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ABSTRACT
Hyper-heuristics are high-level search techniques which improve
the performance of heuristics operating at a higher heuristic level.
Usually, these techniques automatically generate or select new
simpler components based on the feedback received during the
search. Estimation of Distribution Algorithms (EDAs) have been
applied as hyper-heuristics, using a probabilistic distribution model
to extract and represent interactions between heuristics and its
low-level components to provide high-valued problem solutions.
In this paper, we consider an EDA-based hyper-heuristic frame-
work which encompasses a Heuristic Selection approach aiming to
�nd best combinations of di�erent known heuristics. A surrogate
assisted model evaluates the new heuristic combinations sampled
by the EDA probabilistic model using an approximation function.
We compare our proposed approach named Heuristic Selection
based on Estimation of Distribution Algorithm (HSEDA) with three
state-of-the-art algorithms for the Travelling Thief Problem (TTP).
The experimental results show that the approach is competitive,
outperforming the other algorithms on most of the medium-sized
TTP instances considered in this paper.
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•Mathematics of computing → Combinatoric problems;
Probabilistic representations; •Computing methodologies →
Search methodologies;
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1 INTRODUCTION
Nowadays, a large number of meta-heuristics have been developed
for e�ciently solving optimization problems [10, 20]. However,
meta-heuristics still present some challenging issues regarding
their implementation and maintenance.

Due to the fact that simple heuristics are easier to implement
and maintain, they have been employed instead of more sophisti-
cated meta-heuristics based systems [23]. These heuristic methods
can generate high quality solutions in a reasonable time budget.
However, there are still some challenges such as the di�culty of
adapting sophisticated meta-heuristics or e�ciently combining
simple heuristics to solve a complex problem.

Hyper-heuristics are high-level search techniques developed to
automate through other (meta)heuristics or machine learning tech-
niques the heuristic design process, selecting heuristics, generally
called by Low-Level Heuristics (LLHs), or generating new ones
through low level components of heuristics [4, 25].

Many works automatically adapt heuristic methods with hyper-
heuristics. In [5] the authors use a heuristic selection approach on
automated university course and exam timetabling. The approach
memorizes the heuristics that have worked well in previous similar
situations (like in o�-line learning mode) and retrieves them for
solving the addressed problem, providing good results and insights
about that learning process for particular timetabling situations.
In [22], a random iterative graph based hyper-heuristic produces
a set of heuristic combinations. The approach was evaluated on
benchmark exam timetabling and graph colouring problems and
demonstrated good results.

Estimation of Distribution Algorithms (EDAs) [18] are strategies
widely used in evolutionary optimization, and have been recently
applied to the �eld of hyper-heuristics [23]. The main idea of EDAs
is to extract and represent, using a probabilistic distribution model,
the regularities shared by a subset of high-quality problem solutions.
New solutions are then sampled by the model biasing the search to
areas where optimal solutions are more likely to be found [11].

The proposed approach uses EDAs to evolve sequences or com-
binations of well known LLHs aiming to �nd a good heuristic set
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speci�c for the problem instance at hand. The approach considers
the probabilistic distribution of heuristics used at di�erent stages
within the �ttest sequences. In the rest of this paper, we will refer
to our approach as HSEDA, which stands for Heuristic Selection
based on an Estimation of Distribution Algorithm.

Heuristic selection using EDAs has been previously discussed
in [28], where the authors presented a framework for solving dis-
crete dynamic environment problems, and recently, in [23], in a
framework called EDA-HH.

HSEDA is designed and evaluated for the Travelling Thief Prob-
lem (TTP), a relatively new NP-hard benchmark problem [2].
TTP is an optimization problem that provides interdependent sub-
problems, which is a problem aspect often encountered in real-
world applications [8].

Many heuristics have been proposed to deal with the TTP com-
ponents separately, like local search techniques and meta-heuristic
adaptations. In [15], the authors propose an o�-line heuristic gener-
ation approach based on Genetic Programming for the TTP. How-
ever, despite the existence of multiple LLHs in the literature, we are
not aware of any heuristic selection approach particulary designed
for TTP, or for other multi-component problems.

In order to evaluate the e�ciency of the HSEDA on this context,
in this paper we consider a subset of medium-sized instances of the
TTP library. Moreover, a Radial Basis Function Network (RBFN)
is used as a surrogate to approximate the �tness computation for
individuals sampled from the EDA model. HSEDA performance is
compared with three of the best known state-of-the-art algorithms.
The results show that the proposed approach is promising as it
achieves very competitive results on the addressed instances.

The remainder of this paper is organized as follows. Section 2
brie�y presents the use of hyper-heuristics in combinatorial prob-
lems, introduces the basic concepts of EDAs and RBFN, and presents
the TTP problem. Section 3 describes our proposed approach. Sec-
tion 4 describes the conducted experiments and Section 5 discusses
the results. Finally, conclusions and future directions are presented
in Section 6.

2 BACKGROUND
In this section, we revisit the basic concepts associated with EDAs in
the context of hyper-heuristics. Moreover, we brie�y present a Ra-
dial Basis Function Network (RBFN) surrogate model and introduce
the TTP problem.

