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Abstract. The typical goal in multi-objective optimization is to find a
set of good and well-distributed solutions. It has become popular to focus
on specific regions of the objective space, e.g., due to market demands
or personal preferences.
In the past, a range of different approaches has been proposed to consider
preferences for regions, including reference points and weights. While the
former technique requires knowledge over the true set of trade-offs (and a
notion of “closeness”) in order to perform well, it is not trivial to encode
a non-standard preference for the latter.
With this article, we contribute to the set of algorithms that consider
preferences. In particular, we propose the easy-to-use concept of “pre-
ferred regions” that can be used by laypeople, we explain algorithmic
modifications of NSGAII and AGE, and we validate their effectiveness
on benchmark problems and on a real-world problem.
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1 Introduction

For the last two decades, multi-objective evolutionary algorithms (MOEA) have
been successfully used to solve multi-objective optimization (MOO) problems.
Most real-world problems are MOO problems rather than single objective prob-
lems, where it is often found that multiple conflicting objectives exist. Typically,
the goal of a MOEA is to find a set of trade-off solutions that are well-distributed
over the objective space. Ideally, these solutions are on or at least close to the
true set of trade-offs called Pareto front. Sometimes, however, the decision mak-
ers/users have little interest in exploring the entire objective space. It may be
more interesting to them to explore some preferred regions of a front due to
market demands, due to financial pressure, or simply due to curiosity.

Let us consider an energy system optimization problem, where the goal is to
minimize CO2 emission and annual cost [14]. In this case, a reference system is
analyzed (generally the current system), optimized systems are identified, and
then compared with the reference system. Decision makers are often interested
in exploring several regions defined by either CO2 emission or annual cost. For
example, if a reference scenario has x amount of CO2 emissions, the interesting
regions could be 10%-20% and 35%-40% reduction of x.



There are a few algorithmic advantages in exploring preferred regions over
exploring the entire objective space. These include faster convergence speed and
better approximation of Pareto front [15]. Based on the idea of incorporating
user preference, a wide range of different concepts and algorithms has been pro-
posed (see [1, 25] for comprehensive surveys, as it is impossible to list all relevant
work here), such as (i) defining reference-point(s) [18, 19] and specifying weights
in the objective space [9, 16]. However, the problem with these approaches typ-
ically is that it is difficult to set the corresponding parameters without knowing
the shape of the true Pareto front. Therefore, we propose modifications of generic
algorithms that require only very intuitive preference encoding in the form of
intervals, as outlined above in the energy system example above.

The structure of this article is as follows. First, we introduce basic definitions
in Section 2 including the idea of preferences for MOEAs. In Section 3 we show
how we integrate preference information in two algorithms. Lastly, we present
and discuss the results of our experimental studies in Section 4 and Section 5.

2 Definitions & Basic Principles

Without loss of generality, a multi-objective problem can be formulated as:

min F (A) = (f1(A), f2(A), ...fm(A))T A ∈ Rn (1)

where A = (a1, ..., an) is a vector of n decision variables and m is the number of
objectives. In the context of multi-objective optimisation, the optimal solutions
are also referred to as non-dominated solutions. In a minimization problem, a
solution A is considered non-dominated in comparison to another solution A∗

when no objective value of A∗ is less than that of A and at least one objective
value of A∗ is greater than that of A. If necessary, the feasibility of solutions can
be considered as well, however, this is not necessary in our study. For a more
complete introduction to multi-objective optimization, we refer the interested
reader to the overview articles [4, 12, 24].

