovskiy et al
(2014b,a).

http://cs.adelaide.edu.au/~optlog/research/ttp.php
http://cs.adelaide.edu.au/~optlog/research/ttp.php
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4.2 Benchmark Results

In order to establish a reliable data set for the subsequent analyses, we run existing
TTP algorithms on all 9720 instances. This has the benefit of creating the complete
picture using the same hardware and other conditions for the experiments.

As code for most of the TTP algorithms outlined in Section 2.3 is available
online, we can consider a wide range of different algorithms, which include con-
structive heuristics, hill-climbers, problem-agnostic and problem-specific heuristics,
single-solution heuristics and cooperative coevolutionary approaches. In the follow-
ing, we briefly list (in chronological order) the 21 considered algorithms with their
original names (and, where applicable, abbreviated names in parentheses):

– Polyakovskiy et al (2014a): SH, RLS, EA
– Bonyadi et al (2014): DH
– Mei et al (2014b): MATLS
– Faulkner et al (2015): S1, S2, S3, S4, S5, C1, C2, C3, C4, C5, C6
– El Yafrani and Ahiod (2016): CS2SA
– Wagner (2016): MMASls3 (M3), MMASls4 (M4), MMASls3boost (M3B),

MMASls4boost (M4B).

We run all algorithms for a maximum of 10 minutes per instance. All computa-
tions are performed on machines with Intel Xeon E5430 CPUs (2.66GHz) and Java
1.8.

We would like to note that the computation budget is motivated by a real-world
scenario. For a real-world decision maker who is interested in what-if analyses, 10
minutes correspond to about a cup of coffee. After 10 minutes, the next results
are available and the decision maker can make the next change(s) to the system to
investigate alternatives. While it would be possible to deviate from the 10 minutes in
the present study, this time limit is very often used in TTP research. This includes
the development of specialized approaches to subsets of instances, as mentioned in
Section 2.3.

As the encountered objective scores cover several orders of magnitude, as well
as positive and negative scores, we assess the quality of the algorithms using the
following approach. For each TTP instance, we determine the best and the worst
objective scores of the final solutions obtained by all the compared algorithms; these
two values define the boundaries of the interval of observed objective scores for each
instance. We then map actual scores from this interval linearly to [0, 1], where the
highest score is equivalent to 1. In case an algorithm did not produce a score for a
particular instance, e.g. due to a time-out or crash, we assign to it the score of -1.

First, we report a performance overview across all 9720 instances in Figure 3,
where we ignore runs which did not produce a solution given the time limit. At first
sight, it appears that many algorithms perform comparably, since 18 of 21 algorithms
achieve a median scaled performance of > 0.80. However, this is largely because DH
and SH often performed rather poorly and thus skew the scale. Figure 4 shows the
full results, which now include the consideration of unsuccessful runs, and we average
the results. As we can immediately see, several algorithms produce good results if
they produce solutions at all given the time limit. Still, 14 algorithms have an average
rescaled performance of 0.8 or higher. In particular, the following algorithms did not
always produce solutions given the time limit: MATLS (204 unsolved instances), M3
(721), M4 (720), M3B (1342), M4B (1316), and CS2SA (6284). To the best of our
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Fig. 3: Scaled median performance (± 1st/3rd quartile) of all 21 algorithms on all
9720 instances, not considering unsuccessful runs that were assigned a score of −1.
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Fig. 4: Scaled average performance (± standard deviation) of all 21 algorithms on
all 9720 instances, considering unsuccessful runs that were assigned a score of −1.

knowledge, the first five of these suffer from long subroutines that keep them from
stopping after the time limit is reached, while CS2SA crashes on these instances. We
also note that the algorithms starting with M dominate on smaller instances, and
that S5 performs well on larger instances.

These figures provide only a first indication, since the instance set they are based
on contains many small instances, which biases this performance comparison such
that algorithms performing well on small instances are favored. We also note that
the algorithms starting with M dominate on smaller instances, and that S5 performs
well on larger instances.