2.1 Estimation of distribution algorithms
EDA is considered a meta-heuristic approach that produces an o�-
spring population by sampling a distribution, normally estimated
by a Probabilistic Graphical Model (PGM). Bayesian networks are
considered the most prominent PGMs and are often used for mod-
eling multinomial data with discrete variables [11]. These models
are also capable of capturing multivariate interactions between
variables.

Each variable is a node associated with a conditional probabil-
ity distribution of its values given di�erent value settings of its
parents. Mathematically, a Bayesian network with directed edges
encodes a joint probability distribution which can be expressed

using Equation 1:

p(X) =
n−1∏
i=0

p(Xi |PaXi ) (1)

whereX = (X0, ...,Xn−1) is the vector of variables, PaXi is the set of
parents of Xi in the network (i.e., the set of nodes from which there
exists an edge to Xi ) and p(Xi |PaXi ) is the conditional probability
of Xi given PaXi . This distribution can be used to generate new
candidate solutions using the marginal and conditional probabilities
in a modeled data set.

Aiming to estimate the network structure, several algorithms
can be used such as simple greedy algorithms, hill-climbing heuris-
tics, and evolutionary algorithms [11]. In this work we adopt the
K2 algorithm, a greedy local search technique that applies the K2
metric [7]. K2 starts by assuming that a given node does not have
parents. Then, at each step, it gradually adds the edges that in-
crease the scoring metric the most until no further improvement is
possible.

EDAs have been applied as a high-level search technique within
a hyper-heuristic context in order to solve a number of optimization
problems [23].

In [26] the author compares di�erent hyper-heuristics method-
ologies including a Bayesian heuristic approach which determines
the probability distribution of each heuristic based on its historical
performance. This method was applied to a variety of discrete
problems and showed promising results.

Uludağ et al. [27] proposed HH-PBIL2, a framework joining EDAs
and hyper-heuristics for solving discrete dynamic environment
problems. This approach uses multi-population combining o�-
line and online learning to deal with random and cyclic dynamic
environments. The results show a good performance over di�erent
types of dynamic environments.

More recently, Qu et al. [23] presented a constructive EDA that
searches for combinations of heuristics from a given set of LLHs
based on non-domain-speci�c knowledge. This EDA’s high-level
search methodology can automatically select appropriate heuristics
in di�erent problem solving situations. The probability distribution
of LLHs during the search process is used to evaluate their e�ective-
ness aiming to facilitate more intelligent hyper-heuristic methods.
The results demonstrated the generality for di�erent variants of
exam timetabling problems.

2.2 On the use of RBFNs as a surrogate model
Many researchers focus on the use of surrogate models within
EDAs. Surrogate models are mathematical models usually used to
approximate an expensive objective function, providing a compu-
tationally cheaper alternative function to evaluate solutions [13].
Statistics and machine learning techniques can be used to build
surrogate models with approximated functions from data-points,
like multi-variate regression, supervised learning and neural net-
works [17].

RBFN [3] is a shallow arti�cial neural network, with a three
layers feedforward architecture that uses radial basis functions
as activation functions at the hidden nodes. This technique is
used to provide an alternative approximation method for surrogate
modeling. It aims at building function approximations of the form
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of Equation 2.

y(x) = ω0 +
N∑
i=1

ωiϕ(| |x − xpi | |) (2)

where y(x) represents the output layer of the network, i.e., a lin-
ear combination of radial basis functions considering a set of N
observed data points (training points), and x denotes a multi-
dimensional untried point in M space.

Training data are supplied to the network in the form of pairs
(xp, t), of input and target vectors, where p = 1, ...,N labels the
individual training pairs [1].

The radial basis function approach introduces a set of N basis
functions, one for each data point, which take the form ϕ(| |x−xp | |)
where ϕ(.) depends on the Euclidean distance between the training
data point xp and the untried point x.

The radial basis function is commonly de�ned as Gaussianϕ(| |x−
xp | |) = exp(−β | |x − xp | |2), where β > 0 is the width parameter.
The weights ωi and the bias ω0 term are adaptive variables that are
set during the training phase.

2.3 The Travelling Thief Problem
The Travelling Thief Problem (TTP) is a recently introduced com-
binatorial optimization problem that aims to provide testbeds for
solving problems with multiple interdependent components [2].
The TTP combines two classical problems: the Travelling Salesman
Problem and the Knapsack Problem. In [2] the authors show that
it is impossible to solve the two components separately due to the
dependencies between the two sub-problems.

In the TTP as rede�ned in [21], we are given a set of n cities, the
associated matrix of distances di j between cities i and j , and a set of
q items distributed among the n cities. Each item k is characterized
by its pro�t pk and weight wk . A thief must visit all cities exactly
once, stealing some items on the road, and return to the �rst city.

The total weight of the collected items must not exceed the
knapsack capacityW . In addition, we consider a renting rate per
time unit R that the thief must pay at the end of the travel, and
the maximum and minimum velocities denoted vmax and vmin
respectively. Each item is available in only one city, and we note
Ai ∈ {1, . . . ,n} the availability vector. Ai contains the reference to
the city that contains the item i .

A TTP solution is coded in two parts. The �rst is the tour
c = (c1, . . . , cn ), a vector containing the ordered list of cities. The
second is the picking plan z = (z1, . . . , zq ), a binary vector repre-
senting the states of items (0 for packed, and 1 for unpacked).

