
Constrained Evolutionary Wind Turbine Placement
with Penalty Functions

Daniel Lückehe
Department of Geoinformation

Jade University of Applied Sciences
Oldenburg, Germany

daniel.lueckehe@uni-oldenburg.de

Markus Wagner
Optimisation and Logistics

University of Adelaide
Adelaide, Australia

markus.wagner@adelaide.edu.au

Oliver Kramer
Department of Computing Science

University of Oldenburg
Oldenburg, Germany

oliver.kramer@uni-oldenburg.de

Abstract—Geographical constraints are essential when plan-
ning the locations for wind turbines. In real-world scenarios,
especially in densely populated countries, the designated area
where turbines can be placed is not an empty map on which the
turbines can be placed arbitrarily. Even in rural areas, streets,
buildings, and rivers have to be considered. In this paper, we
model two constrained turbine placement scenarios and use evolu-
tionary algorithms to find optimized turbine locations. To evaluate
the locations, we combine a proven wind model with real-world
data of a wind prediction model from a meteorological service.
Geographical data from a free map service is used to define
constrained areas in the scenarios based on administrative rules.
For the evolutionary optimization process, we consider five ways
to handle penalties. Starting with a simple specification that can
only achieve two different values, we end up in a definition that
considers distances relative of the required minimum distances
to all geographical objects for each turbine. We combine the
penalty definitions with three types of penalty functions. In the
experimental section, we compare the various configurations and
show a detailed analysis of the results.

I. INTRODUCTION

The reduction of greenhouse gas emissions to slow down
the climate change is an important current challenge. It is
supported by many participants, e.g., the 2◦ goal was agreed
upon at the 2015 United Nations Climate Change Conference
in Paris [18]. To reduce the greenhouse gas emissions, a lot
of steps have to be taken. One of them is the integration of
renewable sources into our energy supply. Unlike conventional
power plants, the behavior of renewable energy sources like
photovoltaic plants and wind turbines is strongly depending
on their location, e.g., the energy output of a wind turbine
depends on the wind potential at its location. In this paper, we
are focusing on the geographical planning of wind turbines.
The determination of optimal locations that are suitable for
turbines is called wind turbine placement optimization. In
real-world scenarios of densely populated countries, there are
no empty maps, thus, the environment always has to be
taken into account. We need to consider the geographical
constraints in order to create feasible solutions that are useable
in real-world. Besides the consideration of the constraints, the
optimization of the power output is important to increase the
competitiveness of wind farms in the energy market.

In this paper, we use a wind model based on the proven
model of Kusiak and Song [10] and data of a wind prediction
model from a meteorological service to evaluate locations

of the turbines.1 We propose five ways how to compute
the penalties G that are used by three variants of penalty
functions to handle the constrained wind turbine optimization
problem. To analyze the behavior of the various combinations
of the penalty G and the penalty functions, we specify two
constrained turbine placement scenarios that are based on the
data of a free topological map service. In these scenarios, we
define minimum distances to buildings, streets, and rivers taken
from administrative rules. The scenarios are treated as black-
box optimization problems and solved by an evolutionary
algorithm using an adaptive step-size control.

This paper is structured as follows. In Section II, an
overview over the related work is given, followed by the
introduction of our wind model in Section III. The used
geographical data are described in Section IV. In this section,
we also specify the constrained turbine placement scenarios
and definitions of penalty G. In Section V, the optimization
approach including the evolutionary algorithm and the penalty
functions are explained. We present our experimental investi-
gations in Section VI and draw conclusions in Section VII.

II. RELATED WORK

In the following, we outline some of the relevant works.
Our model is based on the work by Kusiak and Song [10],
which uses wind distributions to compute the power output of
a wind farm. Their approach applies Jensen’s wake model [14],
which allows very efficient computations of wake effects. They
use a simple evolution strategy [1] to optimize very small wind
farms. The more complex CMA-ES has been used in [20] for
the effective optimization of up to 1000 turbines on empty
maps. There, layout boundaries and intra-turbine distance
constraints were considered rather inefficiently by a death-
penalty for the infeasible solutions, i.e., new layouts were re-
sampled until a feasible layout was generated. In [19] a random
local search was presented that combines a problem-specific
operator with an asymptotic speed-up of the computation time
of the wake effects. In our recent article [11], we present
a correction to the commonly used wake model by Kusiak
and Song [10]. Further, we consider geographic real-world
constraints that are based on OpenStreetMap data and real
meteorological data. Also here, constraints were considered
using the death-penalty approach.