Since none of our algorithms has a perfect score of 1 on average, we have already a
first indication that the algorithms are complementary and algorithm selection could
potential improve the performance further. More detailed analyses will be presented
later.

We have made the performance data set publicly available: CSV format at http:
//cs.adelaide.edu.au/~optlog/research/ttp.php.

5 Instance Features for the TTP

For our approach to algorithm portfolio generation, in addition to algorithm perfor-
mance data (see previous section) we also need data that describes problem instances.
In total we consider 55 TTP instance features. Of these, 47 are TSP features from
previous studies on TSP (Mersmann et al 2012, 2013; Nallaperuma et al 2013a,b,

http://cs.adelaide.edu.au/~optlog/research/ttp.php
http://cs.adelaide.edu.au/~optlog/research/ttp.php
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2014, 2015). The R package tspmeta Mersmann et al (2013)4 is used to calculate
these features.

The features fall into 10 groups, which we outline in the following, with the
running feature IDs in parentheses. Throughout the following description we refer to
basic statistical features with their common names. For a distribution of n variables
xi the mean x is the average value of a distribution described by 1/n ·

∑n
i=1 xi.

The mode represents the value with maximum frequency. The median describes the
(n+1)

2
th

value in a sorted sequences and the standard deviation is calculated using√
1

n−1 ·
∑n

i=1(x− x)2.

Distance Features (1-11). These are based on summary statistics of the edge cost
distribution. Here, we consider the lowest, highest, mean and median edge costs,
as well as the proportion of edges with distances shorter than the mean distance,
the fraction of distinct distances (i.e. different distance levels), and the standard
deviation of the distance matrix. Also, we consider the mode frequency, quantity
and mean. Mode frequency is calculated by counting the number of occurrences.
The mode quantity describes the ratio of number of mode values to the total number
of edges. For this we simply count the number of occurrences. Finally, we used the
expected tour length for a random tour, given by the sum of all edge costs multiplied
by 2/(N − 1).

Mode Features (12). As an additional feature characterizing the distribution of edge
costs, we also include its number of modes as a feature. Here, the mode is estimated
from the real valued distribution of edge weights by considering the edge cost values
having a probability mass above 0.01.

Cluster Features (13-18). The clusters describe the sets of cities gathered together in
the Euclidean space. GDBSCAN is used for clustering where reachability distances
of 0.01, 0.05 and 0.1 are chosen. The reachability distance describes the radius of
the neighborhood to be considered for each clusterization. Derived features are the
number of clusters and the mean distances to the cluster centroids.

Nearest Neighbor Distance Features (19-24). Nearest-neighbor features describe the
distribution of distances between each city and its nearest neighbour. Uniformity
of an instance is reflected by the minimum, maximum, mean, median, standard
deviation and the coefficient of variation of the normalized nearest-neighbor distances
(nnd) of each node.

Centroid Features (25-29). The centroid defines the arithmetic mean of the positions
of the points (cities) on the plane. The x- and y-coordinates of the instance centroid
together with the minimum, mean and maximum distance of the nodes from the
centroid.

4 https://cran.r-project.org/web/packages/tspmeta/

https://cran.r-project.org/web/packages/tspmeta/
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MST Features (30-40). A spanning tree for a graph G = (V,E) is the subset of edges
E′ ⊂ E such that spans across all vertices (∃u ∈ V : (u, v) ∈ E′V (v, u) ∈ E′∀v ∈ V )
and has no cycles (|E′| ≤ |V | − 1). The tree which has minimum weight across
all such trees is the minimum spanning tree (MST). We first calculate the MST
for the complete graph induced by cities and the distances of the TSP instance.
Statistics which characterize the depth and the distances of the MST comprise the
MST features. These include MST depth distribution consists of the depth of the
nodes of MST. The minimum, mean, median, maximum and the standard deviation
of the depth and distance values of the MST as well as the sum of the distances on
the MST (which we normalize by diving it by the sum of all pairwise distances).