To make the sub-problems mutually dependent, the TTP was
designed such as the speed of the thief changes according to the
knapsack weight. Therefore, the thief’s velocity at city c is de�ned
in Equation 3.

vc = vmax −C ×wc (3)

where C = vmax−vmin
W is a constant value, and wc the weight of

the knapsack at city c .
We note д(z) is the total value of all collected items and f (c, z)

is the total travel time which are de�ned in Equations 4 and 5

respectively.

д(z) =
∑
q

pq × zq S.T.
∑
q

wq × zq ≤W (4)

f (c, z) =
n−1∑
i=1

tci ,ci+1 + tcn,c1 (5)

where tci ,ci+1 =
dci ,ci+1
vci

is the travel time from ci to ci+1.
The objective is to maximize the total travel gain function, as

de�ned in Equation 6, by �nding the best tour and picking plan.

G(c, z) = д(z) − R × f (c, z) (6)

Since the appearance of the TTP, several heuristic algorithms
have been proposed to solve it. In [16] Mei et al. introduce a
memetic algorithm named MATLS that is able to solve very large
TTP instances. In the same work authors propose multiple speed
up technique and fast greedy packing routines. The algorithm
was later used to design a heuristic generation approach based on
genetic programming in order to evolve packing routines [15].

Faulkner et al. [9] propose multiple local search algorithms and
routines. Two families of heuristics are introduced: simple heuris-
tics (S1-S5) and complex ones (C1-C6). The best performing heuris-
tic according to the experimental study is S5. Although belonging
to simple heuristics group, it is also able to surpass MATLS on most
instances.

Wagner [30] investigate the use of longer tours using the Max-
Min Ant System. This approach focuses on improving the tour
accordingly to the overall TTP problem instead of using a Lin-
Kernighan tour, which is designed for the TSP component indepen-
dently. The approach is shown to be very e�cient for small TTP
instances.

Recently, El Yafrani and Ahiod have presented in [8] two heuris-
tics. The �rst is a memetic algorithm using 2-opt and bit-�ip local
search heuristics, named MA2B. The second is a combination of
a 2-opt local search and a simulated annealing based heuristic for
e�cient packing, named CS2SA. The two proposed heuristics have
shown to be very competitive to other heuristics such as MATLS
and S5.

For a computational comparison of 21 TTP algorithms and their
use in algorithm portfolios, we refer the interested reader to [31].

3 THE PROPOSED APPROACH
The goal of our proposed approach is to consider EDA as a heuristic
selection technique, aiming to evolve combinations of LLHs while
looking for good problem solutions.

Our proposal is based on LLHs selection methodology as pre-
sented in [23]. Furthermore, in our implementation we explore the
interactions (between the used LLHs) encoded into the bayesian
network structure used as a PGM. Obtaining the probability distri-
butions of related LLHs supports the generation of new solutions
with correlated characteristics, besides providing a representative
model for variables interactions. In addition, we apply a surrogate
assisted model based on RBFNs to promptly evaluate the solutions
sampled by the PGM.

In this section, we detail the HSEDA framework emphasizing its
main characteristics.
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3.1 Encoding scheme
Every solution is represented by an integer vector with M elements,
x = (x1, ...,xM ), denoting the decision variables, with element
xm ∈ {1, ...,L}, m = 1...M , L is the total number of LLHs and xm
indicates the particular LLH to be used at the m-th position in the
sequence which the combination identi�es.

Within the HSEDA context, a solution is equivalent to a com-
bination of heuristics and a decision variable is equivalent to an
LLH [23].

The LLHs are either a component heuristic or a disruptive oper-
ation. In the following, we present the list of candidate LLHs.

• KPBF : A neighborhood search heuristic targeting the KP part.
This heuristic uses a simple bit-�ip local search empowered with
speedup techniques. It is part of the memetic algorithm MATLS
proposed in [16].

• KPSA: A simulated annealing adapted to the KP sub-problem,
which is used in CS2SA presented in [8].
• TSP2−opt : A 2-opt based local search heuristic used for the TSP

component. It is usually used in multiple TTP algorithms [8, 15].
• TSP∗swap : A disruptive move for the TSP sub-problem that ran-

domly swaps two cities.
• TSP∗4−opt : A double bridge move for the TSP sub-problem that

randomly selects the cities.
• KP∗BFψ : A disruptive routine that toggles the state ofψ% of the

picking plan items, whereψ ∈ {20, 30, 40}.

The �rst three operators are local search heuristics obviously
used for intensi�cation purposes. While the remaining are disrup-
tive operators designed to explore more e�ciently the TTP search
space.

The �tness of a heuristic combination depends on its perfor-
mance on the given instance. The low-level heuristics resulting
from a speci�c combination are sequentially applied to the prob-
lem instance, starting from an initial TTP solution. The initial
solution is composed by a tour generated using the Lin-Kernighan
heuristic [12], and a picking plan generated using the PackIterative
routine [9]. The �tness of the heuristic combination x is set as the
achieved TTP objective when the processing of all LLHs present in
x is completed.

3.2 The framework
The proposed approach searches the space of possible combinations
of LLHs. The main steps performed by HSEDA are described in
Algorithm 1.

The Initialization phase loads the problem instance and randomly
generates an initial population Pop1 of N solutions. Each solution x
is a sequence of LLHs of size M . By a sequence we mean an ordered
set of LLHs in which repetition is possible.