1The model is available at: http://geo-planning.tumblr.com.

While heuristic optimizers are commonly used to solve
real-world problems, they encounter difficulties in solving
them when they include non-trivial constraints [12]. Over the
past decades, a plethora of constraint handling techniques has
been developed. The variety of methods range from penalty
functions that decrease the fitness of infeasible solutions [5]
and decoder functions that let the search take place in an-
other unconstrained or less constrained solution space [7] to
feasibility preserving approaches that adapt representations
or operators [15]. Multi-objective approaches that treat each
constraint as an objective also have been investigated [2]. For
this sake, evolutionary multi-objective optimization methods
like NSGA-II can be adapted. Penalty functions are simple
and powerful methods to handle constraints. A simple form
is death penalty that rejects infeasible solutions and generates
new ones until a sufficient number of feasible candidates have
been generated. For a more extensive survey on constraint
handing for EAs, see [8].

III. WIND MODEL

In this section, our wind model is introduced. It is used
as fitness function f to assess wind farm layouts. The model
computes the power output E of multiple wind turbines that
are described in a solution x. The solution x is a vector of
elements x = (x1, x2, . . . , xN) with the length N . It codes
the x- and y-coordinate of the turbines which we specify for
a single turbine i as ti = (xti, y

t
i). We also define Nt = N/2.

Thus, the solution vector x can be written like follows:

x = (xt1, y
t
1, x

t
2, y

t
2, . . . , x

t
N/2, y

t
N/2) = (t1, t2, . . . , tNt).

To compute the energy output E(x) of multiple turbines,
we use the power curve of a real wind turbine by Enercon,
data from a numerical wind vector prediction model from the
German Weather Service, and a power calculation based on a
model from Kusiak and Song [10].

A. Wind Turbine

In this paper, the wind turbine power curve β is based on
the parameters of the Enercon E92, which is a modern and
versatile turbine. We use a height of 78m. The points of the
power curve from the manufacturer’s data sheet are shown
in Figure 1(a). If the wind speed v is lower than the cut-in

0m/s 10m/s 20m/s
0 kW

1000 kW

2000 kW

(a) data points
0m/s 4m/s 8m/s 12m/s

0 kW

1000 kW

2000 kW
Fermi

Linear

(b) fitted curves

Fig. 1. Power curve of wind turbine E92

speed vcut-in, the turbine produces no energy. For wind speeds
higher than the rated vrated, the turbine produces Prated. The
plot shows a development between 1m/s to 14m/s that is first
convex changing to a concave shape. As the Fermi function
has the same properties and is monotonically increasing, we

fit this function – instead of a linear one (λ · v + η), which is
commonly used in the wind farm optimization literature.

β(v) =


0 v < vcut-in

1
1+e−k·(v−µ)

·m+ d vcut-in ≤ v < vrated

Prated vrated ≤ v
(1)

Equation 1 shows the wind turbine power curve. For the E92
the following technical parameters apply

k ≈ 0.705, µ ≈ 8.430,m ≈ 2409.336, d ≈ −12.735.

The comparison of the Fermi- and the linear function is
visualized in Figure 1(b). It can be seen that the Fermi function
matches a lot better.

B. Numerical Wind Vector Prediction Model

To predict the wind potential of a position, we use wind
vectors from the COSMO-DE analysis data. These data are
provided from the German Weather Service [3]. On a grid
over Germany with nearly 200 000 points, there are hourly
wind vectors for every grid point. We are using the data from
2012 which lead to more than 8500 vectors per grid point.
These wind vectors are collected depending on their speed
and angle. We use a resolution for the wind speed of 0.3m/s
and 64 different wind angle as this configuration leads to only
small discretization errors while keeping the computational
complexity manageable.

> 15 m /s

12 - 15 m /s

9 - 12 m /s

6 - 9 m /s

3 - 6 m /s

0 - 3 m /s

Fig. 2. Example of a windrose

Figure 2 shows a wind rose that visualizes the collected
wind vectors. It shows from where the wind is blowing, the
frequency represented by the length of the bars, and the wind
speed visualized by color. For a position between the grid
points of the COSMO-DE model, we interpolate the data using
inverse distance weighting of the nearest nine points.