Angle Features (41-45). This feature group comprises statistics of the distribution
of angles between a node and its two nearest neighbor nodes: the minimum, mean,
median, maximum and standard deviation.

Convex Hull Features (46-47). For set of points S in Euclidean space the convex
hull is defined as the set of all convex combinations of points S. In a convex com-
bination, each point xi ∈ s is assigned a weight or coefficient αi in such a way that
the coefficients are all non-negative and sum to one, and these weights are used to
compute a weighted average of the points. Mathematically, this can be expressed as
Conv(S) =

{∑|S|
i=1 αixi|(∀i : αi ≥ 0) ∧

∑|S|
i=1 αi = 1

}
. The area of the convex hull

of the instance reflects the “spread” of the instance in the plane. Additionally, we
compute the fraction of nodes which define the convex hull.

In addition to these 47 existing TSP-specific features, we considered the following
eight new features.

Number of Cities (48). We also consider this obvious feature, which is not computed
by the tspmeta T package.

Knapsack Features (49-52). These include the capacity of the knapsack, the knap-
sack type, the total number of items, and the number of items per city.

Traveling Thief Features (53-55). Lastly, as TTP-specific features we have the rent-
ing ratio R, the minimum travel speed vmin and the maximum travel speed vmax.

It is important to note that these eight new features do not require any processing,
as they are part of the definition of the instances.

Note that we are not considering the values of min/max/average/standard devi-
ation/... of the items’ properties, as they are effectively identical across all instances
due to the way the knapsacks were created (see Section 4) and due to the large num-
ber of items. However, if there was variation in these properties we would expect
such summary statistics to be very useful.

Future investigations should include additional TTP-specific features. A first step
towards this has been taken by Polyakovskiy and Neumann (2015) with their concept
of “profitable/unprofitable” items for the special case when tours are fixed. However,
since we are not considering this restriction, their concept does not easily carry over.

Note that we have made the full set of feature values available online: http:
//cs.adelaide.edu.au/~optlog/research/ttp.php.

http://cs.adelaide.edu.au/~optlog/research/ttp.php
http://cs.adelaide.edu.au/~optlog/research/ttp.php
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To investigate whether our instance features can discriminate our instances well
and will enable algorithm selection later on, we visualized the instances in the in-
stance feature space by using a principal component analysis (PCA) to 2 dimen-
sions, and we study the algorithms’ footprints and instance hardness as motivated
by Smith-Miles et al (2014). In Figures 5a and 5b, we marked all instances with
red that can be solved with a score of at least 0.99 (i.e., 1% gap to the optimal
score). As expected by the results shown in Figure 4, S5 performs very well on most
of the instances, but it does not perform well on two clusters of instances (in the
upper part of Figure 5a). In contrast, CS2SA can solve these instances reasonable
well, see Figure 5b. Furthermore, in Figure 5c we encoded the instance hardness, i.e.,
how many algorithms obtained at least a score of 0.99 on an instance. We see that
many instances can be solved equally well by many algorithms (colors green to red).
However, we have some instance clusters on which only a few algorithms perform
well—these will be the crucial instances in the following algorithm selection study.

6 Experimental Study of Algorithm Selection on TTP

We follow the approach of Hoos et al (2014) by studying the performance of differ-
ent, well-known algorithm selection approaches. In detail, we ran FlexFolio5 (using
Python 2.7.6 and sklearn 0.14.1) with various approaches which simulate the behav-
ior of existing systems: SATzilla’09 (regression approach), SATzilla’11 (cost-sensitive
pairwise-classification), ISAC (clustering) and 3S (direct classification with k = 32
nearest neighbors). In contrast to the original implementations of SATzilla’11 and
3S, we do not use static (pre-solving) schedules in our experiments, because their
schedule computation implicitly assumes that the performance metric to be opti-
mized is runtime. Since our performance metric is not runtime, we cannot compute
such schedules and hence, we focus on the classical algorithm selection approach of
selecting one algorithm per instance.