There is a fundamental difference between how reference points and weights
are defined, and how our preferred regions are defined. A reference point is de-
fined by specifying values for all the dimensions for a point in the objective
space. In contrast to this, a preferred region is defined by specifying an upper
and lower bound of one particular dimension. For example, if a two-objective
problem (objectives are plotted along x and y-axes) is considered, a user can de-
fine three preferred regions by setting three upper and lower bounds for intervals
along either the x or y axis. Figure 1 illustrates an example of three preferred
regions (bounded by three different color vertical lines). In this figure, we also
show three reference points (gray crosses) which might have been set by a user.
As the user lacks knowledge about the shape of the front, these points are not
on the true Pareto front. Consequently, it is left up to the MOEA to follow its
own interpretation of “closeness” in order to distribute the solutions around the
reference. One outcome is that the solution density is high near the reference
point and the density decreases with increasing distance (see Figure 1 for the
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Fig. 1: Reference points, weights in the objective space, and preferred regions.

outcome of one run by r-NSGAII [7] using the shown reference points). As men-
tioned before, it is also possible to use weights in the objective space in order
to encode preferences. In Figure 1 we indicate this using a color gradient along
the x-axis, where a preference for smaller x-values is encoded. The preference
formulation for a single objective using weights is relatively simple, however,
the formulation becomes tricky when multiple objectives are preferred, and it
becomes very complicated when reference points or preferred regions are to be
encoded (using weights). The concept of our interval-based regions, on the other
hand, is straightforward to use even for laypeople. To the best of our knowledge,
even though there are lots of similar approaches, this is the first time this rather
simple concept of intervals along axes is used in the context of MOO.

3 Preferred Regions for Different MOEAs

In the following, we present the ideas related to preferred regions and the adap-
tation of the ideas into different MOEAs.

3.1 Ideas adopted in pNSGAII

We adopt several ideas in NSGAII [6] resulting in pNSGAII. Algorithm 1
presents the main loop of the proposed pNSGAII. There are couple of modi-
fications with respect to the original NSGAII. Firstly, each solution is associated
with a particular region (step # 4). Secondly, a parent selection procedure is
used (step # 8); thirdly, the individuals of a merged population (containing
solutions of the previous generation and the offspring) are associated with nR
regions (step # 11) such that for each region, 2 ∗ αi individuals are associ-
ated. Based on the association, the merged population is divided into nR sub-
populations (step # 12). Sub-populations are used to increase the likelihood of
achieving the targeted αi well-distributed solutions per preferred region. Lastly,
a modified ranking procedure (step # 14) is applied to rank the solutions of the
sub-populations.1

1 Consequently, our pNSGAII is somewhat equivalent to an island model approach for
multi-objective optimization, with islands being responsible for preferred regions. In
contrast to existing island model-MOO approaches (e.g. [2]), we are focussing on
user-defined parts of the search space that are defined in an easy-to-use way.



Algorithm 1 Main loop of pNSGAII

1: nR . Number of given regions
2: α . A set containing user-defined preferred number of solutions for each region;

αi is the number of preferred solutions for ith region

3: Initialize population P with
∑nR

i=1 αi random individuals and O ← ∅
4: Associate α number of solutions with nR regions
5: while Stopping criteria not met do
6: for z ← 1 to nR do
7: for j ← 1 to αz/2 do
8: Select two parents using modified parent selection procedure
9: Generate offspring and add to O

10: P ← P ∪O
11: Associate 2 ∗ α number of solutions with nR regions
12: Divide P into nR sub-populations (SPi; i = 1, . . . , nR)
13: for i← 1 to nR do
14: Rank SPi and select αi solutions based on ranking and crowding distance

15: Add these solutions to SPi

16: P ←
nR⋃
i=1

SPi
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Fig. 2: Association of solutions with regions

The first important addition to pNSGAII is the association of solutions to
regions. Before the optimization, the user provides the preferred number of so-
lutions associated with each region. During the optimization, the solutions are
assigned greedily to the regions based on the distance between solutions and
regions (see Algorithm 2). The distance from a solution (that is outside of the
region) to a region is calculated as min(|fi(A)−Ru|, |fi(A)−Rl|), where fi(A) is
the objective value (the objective dimension on which a user specifies the ranges)
of a solution. The distance is 0 if a solution is inside a preferred region. Finally,
Figure 2 illustrates an example of Algorithm 2 in step # 11 of Algorithm 1.