C. Power Calculation

The used model to calculate the power output Et from a
wind turbine t over a period of time is based on the approach
from Kusiak and Song [10]. The basic idea in this model is to
split the wind rose into multiple pieces and describe the wind
of every piece as Weibull distributions [21]. By multiplying
these distributions with a linear wind turbine power curve,
we get the produced power. Unfortunately, this quite nice
approach leads to integrals which are not solvable in a pure
analytical way. Thus, parts of the integrals are solved by using
the Riemann sum which leads to a discretization of the wind
speed v and the wind direction θ. Due to this discretization,
inhomogeneous structures arise in the solution space. This

behavior is analyzed and solved in [11]. To make it clear that
parts of the power output are calculated by summing, we will
specify the power calculation directly as a sum in this paper.
For one wind direction θ, it applies:

Et,θ(ti, θ) =

∞∑
j=0

βi(vj) · ω(vj , ti, θ). (2)

Theoretically, the sum goes to infinity, however, in practice it
goes from the cut-in speed of the turbine to the wind speed
when the turbine turns off for safety reasons. The variable ω
describes the occurrence of a wind speed depending on its
position and its wind angle. It is normalized to the sum
of all wind vectors. The wind speeds vj result from the
discretization, e.g., in our work v1 represents 0.3m/s and v4
stands for 1.2m/s. Due to wake effects which cause a reduction
of the wind speed behind, w. r. t. the wind direction, a placed
turbine vj can be reduced. To compute these effects, we use
the Jensen’s wake model [14]. The overall output of a turbine
can be specified as follows:

Et(ti) =

2π/θN∑
k=0

Et,θ(ti, θk), (3)

where θN is the number of sampling steps over the wind
angle θ in radians. Besides the advantage of making the dis-
cretization explicit, the formulation can be used without fitting
the Weibull distribution employing raw wind data. Instead of
fitting the Weibull distribution to the data and sampling from
the fitted model, we employ the data directly and thus avoid a
bias of the model. Another benefit from this description is that
all parts are solved by summing up. Hence, the power curve
can be replaced easily. This makes it possible to substitute the
originally linear power curve with our Fermi function based
power curve from Section III-A. The produced energy of all
turbines E is the sum of the produced energy Et of each
turbine t existing in the solution vector x, resulting in the
fitness function:

f(x) =

Nt∑
i=1

Et(ti) (4)

that is basis of our evolutionary optimization process employ-
ing x = (t1, t2, . . . , tNt) .

IV. GEOGRAPHICAL DATA

In densely populated countries like Germany, it is not
possible to place turbines on completely empty maps. The
placements must be integrated into the environment and min-
imum distances have to be kept. This problem not only arises
when wind turbines are to be placed next to cities, but even
in rural areas there are streets, buildings, and rivers.

In this paper, we use the minimum distances that have to
be kept for defining the penalty G of the optimization problem.
As source for the geographical data, we use the data from a
map service. After specifying rules for minimum distances, we
introduce two constrained turbine placement scenarios. Both
scenarios comprise thousands of constraints. Each constraint
belongs to a group, e.g., residential buildings. This allows
different definitions of penalty G.

A. OpenStreetMap

As map service, we use OpenStreetMap (OSM), which is
a community-driven project. For countries, in which OSM is
well developed, its geographical data are becoming comparable
in quality to commercial providers [13]. We use the geograph-
ical data to get the locations of residential buildings, non-
residential buildings, big streets like highways, small streets
like secondary roads, and rivers. To model minimum distances
around buildings a simple circle is required. One building leads
to one constraint. Streets and rivers are represented by many
straight lines in the data structure of OSM. For every line,
we use two circles and one rectangle to model the minimum
distances around it.

Fig. 3. One building (gray) and one street (yellow) surrounded by constrained
red areas. In the background the structure of the wind potential at position is
shown.

Figure 3 shows the basic elements for buildings and
streets / rivers. On the left side of the plot, a gray building
is shown. It is surrounded by a red circle that visualizes the
infeasible area around the building. In the background, the
potential map based on the wind model is shown. On the
right hand side, we can observe a yellow part representing
a street. This part is also surrounded by a red area visualizing
the infeasible space. Again, we can see the potential map based
on the wind model in the background.