To this end, we created an algorithm selection benchmark scenario in the for-
mat of the algorithm selection library (ASlib; Bischl et al (2016)) from our TTP
benchmark data.6 This ASlib scenario includes the performance values for all our
algorithms and the instance features for each instance. Furthermore, it also provides
the splits for a 10-fold cross validation to obtain an unbiased performance estimate
(i.e., the instances are randomly split into 10 equally sized sets and in each iteration,
one of the splits is used as a test set to validate our algorithm selection procedure
and all others are used to train the algorithm selector; the overall performance of an
algorithm selection procedure is then the average performance across all iterations).
With all this information saved, our ASlib scenario allows for hardware-independent
reproducibility of our experiments.

Table 1 shows the performance of the different approaches on TTP, demonstrat-
ing that existing algorithm selection approaches work very well for this benchmark.
Our baseline is the performance of the single best algorithm, i.e., always using the
algorithm that performs best across all instances. The single best algorithm with a
performance of 0.959 is S5 (as previously shown in Section 4). Due to the scaling
of the objective scores, the best possible score on each instance is 1. Therefore, the

5 http://www.ml4aad.org/flexfolio/
6 See TTP-2016 at http://www.aslib.net.

http://www.ml4aad.org/flexfolio/
http://www.aslib.net
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(a) S5

(b) CS2SA

(c) Instance Hardness

Fig. 5: Visualizing the 9720 TTP instances in the feature spaces using a PCA to 2
dimensions. Figures 5a and 5b show all instances in red that can be solved with a
score of at least 0.99 by S5 and CS2SA, respectively. Figure 5c encodes the number
of algorithms that obtain a score of at least 0.99 (i.e., 1% gap to the optimal score).
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Simulated System Approach Performance

Single Best (S5) Baseline 0.959
Oracle Theoretical Optimum 1.0

SATzilla’09 -like Regression (Lasso-Regression) 0.966
SATzilla’11 -like Pairwise Classification (RF) 0.993
ISAC -like Clustering (k-means) 0.989
3S-like Classification (k-NN) 0.992

Table 1: Comparing different algorithm selection approaches on TTP

theoretical optimal performance of a perfect algorithm selection procedure (the so-
called oracle or virtual-best solver) is also 1 here. Formally, this oracle performance
is defined as

Oracle(P, I) = 1
|I|
∑
i∈I

max
A∈P

m(A, i), (1)

where A ∈ P are all algorithms in our portfolio of TTP algorithms, i ∈ I are
TTP instances, and m is our performance metric (which has to be maximized here).

The best-performing algorithm selection approaches are the ones of SATzilla’11
and 3S with a nearly optimal performance of above 0.99. This closes the performance
gap between the single best solver and the oracle by almost 90%. SATzilla’09 and
ISAC also outperformed the single best. One possible reason for the good perfor-
mance of algorithm selection for this application is the large instance set, as most
other instance sets studied in algorithm selection only consist of hundreds or a few
thousand instances (cf. ASlib by Bischl et al (2016)). The resulting availability of
more data makes the machine learning problem easier.

We also ran the fully automated AutoFolio approach (see Section 3.2) for a day
of wallclock time on 4 cores to automatically determine a good portfolio. Since the
best FlexFolio approach (i.e., SATzilla’11 ) already performed well, AutoFolio was
only able to improve performance further by a very small margin in the 4th decimal.
In fact, AutoFolio also decided for the SATzilla’11 approach and only changed the
hyperparameters of the underlying random forest slightly.

A direction for an extension of this portfolio generation, in particular for real-
world uses where time budgets are hard constraints or are hard to establish be-
forehand, could be to consider the actual runtimes, set a budget on the sum of all
runtimes and permit more than one algorithm to be executed. For example, van Rijn
et al (2015) applied a similar idea in the context of selecting between classification
algorithms.