The EvaluateFitness phase, Step 6 in Algorithm 1, calculates the
�tness based on the TTP objective function, i.e. the �tness measures
the quality of the sequence while attempting to improve the initial
TTP solution.

In the Selection phase, a total of NPGM solutions are selected
from the population Popд , based on their �tness, to compose the
Pop

д
PGM, where д is the current generation.

Algorithm 1 A simpli�ed pseudo-code presenting the main com-
ponents of HSEDA
INPUT: Instance: problem instance

N : population size
M : solution size
NPGM : number of solutions selected to support the probabilistic

model estimation
Nsmp , number of solutions sampled from the probabilistic model
sr: survival rate
Nsur , number of solutions selected from the surrogate model
Maxruntime : maximum runtime
Maxger : maximum number of generations

OUTPUT: Cbest : the best found solution
{Initialization}

1: I ← LoadInstance(Instance)
2: Pop1 ← RandomGenerate(N , I, M ) {initial population}
3: д ← 1

{Main loop}
4: while д ≤ Maxger and Maxruntime is not exceeded do do
5: for each solution x ∈ Popд do
6: �tness(x) ←EvaluateFitness(x, I )
7: end for

{EDA: learning the probabilistic model}
8: PopдPGM ← Selection(Popд, NPGM) {truncation selection}

9: PGM← ProbabilisticModelEstimation(PopдPGM)
{EDA: sampling}

10: Popsmp ← Sampling(PGM, Nsmp)
11: for each n solution x ∈ Popsmp do
12: �tnessn ←EvaluateFitnessRBFN (xn, I )
13: end for

{EDA: survival}
14: Popsmp ←Selection(Popд, Nsur)
15: for each n solution x ∈ Popsmp do
16: �tnessn ←EvaluateFitness(xn, I )
17: end for
18: Popд+1 ←Survival({Popд ∪ Popsmp }, N , sr ) {new population}
19: д ← д + 1
20: end while

{Best found solution}
21: Cbest ← SelectBest(Popд−1)

Afterward, HSEDA starts, at Step 9, the PGM construction phase
in ProbabilisticModelEstimation, according to Pop

д
PGM population.

Aiming to provide a probabilistic model, a bayesian network is
modeled using K2-metric [7], and its structure and parameters
(joint probability distributions) are estimated.

The PGM is used to sample the set of new solutions (Popsmp)
(Step 10). New solutions (Nsmp ), are generated from the joint
distribution encoded by the network using the probabilistic logic
sampling, and evaluated using a surrogate assisted model based on
RBFNs. The RBFN aims to save computational resource that will
be further used to extend the evolution. In our approach a solution
vector from Popsmp is an untried point for the RBFN model. The
training set is composed by the set of solutions x for which the
�tness is calculated based on the objective functions (instead of
being approximated).

The solutions from Popsmp are then sorted based on the surro-
gate function value and the Nsur best are selected to have their
�tness recalculated by the real �tness function (Steps 14 to 17).
The surrogate model is updated along the HSEDA evolutionary
process every time the set of new solutions has its real �tness value
calculated to compose the next training set.

This reduced sampled population (Nsur best individuals selected
from Popsmp), which has its �tness calculated by the TTP objective
function, is joint with Popд to create the new population for the
next generation. However, only N solutions are selected in the
Survival process to proceed in the evolutionary process as a new
population Popд+1. As shown in Step 18, N ∗ sr �ttest solutions



An EDA-based heuristic selection for the Travelling Thief Problem GECCO ’17, July 15-19, 2017, Berlin, Germany

from Popд , where sr is the survival rate, are selected followed by
the remaining �ttest ones from Popsmp.

This process is iteratively performed until the termination cri-
terion (Maxдer or Maxruntime , whichever comes �rst) is satis�ed.
Finally the best solution Cbest is selected from the population,
according the SelectBest function in Step 21.

Figure 1: Example of a Bayesian Network Structure.

One example of an evolved Bayesian Network (BN) model can be
seen in Figure 1, with node Xi representing the i-th low-level TTP
heuristic to be applied and edges denoting relationships between
nodes. The BN structure design considers the K2 metric to build an
edge between a node and its parents. In this case the BN structure
indicates that the third heuristic (X3) is conditionally independent
from the �rst one (X1). In the sample process, each node value
depends on the conditional probability which is learned from the
structure and the current set of best solutions. An example of an
observation taken from this network is: x = [x1,x2,x3, . . . ,xM ] =
[KPBF ,TSP∗swap ,KP

∗
BF 20,KPSA,KPBF ,TSP

∗
swap ]. As the popula-

tion of heuristic combinations is evolved along the generations,
the structure and conditional probabilities are also updated. In this
process, di�erent BN structures can be generated at each generation
for the given population.

4 EXPERIMENTS
The experiments conducted in this paper are performed on a com-
prehensive subset of the TTP benchmark instances1 from [21] using
Matlab2. The characteristics of these instances vary widely, and in
this work we consider the following diversi�cation parameters:
• The number of cities is based on TSP instances from the TSPlib,

described in [24];
• For each TSP instance, there are three di�erent types (we will

refer to this parameter asT ) of knapsack problems: uncorrelated
(unc), uncorrelated with similar weights (usw), and bounded
strongly correlated (bsc) types;

• For each TSP and KP combination, the number of items per city
(item factor, denoted F) is F ∈ {01, 05, 10};
• For each TTP con�guration, we use 3 di�erent knapsack capaci-

ties C ∈ {01, 05, 10}. C represents a capacity class.
To evaluate the proposed hyper-heuristic, we use �ve represen-

tative TTP instance groups: eil51, kroA100, a280, pcb439 and rat783.
1All the TTP instances can be found in the website: http://cs.adelaide.edu.au/optlog/
research/ttp.php.
2We used the bayes net toolbox for Matlab [19], publicly available at https://github.
com/bayesnet/bnt.