B. Minimum Distance Rules

In real-world turbine placement, there are a lot of different
minimum distances to geographical objects that have to be
considered. Thereby, one problem is the missing of general
rules or laws for the size of the distances, e.g., in Germany,
there are no rules for the whole country but for the individual
federal states. Unfortunately, the federal states have different
rules. In this paper, we use distances oriented to the case study
of Höfer et al. [4]. For residential buildings, we use the 10H-
rule applied in Bavaria leading to larger distances. For streets,
we follow the legal requirements as defined by the German
Federal Highway Act. In practice, exceptions for this rules are
possible. Table I shows an overview over all used constraint
types.

TABLE I. MINIMUM DISTANCES TO WIND TURBINES

Object Distance

Residential building (10H-rule with turbine height 78m) 780m
Non-residential building 400m
Big street (e.g. highways) 100m
Small street (e.g. secondary roads) 40m
River 50m

C. Scenarios

Based on the OpenStreetMap data, we define two con-
strained turbine placement scenarios. In both cases the outer

dimensions are 5 km× 5 km. To consider geographical ob-
jects even at the borders of the scenarios, only the inner
4 km× 4 km can be used for the placement of turbines. We
place 30 turbines in each scenario. This wind farm size is
used as most wind farms in Lower Saxony consist of 30 or
fewer wind turbines [16]. For wind farms at this scale even
small improvements in their power output lead to significant
income increases, e.g., a wind farm with 25 turbines like the
Enercon E92 with 2.35MW and a load of 20% of full load
hours produces more than 100GWh per year.

building highway house river street

Fig. 4. Scenarios 1 (left) and Scenario 2 (right)

Figure 4 illustrates Scenario 1 and 2. On the left hand,
we can see Scenario 1. It lies at the area in decimal degrees
from 53.41077◦ to 53.45648◦ and from 7.74448◦ to 7.81844◦.
Scenario 2, that is shown on the right part of Figure 4, is
located at the region from 53.3394◦ to 53.38524◦ and from
7.5182◦ to 7.591795◦. On the plots, the residential buildings
are shown in white, non-residential buildings are visualized
in gray. Orange lines stand for large streets and small streets
are represented in yellow. Blue lines show the locations of
rivers. The objects are surrounded by red areas that visualize
the constrained space based on the minimum distances that has
to be maintained. In the background the potential map based
on the wind model is shown in varying shades from blue to
light yellow.

TABLE II. NUMBER OF CONSTRAINTS IN THE SCENARIOS

Non
Residential Residential Small Large

Kind Buildings Buildings Streets Streets Rivers
Scenario 1

Objects 112 117 140 5 21
Parts 112 117 771 109 192
Constraints 112 117 2313 327 576

Scenario 2
Objects 244 24 184 10 63
Parts 244 24 1114 31 759
Constraints 244 24 3342 93 2277

Table II presents the number of constraints in both sce-
narios. To summarize, Scenario 1 consists of GN = 3445
constraints and Scenario 2 is composed of GN = 5980
constraints.

D. Penalty

In this paper, we define five different specifications of
how to calculate the penalty G. The specifications have an
increasing complexity. In the simplest approach, the penalty
G gets the value G(x) = 0 for a feasible solution x and it
applies G(x) = 1 in every other case. We call this penalty
function G[1∈01]. The labels of the penalties G follow the
notation: [maximum value ∈ co-domain]. The second function
G[Nt∈N0] counts the turbines that violate any constraint. The

third function G[GN∈N0] counts for every turbines the number
of constraint violations. The fourth penalty function G[Nt∈R]
is like the second one but it uses a continuous co-domain.
This means that it can differentiate between, e.g., turbines that
violate the building vicinity constraint depending on how close
to the building they actually are. The last penalty function
G[GN∈R] is based on the third function but uses a continuous
co-domain like the fourth function.

To make the differences between the penalty specifications
clear, we describe three examples and show the matching
values of G in Table III.