7 Analysis of Algorithm Complementarity

A necessary requirement for algorithm selection to perform well is that the portfolio
of algorithms is complementary on the used instances. A first indicator for the com-
plementarity of the portfolio is the difference between the single best algorithm and
the oralce performance (see Section 6). This absolute difference of 0.041 may appear
small, but in many optimization problems it is quite easy to achieve 4.1 percent sub-
optimality, and only the last few percent are hard to obtain. Furthermore, we note
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Fig. 6: Spearman rank coefficients in a heatmap (dark fields correspond to large
correlation). The algorithms are sorted by hierarchical clustering (see Figure 7).

Fig. 7: Dendogram to show hierarchical clustering of algorithms (using Ward’s
method) according to Spearman correlation coefficient.

that 18 of 21 algorithms achieved median scaled objective scores of > 0.8, and that
several algorithms do not produce any solutions on certain TTP instances given the
time limit.

Figure 6 shows the performance correlation across instances (based on Spearman
correlation coefficients) between all pairs of algorithms. This figure shows that the
algorithms form clusters that reflect their historical development. For example, C*
and S* fall into one cluster (all use the same fast packing heuristic), the ant-colony
approaches M* form one cluster, and early hill-climbers EA with RLS form another
one. Figure 7 shows a few more details. For example, C3/4/5/6 and S5 are grouped
together at the top; their common features are that they use the same tour genera-



18 Markus Wagner et al.

tion method, the same packing, and some way to restart the algorithm. Within this
cluster, C3/4 are clustered together, since they are virtually identical (with just a mi-
nor difference in the search operators), and C5/6 are clustered since they are restart
variants of C3/4. The algorithms CS2SA, SH, DH and MATLS are complementary
to all other algorithms (which is why the dendogram only groups them with other
algorithms further to the right, compared to, for example, the RLS/EA-grouping).
We note that this analysis only provides insights about the similarity of algorithms,
but it is not a sufficient indicator about the applicability of algorithm selection since
one of the algorithms could still dominate all other algorithms.

Another approach of assessing complementarity of algorithms is the marginal
contribution (MC) to the oracle performance (Xu et al 2012), i.e., how much the or-
acle performance of an existing portfolio will be improved by adding a new algorithm
to it:

MC(A,P, I) = Oracle(P ∪ {A}, I)−Oracle(P, I). (2)

This approach has the disadvantage of being strongly dependent on a fixed port-
folio. To get a broader overview of an algorithm’s contribution, an extension of the
marginal contribution analysis consists of using Shapley values (SV; Frechette et al
(2016)), i.e., the marginal contribution of an algorithm to any subset of the algorithm
portfolio7:

SV(A,P, I) = 1
2|P|

∑
P′∈2P

MC(A,P ′, I). (3)

Even though Shapley values are defined as a sum over all possible portfolio sub-
sets, they can be efficiently computed in polynomial time by representing them as
marginal contribution networks (Chalkiadakis et al 2011; Frechette et al 2016).

Figure 8 shows the ranking of the different algorithms based on their average
performance (i.e., running only one algorithm on all instances), the Shapley values,
and the marginal contribution to the oracle performance. S5 has the highest stan-
dalone performance and the highest Shapley value, but surprisingly it is only ranked
second with respect to marginal contribution. Hence, S5 is a very important algo-
rithm as a standalone and in smaller portfolios, but it does not contribute as much
on top of the combination of the other algorithms as algorithm CS2SA does (which
has the lowest standalone performance and Shapley value but the highest marginal
contribution). This demonstrates that CS2SA, despite its poor average performance,
performs very well on a subset of instances – and reliably enough so for the algorithm
portfolio to exploit this. Once the algorithmic or implementation issues of CS2SA
are fixed we expect to see significantly better average performance by this algorithm.
The complex approaches C1-C6 perform well on average and they can contribute to
portfolios (see their ranks in the Shapley values), but their individual (marginal)
contributions are low due to their overall similarity. In contrast to this, MATLS is
a good contributor to portfolios, not only because it shares hardly any roots with
the other algorithms, but also because it performs well on average. The ant-colony
approaches M* do not perform too well on average, but they can make useful con-
tributions to algorithm portfolios since they perform very well on small instances.
Lastly, on the low end of the performance spectrum are the two constructive heuris-
tics DH/SH and the two uninformed hill-climbers RLS/EA. While these performed

7 We use the worst possible performance as the performance of an empty portfolio:
Oracle({}, I) = −1.
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Fig. 8: Standalone performance, Shapley values and contributions to the oracle for
all 9720 instances. The lines indicate the ranking of the algorithms using the different
metrics. For example, S5 (dark green) has the highest standalone performance and
Shapley value, but it is only ranked second in marginal contribution.