Therefore, using this setting, a total of 135 instances are considered
in this paper. While signi�cantly larger TTP instances exist, our
subset still spans 59% of the instances, when measured in the num-
ber of cities. In addition, we use the following notation to represent
a TTP instance: TSP_base_instance(F ,T ,C).

The experiments for HSEDA were performed for a maximum
runtime of 10 minutes per instance3.

The proposed framework has multiple parameters that need
tuning. These parameters are presented in Table 1, and are o�-
line tuned using the automated algorithm con�guration package
irace proposed by López-Ibáñez et al. [14]. The irace package is
implemented in R and is based on the iterated racing procedure.
irace is a state-of-the art algorithm con�guration approach for
solution quality scenarios. It iteratively applies a racing technique
to a set of sampled con�gurations against each other until enough
empirical evidence allows to reject all but one con�guration using
a statistical test.

Table 1: Parameters of HSEDA algorithm.
Description Value
Population size N 10
Maximum runtime Maxruntime 600s
Maximum number of generations Maxger 1000
Solution size M 6
Number of solutions selected from surrogate model Nsur 7 ∗ N
Survival Rate sr 0.75
Number of solutions to the PGM NPGM N
Number of solutions sampled Nsmp 1000

In the irace training phase, we use the following groups of small
TTP instances: eil51, berlin52, eil76, and kroA100. These groups
are di�erent from the instances considered for our experiments,
which were mentioned before and also includes eil51 and kroA100.
This way we can test both HSEDA ’s ability to create high-quality
TTP solutions on the training set, and its ability to generalize to
the test set. Additionally, we consider a budget for irace of 1000
experiments.

The surrogate model was evaluated by comparing the same
solutions sorted by real �tness and approximated ones. Therefore,
when the RBFN model is applied, we expect that the solutions
appear in close order for both sets. Additionally, our preliminary
experiments to assess the surrogate model accuracy show that at
least 50% of the best solutions are selected.

5 RESULTS AND DISCUSSION
This section presents a comparison between our HSEDA ap-
proach and three other state-of-art algorithms for the TTP, namely,
MMAS [30], MA2B [8], and S5 [9].

In order to provide a statistical analysis of the results, the Fried-
man test was applied to the obtained objectives values, considering
that the results are not normally distributed, based on the Shapiro-
Wilk normality test [6]. This test compares a set of instances of
a problem and the results reveal all the algorithms have results
values with no statistically signi�cant di�erence can be rejected
for all instances. All tests have been executed with a con�dence

3The HSEDA source code and raw result �les are publicly available at https://bitbucket.
org/marcella_engcomp/hseda-ttp

http://cs.adelaide.edu.au/optlog/research/ttp.php.
http://cs.adelaide.edu.au/optlog/research/ttp.php.
https://github.com/bayesnet/bnt
https://github.com/bayesnet/bnt
https://bitbucket.org/marcella_engcomp/hseda-ttp
https://bitbucket.org/marcella_engcomp/hseda-ttp
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level of 95% (α = 0.05) considering the 30 independent runs of each
algorithm.

Table 2 shows the statistical analysis of pairwise comparisons
between HSEDA and the state-of-art algorithms using Dunn-Sidak’s
post-hoc test with a signi�cance level of α = 0.05. When the test
result is greater than α , there is no statistical di�erence between
the two techniques. When the test result is less than α , there is
statistical di�erence.

The entries representing a statistically signi�cant di�erence be-
tween HSEDA and the other approach are emphasized (bold). When
HSEDA shows better performance (average of its objective values)
the background is highlighted.

Table 2: Results for pairwise comparisons among
HSEDA and state-of-art algorithms using Friedman and
Dunn-Sidak’s post-hoc tests with α = 0.05 for each group of
instances.

Instance HSEDA x MMAS HSEDA x MA2B HSEDA x S5
eil51 0.0000 0.4104 0.0002

kroA100 0.1519 0.8606 0.0000
a280 0.0000 0.0017 0.4260
pr439 0.0002 1.0000 0.4880
rat783 0.0000 0.0001 1.0000

We can observe from Table 2 that there are statistical di�erences
between HSEDA and MMAS for almost all instances set, except for
kroA100. HSEDA is better than MMAS for a280, pr429 and rat783
instances and worst for the eil51 group. In comparison with MA2B,
HSEDA is better for a280 and rat783 instance sets. On the other
hand, the results for S5 show statistical di�erences for the eil51 and
kroA100 instances, where HSEDA is better.

The behaviours of MA2B, MMAS, and S5 are quite expected:
• MA2B is a memetic algorithm using expensive local search on a

population of 40 individuals and explores longer tours implicitly
though a 2-opt local search heuristic. This makes the algorithm
e�cient for small instances, but its performance decreases when
dealing with larger instances due to the 10 minutes time limit.