TABLE III. PENALTY FUNCTIONS

Max. Co-
Function Value domain Example 1 Example 2 Example 3
G[1∈01] 1 {0, 1} 1 1 1
G[Nt∈N0] Nt N0 1 1 2
G[GN∈N0] GN N0 2 5 5
G[Nt∈R] Nt R 0.6 0.6 0.9
G[GN∈R] GN R 0.8 1.5 1.5

In the examples the following constraints are violated:
in Example 1, turbine 1 violates two residential buildings
(60%, 20%). In Example 2, turbine 1 violates two residential
buildings (60%, 20%) and three small streets (30%, 30%,
10%). While in Example 3, turbine 1 violates two residential
buildings (60%, 20%) and turbine 2 violates three small streets
(30%, 30%, 10%). The percentages represent the distances to
the objects, e.g., 90% for a non-residential building result from
a turbine only 40m away from the building, while in the case
of 10% the turbine is only 40m away from the feasible space.
So, it is 360m away from the building.

Besides the values for G in the examples, Table III shows
the co-domain and maximum value of each penalty specifi-
cation. The variable Nt describes the number of turbines as
specified in Section III and GN is the count of constraints. Its
concrete values are shown in Section IV-C. Figure 5 shows
how a placed turbine would change the value of the penalty G
for the different variants. In this view, there is no difference
between G[1∈01] and G[Nt∈N0] as only one turbine would be
placed. This equality is also shown in Table III by Example 1
and Example 2. The table shows that G[1∈01] and G[Nt∈N0]

are different for multiple turbines.

V. OPTIMIZATION

The turbine placement is treated as a black-box optimiza-
tion problem with the objective to maximize the function f̃(x)
that depends on the fitness value computed by the wind
model f and it depends on the penalty G based on the
geographical data. The function f̃(x) is defined as follows:

f̃(x) = f(x)− α ·G(x) (5)

where the penalty factor α determines the influence of the
penalty G. There are different approaches to control α, which
we present in Section V-B.

A. Evolutionary Algorithms

To solve the turbine placement problem, we use ran-
domized optimization approaches called evolutionary algo-
rithms (EAs) based on a population p of candidate solutions.
As the focus of this paper are the penalty G and the penalty

(a) G[Nt∈N0] (b) G[GN∈N0] (c) G[Nt∈R] (d) G[GN∈R]

Fig. 5. The induced penalty G when placing one turbine on the map in Scenario 1 for the penalty variants G[Nt∈N0], G[GN∈N0], G[Nt∈R], and G[GN∈R].
The non-linear colorbars with different scalings illustrate the resulting penalty functions G.

functions to control α, we focus on the application of only one
EA. A comprehensive comparison of different EAs for the tur-
bine placement problem by using a death penalty function can
be found in [11]. In this paper, we apply an adaptive (30+50)-
EA. Based on preliminary experiments this population size
and selection pressure turn out to maintain sufficient diversity
during the optimization process. In every generation a new
population p′ is created consisting of λ = 50 new solutions.
The best µ = 30 solutions, w. r. t. f̃ , are chosen from the new
population p′ and the population p of the last generation. When
using a variable constraint handling method, i.e., the penalty
factor α is changing during the optimization process, f̃ has
to be recomputed for all solutions from the last generation.
While this seems to be expensive, for a solution xi the fitness
value f(xi) and the penalty G(xi) remain unchanged, so the
recalculation of f̃(xi) after a change of α is very cheap when
f(xi) and G(xi) have been saved in the last generation.

Variation: Turbine-oriented mutation operators are very
powerful like shown in [11], i.e., the mutation randomly picks
one turbine in each mutation step and moves the turbines based
on the Gaussian distribution. No recombination is applied,
but the EA randomly selects a solution x from the best µ
solutions of the last generation as base for a new solution x′

and generates a novel position of a turbine t′i with the Gaussian
operator:

t′i = ti + σ · (N (0, 1),N (0, 1)) . (6)

The step size σ is controlled adaptively. We are using the
Rechenberg’s step size control [1], i.e., if more than 20% of
the mutation operations lead to an improvement, the step size
will be increased and vice versa. A mutation is evaluated as
an improvement, if the created new solution will be picked
in the selection phase and thus improves the population p. As
increasing / decreasing factor τ , we are using τ = 1.1. The
maximum step size is set to the usable map size of 4000m.

Selection: The solutions with the highest f̃ values are se-
lected from population p′ for the population p of the following
generation. In case of a variable penalty function that changes
the penalty factor α, the f̃ values from p are recomputed.

B. Penalty Functions

The penalty function controls penalty factor α and thus
determines how the optimization process treats a constraint
violating solution xi, for which G(xi) 6= 0 holds. The
acceptance of infeasible solutions during the optimization
process allows the exploration of infeasible solution space

areas in a constrained black-box optimization problem. This
can be beneficial while searching for a worthwhile solution
that lies on a feasible island in the solution space surrounded
by constraints [8].