TTP Algorithm Selection Frequency

S5 0.38
M4B 0.16
M3 0.12
M3B 0.12
CS2SA 0.09
MATLS 0.06

TTP Algorithm Selection Frequency

C6 0.02
C4 0.02
C3 0.01
M4 0.01
C5 0.01

Table 2: Selection frequency of all algorithms that were selected on at least 1% of
the instances, using the SATzilla’11 approach.

reasonably well when they were introduced, they have since then been outclassed by
more informed approaches. But even the slightly informed approaches S1/S2/S3/S4,
which use good TSP tours and TTP-specific packing operators, are not competitive
anymore when being compared to more recent developments.

To verify that our algorithm selectors indeed exploit the complementarity of our
TTP algorithms, we also investigated the frequency of how frequently an algorithm
is selected using the SATzilla’11 approach; the results are presented in Table 2.
As expected, S5, as the overall best algorithm and the algorithm with the highest
Shapley value, was selected most frequently. Since the M* algorithms perform well
on small instances (as argued above), these algorithms are also selected quite often
(M4B +M3 +M3B = 40%). The last group of frequently-selected algorithms consists
of CS2SA and MATLS, which is consistent with our previous analysis.

In summary, we can see that well-performing algorithm portfolios include problem-
solving approaches of different complexities in order to deal with the wide range of
existing TTP instances: there are swarm-intelligence approaches for small instances,
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memetic and multi-step heuristics for mid-size instances, and for the large instances
the relatively simple restart approach S5 is a good choice.

8 Analysis of Feature Importance and Feature Calculation Time

As the calculation of instance features forms an important step in the application
of algorithm portfolios, we review the necessary calculation times in the following.
In addition, we analyze which features are the most important ones for algorithm
selection and we investigate how subsets of features impact computation time and
portfolio performance.

To date, the established computation budget for TTP benchmarking is 10 min-
utes single-core CPU time per instance. For algorithm selection to be effective, and
if only a single algorithm is to be run once, the calculation time of the instance
features should not take up a large proportion of these 10 minutes. However, several
of the features are computationally costly, for example, because for some of them
a complete distance matrix has to be generated, or because a clustering algorithm
needs to be run. As a consequence, the calculation time of all 55 features for a single
given instance ranges from a few seconds for the smallest TTP instances to hours for
the largest ones we considered; for example, the calculations for the eil51* instances
take about 2 seconds, those for the pla7397* instances are approaching 10 minutes,
and the calculations for the pla33810* instances even exceed 20 hours. While we
computed all these features for our analyses, many of them are clearly too expensive
for algorithm selection.

To investigate which features are actually needed, we compute the Gini impor-
tance (Breimann 2001) for each of the 55 features, averaged across all pair-wise
random forests models. The results are shown in Figure 9, revealing that only a
small portion of the TTP features actually matter. Interestingly, these are mostly
basic knapsack features:

1. CAPACITYOFKNAPSACK: the KP feature defining the knapsack capacity.
2. RENTINGRATIO: the TTP feature that connects the KP and the TSP.
3. NUMBEROFITEMS: the KP feature stating the total number of available items.
4. KNAPSACKDATATYPE: the KP feature stating the knapsack type.
5. DIMENSION: the TSP feature stating the total number of cities.