In our parent selection procedure, a parent is selected in either one of the
following two ways: (i) from the same region that the procedure is currently
working on (zth region, step # 6 of Algorithm 1), (ii) from other regions. The
selection of parents from other regions depends on a user-defined probability pps.
This approach enables us to prevent an algorithm from getting trapped on a local
multi-dimensional front, which we have observed in preliminary experiments.



Algorithm 2 Associating regions to solutions

1: Ru, Rl . Upper and lower bounds of given regions
2: S . A set containing all the solutions
3: cα← 0 . Current number of associated solutions with regions
4: for s ∈ S do
5: for i← 1 to nR do
6: if s is within Ri

u and Ri
l And cαi < αi then

7: Associate s with ith region; cαi ← cαi + 1 and exit the loop
8: if s is not yet associated then
9: Depending on the status of cαj , associate s with the region j that has

minimum distance to s (if cαj = αj , associate s with the region that has
second least distance)

10: cαj ← cαj + 1

When a parent is selected from the current working region, a tournament
selection based approach is adopted. To select a parent, a given number of tour-
naments are played between randomly selected associated individuals (associated
with the zth region). The winner is decided based on the ordered criteria: (i) dis-
tance from a given region, (ii) overall constraints violation [5], (iii) dominance
relation. The order of the criteria is strictly followed. Therefore, if a solution is
closer than another solution with respect to a given region, then the subsequent
two criteria are not considered. The overall constraint violation and dominance
relations come into play when two solutions are within the given region.

To rank the individuals, we propose a ranking procedure based on dominance
relations and closeness of an individual to the preferred regions (same ordered
criteria as in parent selection). However, we do not apply the proposed ranking
procedure in all generations, as narrowing down the search to some particu-
lar regions from the beginning may be problematic. Therefore, for a particular
generation (Step # 14, Algorithm 1), only one of the two ranking procedures
(i.e., default NSGAII ranking procedure and proposed ranking procedure) is ap-

plied with probability prk =
(
usedBudget
totalBudget

)n
. The shape of this schedule can be

controlled through the exponent n. For n = 1, the probability of applying the
proposed ranking procedure is increased linearly over time. For larger values of
n, the probability increases sharply in later stages of the algorithm’s run.

3.2 pAGE

The algorithm Approximation-Guided Evolution (AGE) [3] in its original for-
mulation uses an archive A in which it maintains a list of all non-dominated
solutions seen. This archive can grow and thus slow down the algorithm. In its
newer version, AGE maintains an archive Aε that is an ε-approximation of all
non-dominated solutions encountered [21, 23] and it uses more efficient parent
selection [22]. In the following, we present two straightforward uses of the archive
to guide the optimization towards preferred regions (see Algorithm 3). We name
the two different uses pAGEonline and pAGEoffline.



Algorithm 3 (µ+ λ)-Approximation Guided Evolution with preferences

1: Initialize population P with µ random individuals, and set archive A← P .
2: for each generation do
3: Initialize offspring population O ← ∅
4: for j ← 1 to λ do
5: Select two random individuals from P , and apply crossover and mutation
6: Add new individual to O, if it is not dominated by any individual from P

7: Insert each offspring in the archive A and in the population, i.e., P ← P ∪O
8: [pAGEonline] remove each outlier from P with pr
9: while |P | > µ do

10: Remove p from P for which the approximation of A by P is the smallest
when p is left away

11: [pAGEoffline] 12.1: Remove all outliers from archive A
12.2: P ← A
12.3: if |P | > µ then apply steps 9–10 to reduce the P

pAGEonline largely corresponds to any of the above-mentioned AGE vari-
ants. After the generation of the offspring set O based on the population P ,
AGE would normally proceed to consider the union P ∪O and then reduce this
set greedily to approximate the archive. At this point, we insert one action (step
# 8): from the union P ∪O we remove each of the solutions that are outside the
preferred regions with probability pr.