• MMAS uses arti�cial ants to explicitly explore longer tours by
focusing on good TTP tours. This has been shown to be a very
e�cient strategy for small instances. However, its performance
decreases signi�cantly on instances having more than 250 cities
and 2000 items as shown in [30].

• S5 has been shown to be very competitive on mid-size and large
instances. Its good performance is mainly due to the PackIt-
erative heuristics which is a fast search technique based on a
greedy approach. However, S5 is very biased as it does not ex-
plore longer tours at all which explains its mediocre performance
on small instances.
Aiming to present a performance measure to explore the

HSEDA behavior regarding each speci�c instance, in this paper we
have applied the A-test (Vargha-Delaney A measure [29]), a mea-
sure of stochastic superiority that ranks the samples based on their
values. The A-test returns a value between 0 and 1. This value rep-
resents the probability that a randomly selected observation from
one sample is better than a randomly selected observation from
the other sample. In our case, the two samples are composed of the
objective values from each algorithm run. The test was realized
using 30 independent runs of each algorithm.

Tables 3, 4, 5, 6 and 7 show the A-test of a pairwise comparison
between these algorithms for each instance, respectively.

When the A-measure is exactly 0.5, there is no di�erence be-
tween the two techniques. When the A-measure is less than 0.5 the
�rst technique has the worse performance. Otherwise, the second
technique is the worst performing one.

The cells representing when HSEDA is stochastically superior
than another approach are emphasized (highlighted).

Table 3: A-test over eil51 instances.

Instance HSEDA x MMAS HSEDA x MA2B HSEDA x S5
eil51(01, bsc, 01) 0.0000 0.7794 1.0000
eil51(05, bsc, 01) 0.0000 0.5972 1.0000
eil51(10, bsc, 01) 0.0000 0.3000 1.0000
eil51(01, bsc, 05) 0.0000 0.4928 1.0000
eil51(05, bsc, 05) 0.0000 0.3878 1.0000
eil51(10, bsc, 05) 0.1856 0.0667 1.0000
eil51(01, bsc, 10) 0.0000 0.7378 1.0000
eil51(05, bsc, 10) 0.0000 0.6722 1.0000
eil51(10, bsc, 10) 0.0000 0.0000 1.0000
eil51(01, usw, 01) 0.0000 0.1572 1.0000
eil51(05, usw, 01) 0.0000 1.0000 1.0000
eil51(10, usw, 01) 0.0000 0.0878 1.0000
eil51(01, usw, 05) 0.0000 0.2522 1.0000
eil51(05, usw, 05) 0.0000 0.9000 1.0000
eil51(10, usw, 05) 0.0333 0.0000 1.0000
eil51(01, usw, 10) 0.0000 0.9333 1.0000
eil51(05, usw, 10) 0.0000 0.0000 1.0000
eil51(10, usw, 10) 0.0000 0.0300 1.0000
eil51(01, unc, 01) 0.0000 0.0000 1.0000
eil51(05, unc, 01) 0.0000 0.0000 1.0000
eil51(10, unc, 01) 0.0000 0.0000 1.0000
eil51(01, unc, 05) 0.0000 0.0333 1.0000
eil51(05, unc, 05) 0.0000 0.0000 1.0000
eil51(10, unc, 05) 0.0044 0.0000 1.0000
eil51(01, unc, 10) 0.0267 0.7567 1.0000
eil51(05, unc, 10) 0.0000 0.0000 1.0000
eil51(10, unc, 10) 0.0000 0.0000 1.0000

Table 4: A-test over kroA100 instances.

Instance HSEDA x MMAS HSEDA x MA2B HSEDA x S5
kroA100(01, bsc, 01) 0.0000 0.7989 1.0000
kroA100(05, bsc, 01) 0.0022 0.5878 0.9667
kroA100(10, bsc, 01) 0.0000 0.0333 0.0000
kroA100(01, bsc, 05) 0.0667 0.0333 1.0000
kroA100(05, bsc, 05) 0.9411 1.0000 1.0000
kroA100(10, bsc, 05) 0.8333 1.0000 1.0000
kroA100(01, bsc, 10) 0.4311 0.9489 1.0000
kroA100(05, bsc, 10) 1.0000 1.0000 1.0000
kroA100(10, bsc, 10) 0.9667 1.0000 1.0000
kroA100(01, usw, 01) 0.0000 0.7094 1.0000
kroA100(05, usw, 01) 0.0000 0.6667 1.0000
kroA100(10, usw, 01) 0.1256 0.7444 1.0000
kroA100(01, usw, 05) 0.3578 0.9178 1.0000
kroA100(05, usw, 05) 0.0000 0.8578 1.0000
kroA100(10, usw, 05) 0.1600 1.0000 1.0000
kroA100(01, usw, 10) 0.0000 0.8000 1.0000
kroA100(05, usw, 10) 0.0000 1.0000 1.0000
kroA100(10, usw, 10) 0.7878 1.0000 1.0000
kroA100(01, unc, 01) 0.0000 0.0000 0.0000
kroA100(05, unc, 01) 0.0000 0.0000 0.0000
kroA100(10, unc, 01) 0.0000 0.0000 1.0000
kroA100(01, unc, 05) 0.0000 0.9400 1.0000
kroA100(05, unc, 05) 1.0000 1.0000 1.0000
kroA100(10, unc, 05) 0.6900 0.9000 0.9000
kroA100(01, unc, 10) 0.0000 0.9467 1.0000
kroA100(05, unc, 10) 0.0000 0.0000 1.0000
kroA100(10, unc, 10) 0.0000 0.0044 1.0000

In Table 3, we note that MMAS presents the best results in com-
parison with HSEDA for eil51 instances. MA2B also provides better
results for most instances. However, HSEDA is better than S5 for
all instances.