As the previous portfolio investigations in Section 6 used all 55 features, we now
repeat the algorithm selection experiment using only the most important features
and our best-performing approach from SATzilla’11. The resulting performances are
0.977, 0.980, 0.986, 0.988, and 0.992 (going from using only the most important
feature to using the five most important ones). These results show that with just a
small subset of the features we can achieve a portfolio performance comparable to
the best one from Section 6 (0.993).

Remarkably, all of these five most important features are given in the instance
file’s header, and are thus “computable” in constant time. Out of these five, CA-
PACITYOFKNAPSACK and RENTINGRATIO need to be defined by the instance.
If NUMBEROFITEMS or DIMENSION are missing, then they can be computed by
going through the instance file once and counting the total numbers of items or cities.
KNAPSACKDATATYPE is not a computable feature, as it is a parameter that was
used in the generation of the instance; for our considered instance set, however, this
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Fig. 9: Average feature importances of the top 15 features based on Gini importance
across all pair-wise random forest models. The error-bars indicate the 25th and 75th
percentile.

field is always provided. Even if it is not considered, for example when using only
the three most important features, we still achieve a performance of 0.986, which is
a substantial improvement over the baseline approach S5 (0.959).

From these experiments we see that the exploitation of immediately available
instance features results in a substantial average performance increase that is com-
parable to a significantly more time-consuming one that requires the calculation of
all 55 features.

The question now is whether we can learn even more from these outcomes. The
visualization and interpretation of the raw outputs of the portfolios is challenging
due to the large numbers of instances, features, and randomized algorithms. Nev-
ertheless, let us briefly consider as an example the portfolio when only the feature
CAPACITYOFKNAPSACK is used. Let us sort the 9720 instances according to their
CAPACITYOFKNAPSACK values, and let us now consider the list of algorithms
as they are selected. As expected, this list contains long (but not always continuous)
stretches where the same algorithms are selected; in particular, the M* algortihms
dominate on the tiny instances, and S5 dominates on mid-sized and large instances. If
we do the same ordering for the algorithm selector that uses the five most important
features, then the overall picture changes slightly. On the smallest ∼3000 instances,
different complex algorithms dominate, and for the tiniest these are often the M*
approaches which tend to generate the longest tours. The largest ∼3000 instances
are typically assigned to either CS2SA (a fast implementation of search operators)
or S5 (resampling solutions), which are two very different approaches.

9 Concluding Remarks

In this article, we presented the first study of algorithm portfolios for the TTP.
We first studied the performance of 21 existing TTP algorithms on the full original
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set of 9720 TTP instances created by Polyakovskiy et al (2014a) and defined 55
instance features for TTP. Then, we studied various different approaches for the
resulting algorithm selection problem, showing very substantial improvements over
the single best algorithm and closing the gap between it and an omniscient oracle by
90%. Finally, we studied which algorithms contribute most to the portfolio, finding
that the algorithms with best average performance (e.g. the complex ones C3–C6
and MATLS, and the swarm-intelligence approaches that start with M) were quite
important for the portfolio because of their performance on small and mid-sized
TTP instances. Interestingly, the relatively simple heuristic S5 continues to dominate
in particular on the large TTP instances and thus is one of the most important
contributors to well-performing portfolios. Despite this general trend, the algorithm
with the worst average performance, CS2SA, added substantial benefit on top of all
other algorithms. An analysis of the feature importance revealed that the values for
the five most important features can be extracted from the instance definition in
constant time. The resulting portfolio that uses only this subset has a performance
comparable to the one that uses all 55 features (which can take hours to compute).

Our future work will largely focus on two directions:

1. Features. We aim to create more TTP-specific features, to study which features
make TTP instances hard for which algorithms and why, and to explore whether
we can identify a smaller representative subset of TTP instances to speed up
future benchmarking studies.

2. Computation Time. As the time budget of 10 minutes can be seen as rather
artificial, we plan to extend our investigations to a wide range of computation
budgets, in order to uncover the varying benefits of different algorithms to differ-
ent portfolios. Also, we plan to further focus on considering the actual runtimes
of the algorithms inside the algorithm selection, as more than one algorithm can
potentially be run if the computation budget allows it.
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