In preliminary experiments we observed that a static choice of pr = 1 can
be problematic, as this always removes all outliers. As an alternative to this we
decided to increase pr by reusing the exponential schedule for prk that we already
use in pNSGAII. This way, the pressure remains low for a long time, which
allows pAGEonline to find the front, and in the last generations pAGEonline
can focus on spreading out the solutions within the preferred regions. Note that
this schedule is by no means optimal.

pAGEoffline corresponds to the original AGE with post-processing added.
First, pAGEoffline removes all outliers (solutions outside the preferred regions)
from the archive A, and it assigns a copy of this reduced archive to the population
P . Then, as P might be larger than the desired population size, we use AGE’s
internal reduction mechanism from steps # 9–10 so that P approximates A well.

4 Experimental Study

We conduct a range of experiments to analyze the performance of our proposed
algorithms pNSGAII, pAGEonline, and pAGEoffline. The benchmark problems
include five two-dimensional benchmark problems from the ZDT family [11] and
two three-dimensional problems from the DTLZ family [11]. To the best of our
knowledge, no directly comparable algorithms for multiple preferred regions are
available from the literature; algorithms that consider reference point(s) have a
different goal, which puts them at a disadvantage by definition (see Section 2).
Therefore, we compare our approaches with their original algorithms, and we
vary the evaluation budgets and population sizes to investigate the effectiveness.



Problem Algorithm µ FE

ZDT

pMOEA 30 12000

MOEA
30 12000
100 12000
100 24000

DTLZ
pMOEA 30 50000
MOEA 150 49950

Table 1: Configurations in
terms of population size µ and
evaluation budget FE to test
the efficiency of the interval-
based preferences.
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Fig. 3: Pareto fronts obtained by pAGEoffline
and pNSGAII on ZDT1 problem.

4.1 Experimental Setup

We developed all algorithms in the jMetal framework [8], which is a Java-
based multi-objective meta-heuristic framework. Initially, each pMOEA variant
is tested on the ZDT family with two configurations, based on population size
µ and maximum function evaluations (FE). Table 1 presents the different con-
figurations used in the experiments. The configurations are chosen in this way
to demonstrate the efficiency of pMOEA in terms of convergence speed.

We consider short and long runs with an evaluation budget of FE = 12000
and FE = 24000 respectively. On the ZDT2 family, we conduct only short runs
of the pMOEAs, and we compare these with short and long runs of the original
MOEAs to investigate the efficiency. For the DTLZ3 functions, we only use a
single configuration of the original algorithm since the solutions with an increased
population size, are otherwise the solutions would be very thinly spread out over
the three-dimensional front.4

In this study, the regions are defined in terms of Rl and Ru along the first
objective. The regions are [0.80, 0.95], [0.40, 0.50] and [0.15, 0.20]. Moreover, we
set α = [10, 10, 10] for pNSGAII so that 10 solutions will be associated with each
region - this was chosen arbitrarily, however, it is possible to have different num-
bers of solutions associated with different regions. Simulated binary crossover,
polynomial mutation, and binary tournament selection [6] are used with their
default values in the jMetal framework. In addition, n = 10 is used for prk and
pr for pNSGAII and pAGEonline, respectively. pps = 0.20 is used within pNS-
GAII’s parent selection procedure. In pAGEonline, εgrid = 0.01 is used for the
approximating archive.

2 The ZDT functions are used as provided by the jMetal framework. The number of
decision variables is 30 for ZDT1/2/3 and 10 for ZDT4/6.

3 Number of decision variables is 12 for DTLZ2/3, as set in the jMetal framework.
4 If we use µ = 30 for typical MOEA (please see Table 1) then it is less probable

to find adequate number of solutions in preferred regions, that makes it difficult to
compare with pMOEA. In addition, compared in terms of FE, MOEA uses 50 less
function evaluations than pMOEA only because the number is compatible with µ
(no extra function evaluations after completing last generation).