We can observe in Table 4 that HSEDA is better than MMAS for
some instances with bounded strongly correlated pro�t/weight. On
the other hand, we can see that HSEDA is better than MA2B and
S5 for most kroA100 instances.
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Table 5: A-test over a280 instances.

Instance HSEDA x MMAS HSEDA x MA2B HSEDA x S5
a280(01, bsc, 01) 0.9089 1.0000 0.7533
a280(05, bsc, 01) 1.0000 1.0000 0.8344
a280(10, bsc, 01) 1.0000 1.0000 0.5633
a280(01, bsc, 05) 0.9967 1.0000 0.6722
a280(05, bsc, 05) 0.8189 0.9000 1.0000
a280(10, bsc, 05) 1.0000 1.0000 0.0000
a280(01, bsc, 10) 0.8756 0.9561 0.0000
a280(05, bsc, 10) 0.5433 0.8967 0.1433
a280(10, bsc, 10) 1.0000 1.0000 0.1767
a280(01, usw, 01) 0.0967 0.1783 0.5800
a280(05, usw, 01) 1.0000 0.4000 0.0000
a280(10, usw, 01) 0.8878 0.3361 0.5700
a280(01, usw, 05) 0.0000 0.3211 0.7544
a280(05, usw, 05) 0.9389 0.9911 0.6378
a280(10, usw, 05) 1.0000 1.0000 0.7133
a280(01, usw, 10) 1.0000 0.9333 1.0000
a280(05, usw, 10) 1.0000 1.0000 1.0000
a280(10, usw, 10) 1.0000 1.0000 0.6056
a280(01, unc, 01) 0.1844 0.5133 1.0000
a280(05, unc, 01) 0.9422 0.5011 0.9867
a280(10, unc, 01) 1.0000 0.5428 1.0000
a280(01, unc, 05) 1.0000 0.8978 1.0000
a280(05, unc, 05) 1.0000 0.9439 0.8089
a280(10, unc, 05) 1.0000 1.0000 0.6856
a280(01, unc, 10) 1.0000 0.6583 1.0000
a280(05, unc, 10) 1.0000 1.0000 0.6811
a280(10, unc, 10) 1.0000 1.0000 0.8378

Table 6: A-test over pr439 instances.

Instance HSEDA x MMAS HSEDA x MA2B HSEDA x S5
pr439(01, bsc, 01) 0.0122 0.0000 0.0000
pr439(05, bsc, 01) 0.9222 1.0000 0.0889
pr439(10, bsc, 01) 1.0000 1.0000 0.7089
pr439(01, bsc, 05) 0.9467 0.9289 0.1589
pr439(05, bsc, 05) 1.0000 1.0000 0.5333
pr439(10, bsc, 05) 1.0000 1.0000 0.4256
pr439(01, bsc, 10) 0.9333 0.0967 0.3900
pr439(05, bsc, 10) 1.0000 0.9667 0.1711
pr439(10, bsc, 10) 1.0000 0.6000 0.2333
pr439(01, usw, 01) 0.7867 0.5122 0.8956
pr439(05, usw, 01) 0.4967 0.1044 0.0156
pr439(10, usw, 01) 0.9900 0.6489 0.2178
pr439(01, usw, 05) 0.8322 0.0000 0.1467
pr439(05, usw, 05) 0.9667 0.0578 0.5278
pr439(10, usw, 05) 1.0000 0.1367 0.2356
pr439(01, usw, 10) 1.0000 0.8611 0.7133
pr439(05, usw, 10) 1.0000 0.5533 0.5800
pr439(10, usw, 10) 1.0000 0.4778 0.1756
pr439(01, unc, 01) 0.0400 0.0533 0.0000
pr439(05, unc, 01) 1.0000 1.0000 0.5978
pr439(10, unc, 01) 1.0000 0.9839 0.1633
pr439(01, unc, 05) 1.0000 0.0433 0.4811
pr439(05, unc, 05) 1.0000 0.2439 0.0878
pr439(10, unc, 05) 1.0000 0.3700 0.1744
pr439(01, unc, 10) 0.9967 0.2000 0.0711
pr439(05, unc, 10) 1.0000 0.2133 0.3300
pr439(10, unc, 10) 1.0000 0.2911 0.3367

Table 7: A-test over rat783 instances.

Instance HSEDA x MMAS HSEDA x MA2B HSEDA x S5
rat783(01, bsc, 01) 0.9911 0.9878 0.9711
rat783(05, bsc, 01) 1.0000 1.0000 0.8944
rat783(10, bsc, 01) 1.0000 1.0000 0.0456
rat783(01, bsc, 05) 0.9989 0.9522 0.9800
rat783(05, bsc, 05) 1.0000 1.0000 1.0000
rat783(10, bsc, 05) 1.0000 1.0000 0.9256
rat783(01, bsc, 10) 1.0000 0.9178 0.9789
rat783(05, bsc, 10) 1.0000 0.5667 0.0000
rat783(10, bsc, 10) 1.0000 0.5667 0.0000
rat783(01, usw, 01) 0.8311 0.7356 0.1489
rat783(05, usw, 01) 1.0000 1.0000 0.0000
rat783(10, usw, 01) 1.0000 1.0000 0.0000
rat783(01, usw, 05) 1.0000 0.8333 0.0000
rat783(05, usw, 05) 1.0000 1.0000 0.9667
rat783(10, usw, 05) 1.0000 1.0000 0.4667
rat783(01, usw, 10) 1.0000 1.0000 0.7667
rat783(05, usw, 10) 1.0000 1.0000 0.0333
rat783(10, usw, 10) 1.0000 1.0000 0.0000
rat783(01, unc, 01) 1.0000 1.0000 1.0000
rat783(05, unc, 01) 1.0000 0.9667 0.9667
rat783(10, unc, 01) 1.0000 1.0000 0.6000
rat783(01, unc, 05) 1.0000 0.9000 0.7667
rat783(05, unc, 05) 1.0000 1.0000 0.6267
rat783(10, unc, 05) 1.0000 1.0000 0.6333
rat783(01, unc, 10) 1.0000 0.6000 0.4333
rat783(05, unc, 10) 1.0000 1.0000 0.4333
rat783(10, unc, 10) 1.0000 0.9167 0.0000

In Table 5, HSEDA has a better performance than the other
algorithms for most instances of the a280 group.

Table 6 shows that HSEDA is better than MMAS for almost all
pr439 instances. However, HSEDA is less competitive than MA2B
and S5 for this group of instances.

Finally, the results reported in Table 7 show that HSEDA is better
than MMAS and MA2B for all rat783 instances. We can also observe
that HSEDA is able to outperform S5 for some instances.

Lastly, we compare all algorithms based on their approximation
of the best solutions seen. For this, we compute the approximation
ratio of the average performance to the best objective score found
using Equation 7.

approxRatioAI =

∑R
r=1 �tr /R
�tbest

(7)

where I is the instance, A is the considered approach, R is the
total number of runs (R = 30 and r ∈ {1, ...,R}) and f itbest =
max(f it∀r,A). This ratio allows us to compare the overall perfor-
mances across the chosen set of instances, since the objective values
vary across several magnitude orders [30].

In Figure 2, we show a summary of over 540 (135 instances and 4
algorithms) average approximation ratios as trend lines. The curves
are polynomials of degree 6. The purpose of this visualization
is to provide a general qualitative summary of the algorithm’s
performance in a multi-dimensional instance space.
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Figure 2: Performance comparison: Summary of results
shown as trend lines.

We can see that MMAS still performs best on small TTP instances
due to its ability to search for longer tours. For the mid-sized
instances from the a280 class on (on which HSEDA was not trained),
HSEDA is typically either comparable to the previous MA2B and
S5, or it outperforms them.

6 CONCLUDING REMARKS
In this paper we have proposed an EDA framework as a heuris-
tic selection approach within the hyper-heuristic context. The
HSEDA approach was designed and evaluated for the Travelling
Thief Problem.
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The main issue investigated in this paper concerns whether a
Bayesian Network as a Probabilistic Graphical Model (PGM) em-
bedded in a Hyper-Heuristic generates promising solutions combin-
ing sub-heuristics and disruptive operators in a heuristic selection
search technique. Thus, a sequence of these promising low-level
heuristics (LLHs) can be sampled and evolved based on the estima-
tion of variable distribution of promising solutions with correlated
characteristics, even more it can provide a representative model for
variables interactions.

We have analyzed the performance of the proposed approach on
small and medium-sized TTP instances. We provided a statistical
analysis of a pairwise comparison between HSEDA and three other
state-of-the-art algorithms.

Although the reported results show that HSEDA is very competi-
tive, experiments were limited to small and mid-size instances. This
inconvenience is due to the following two reasons: (i) HSEDA is an
online training approach, which means it focuses on the instance
at hand and its abilities cannot be transferred to unseen instances;
and (ii) the 10 minutes runtime limit makes it di�cult to solve large
TTP instances, even for very complex and sophisticated heuristics
such as S5 and MA2B.

Based on the experiments with the TTP instances addressed in
this work, we can conclude that the proposed heuristic selection is
competitive when compared with the other investigated state-of-art
algorithms, especially when the number of cities increases.

We believe that HSEDA competitive performance is due to three
key factors: (i) the use of the Bayesian network, which has the abil-
ity to e�ciently represent the dependencies and independencies
between the LLHs; (ii) the use of two types of operators, namely lo-
cal search heuristics, and disruptive operators; (iii) this guarantees
a good balance between HSEDA’s exploration and exploitation abil-
ities; and (iv) the surrogate assisted model, which saves computa-
tional resource that is further used to extend the HSEDA evolution.

Within the experiments the processes have been simpli�ed, but
the methodology allows to extract much more knowledge at the
end, which have not been explored here due the space limitation.
In the future, we engage to explore probabilistic inferences in the
PGM, combining prior knowledge, in causal form, and data, as well
as incorporating more sophisticated machine learning techniques
in surrogate assisted models.
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