Over the years, a number of evaluation metrics for multi-objective opti-
mization algorithms have been proposed. We use the popular ones available
in the jMetal framework, i.e., the covered hypervolume (HV) [10], and additive
ε-approximation (EPS) [13] to measure the performance of the MOEAs5. We
use them with a simple modification, i.e., separately for each preferred region.
As the true Pareto front is required for the calculation of EPS values, we use
the ones provided by the jMetal framework. From these, we extract the regional
fronts from the original ones by discarding all outliers. To calculate HV values,
we define the reference point for each region to be based on the extreme values in
the preferred region. For example, in the introductory Figure 1, these reference
points are (0.2, 0.62), (0.5, 0.38), and (0.95, 0.1). It is important to note that
performance indicators for preference-incorporating algorithms exist (e.g. [10]),
however, these are for reference point-based approaches and thus not applicable.

We run each algorithm independently 100 times and report the averaged
indicator values in the following.6

4.2 Results and Discussion

Firstly, we present in Figure 3 an example of Pareto fronts obtained. We can
observe that the solutions are concentrated in the user-defined regions.

Next, we report the results in terms of mean values and the corresponding
standard deviations of HV and EPS for each region. Figure 4 shows a subset
of the results. In different colours and by using markers of different shapes, we
show how our pMOEAs perform compared to their original variants. The top
two rows of plots show the results for the NSGAII variants (colour , different
shapes indicating the different configurations), and in the third row we show the
AGE results (colour ). In the following, we summarize the results.6

Most of the time, pNSGAII outperforms NSGAII with the same evaluation
budget (FE = 12000) regardless of µ. pNSGAII performs similarly to NSGAII
(FE = 24000) a number of times, i.e. on all regions for ZDT1/ZDT2 and regions
#1/#2 for ZDT6. pNSGAII fails to converge on ZDT4 due to local optima.

The next row in Figure 4 demonstrates the comparison of pAGE variants
(i.e., online and offline) and AGE with different configurations; we limit our-
selves to approximation values due to space constraints. pAGEonline and offline
perform consistently better in comparison to the generic AGE (with FE = 12000
regardless of µ) for almost all the regions and all the problems. When comparing
with AGE (FE = 24000), sometimes pAGE performs better (ZDT1 and ZDT3),
sometimes similar (ZDT2, ZDT6) and sometimes worse (ZDT4).

To briefly demonstrate that the approach also works on three-dimensional
problems, we show a few results in Figure 5; all other algorithms and configu-
rations performed worse and were left away due to space constraints. Although

5 We do not report other indicator values, such as inverted generational distance
(IGD) [20] or the Hausdorff distance [19] due to space constraints.

6 We uploaded all code and results to https://github.com/shaikatcse/pMOEAs. This
includes pSPEA2 as an algorithm and also IGD indicator values.



N
S
G

A
II

Z
D
T
1

Z
D
T
2

Z
D
T
3

Z
D
T
4

Z
D
T
6

10−1

100

h
y
p

er
v
o
lu

m
e

(l
a
rg

e
r
=

b
e
tt
e
r)

Region 1

Z
D
T
1

Z
D
T
2

Z
D
T
3

Z
D
T
4

Z
D
T
6

Region 2

Z
D
T
1

Z
D
T
2

Z
D
T
3

Z
D
T
4

Region 3

Z
D
T
1

Z
D
T
2

Z
D
T
3

Z
D
T
4

Z
D
T
6

10−2

10−1

a
p
p
ro

x
im

a
ti

o
n

(s
m
a
ll
e
r
=

b
e
tt
e
r)

Z
D
T
1

Z
D
T
2

Z
D
T
3

Z
D
T
4

Z
D
T
6

Z
D
T
1

Z
D
T
2

Z
D
T
3

Z
D
T
4

A
G

E

Z
D
T
1

Z
D
T
2

Z
D
T
3

Z
D
T
4

Z
D
T
6

10−2

10−1

a
p
p
ro

x
im

a
ti

o
n

(s
m
a
ll
e
r
=

b
e
tt
e
r)

Z
D
T
1

Z
D
T
2

Z
D
T
3

Z
D
T
4

Z
D
T
6

Z
D
T
1

Z
D
T
2

Z
D
T
3

Z
D
T
4

Fig. 4: Comparison of our pMOEAs with their original variants on the ZDT functions
with m = 2. The Regions 1–3 are defined in Section 4.1. Shown are the means and
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and the original algorithm with two population sizes (µ = 30 and µ = 100, FE =
12, 000 each), and then with the original algorithm with twice the evaluation budget
(µ = 100, FE = 24, 000). For pAGE, instead of solid circles, the crossed circles denote
our pAGEoffline (×) and pAGEonline (+) variants. In short, the original algorithm
with twice the evaluation budget typically performs similar to our pMOEAs.
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on the two-dimensional ZDT problems, all pMOEAs performed similarly (when
comparing them with each other, see Figure 4), it is clear from Figure 5 that
pAGE achieves better approximations than pNSGAII. The original AGE is not
able to find the front given the computational budget (being 1–10 units away),
whereas our pMOEAs achieve good approximations of the fronts with the same
budget (being only 0.05–0.5 unit away). Between pAGEonline and pAGEoffline,
there is no clear winner.

We conclude from these results that our pMOEAs are efficient and effective
for considering user-defined regions.

5 pNSGAII on energy system optimization problem

To investigate the performance of our approach on a real-world problem, we have
applied pNSGAII on an energy system optimization problem [14]. We are not
considering pAGE here as it does not have any means of dealing with constraints.

The general goal of the problem is to identify multiple optimal systems in
order to minimize CO2 emission and annual cost. Here, we want to identify
multiple optimal systems for three specific regions of interest (i.e., 10 solutions
for each region) for the Aalborg energy system [17]. The three regions are defined
in terms of CO2 emission (i.e., [0.40, 0.5], [0.0, 0.15] and [-0.40, -0.50]). For
example, we are interested in identifying 10 optimal solutions in a region within
0.40 to 0.5 million tons of CO2 emission. Details of energy system optimization
framework and Aalborg energy system can be found in [14].

The result is illustrated in Figure 6; x-axis presents emission in million tons
and y-axis presents annual cost in million Danish Krone. The gray points repre-
sent the true Pareto front, which is approximated by considering the outcomes
of 240 independent runs of multi-objective algorithms. The red marker show the
solutions found by our pNSGAII (µ = 30, EF = 6000, problem-specific con-
straint handling was added): 10 solutions per region are found, and they are
very close to optimal solutions. As the experiment achieved these set goals, we
conclude that our proposed approach can not only be successfully applied to test
functions, but also to real-world optimization problems.



6 Conclusions

In this article, we proposed the concept of incorporating multiple user preferences
into MOEAs via the use of intervals. The concept was designed with laypeople
in mind who might not have detailed knowledge about the objective space.

We presented modifications for two MOEAs to handle multiple preferences,
and we demonstrated the resulting capability on two- and three-dimensional
test problems. On two-dimensional problems, our pMOEAs typically achieve
the same hypervolume and additive approximation values as the original algo-
rithms, where the latter had twice the evaluation budget. On three-dimensional
problems, our online and offline variants of AGE with preferences perform best.
Finally, the effectiveness of the algorithm is investigated on a real-world problem.

As solutions can be spread too diversely over the objective space for higher
dimension problems (having more than 3 objectives), we think that preferences
in general can be an interesting option for decision makers.

Our future work will include the adaption of the techniques to the higher
dimensional problems. Technically, the extension is straightforward, as the in-
tervals just have to be added to an internal array. Whether the approaches are
effective in higher-dimensional objective spaces remains to be seen.
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