In this work, we are using three different types of penalty
functions. In the first approach, the penalty function does not
change penalty factor α during the optimization process. We
call this approach constant. The second method controls α
adaptively depending on the number of feasible solutions in the
current population p. It is called adaptive. In our last balanced
approach, α is adapted to balance the ratio of feasible and
infeasible solutions. To summarize, we use a constant approach
with a fixed α, an adaptive approach changing α relatively
slow, and a balanced approach adapting α comparatively fast.

Constant: In the constant approach, the penalty factor α is
set to αc = 70500 which corresponds to the maximum power
that can be produced by all wind turbines in our settings with
30 turbines. If the penalty G of a solution xi is G(xi) = 1, it
will lead to a lower value of f̃ than any feasible solution and
force the optimization process to explore the feasible solution
space.

Adaptive: The adaptive penalty function controls α as
proposed by Kramer et al. [9]. It adapts the idea of the
Rechenberg’s step size control to the area of penalty functions
as follows. If less than 20% of the current population is
feasible, α is increased, otherwise it is decreased. In our
approach, the penalty factor α is modified by 1.023, which
allows changing α in 100 generations by a factor of 10. In
experimental runs with 1000 generations, α can be modified
by factor 1010 during the whole optimization process. As for
few generations, factor 1.023 is relatively small, this approach
behaves significantly different to the balanced approach. The
function starts with α = αc.

Balanced: The balanced approach adapts the penalty fac-
tor α, in order to enforce a target ratio of feasible and infeasible
solutions. To find an adequate setting for α, a simple (1+ 1)-
EA is used that adapts α with a multiplicative rule. Objective is
to achieve an equal balance of feasibility in the population, i.e.,
µ/2 feasible and µ/2 infeasible solutions. In case of less than
µ/2 feasible solutions in the population, the penalty factor α
is set to α = αc. Hence, the optimization process focuses on
creating feasible solutions. If less than µ/2 of the solutions
are infeasible, we set α = 0 to give the process the possibility
to more explore the solution space.

C. Initial Solution

We use two methods to create initial solutions. In the first
approach, the initial solutions (x01, . . . ,x0µ) are generated
randomly. Due to the highly constrained solution space, the
chance is extremely high that the created solutions are not
feasible, i.e., G(x0i) 6= 0 for i = (1, . . . , µ). Generating a
feasible solution based on an infeasible one is a challenging
task and a good test for the constraint mechanisms. We call
this initialization method random. In the second approach, the
turbines are also placed randomly on the map. But in the case
that a turbine violates any constraints, the turbine is replaced
by a new randomly chosen place. This is repeated until all
turbines are located in feasible areas. The method generates
random solutions (x01, . . . ,x0µ), but applies G(x0i) = 0 for
i = (1, . . . , µ). This approach is referred to as feasible in the
following.

VI. EXPERIMENTAL RESULTS

In this section, we present our experimental results. All ex-
periments run for 1000 generations with the setting presented
in Section V and are repeated 100 times. The tables in this
section show the mean and corresponding standard deviation
of these experiments. In case of the adaptive penalty func-
tion, slight constraint violations may occur due to numerical
reasons. In the range of ε = 0.001, they are not relevant in
practical applications. For example, a constraint violation of
0.001 corresponds to a deviation of 0.4m for a non-residential
building. We will treat final solutions as feasible, if a constraint
violation below ε occurs and will indicate that special cases
explicitly.

A. Comparison with Random Initialization

First, we analyze the results of the different penalty func-
tions and kinds of penalty starting with a random initialization.
Table IV shows the results. Thereby, P stands for the power
which corresponds to the fitness function f .
TABLE IV. EXPERIMENTAL RESULTS OF SCENARIO 1 USING RANDOM

INITIAL SOLUTIONS.

Penalty Function
Constant Adaptive Balanced

Mean ± Std Mean ± Std Mean ± Std
Penalty P ± P in kW P ± P in kW P ± P in kW
G[1∈01] not feasible not feasible not feasible
G[Nt∈N0] 21 640.65± 34.41 not feasible 21 637.00± 44.90
G[GN∈N0] 21 649.94± 39.14 most not feasible 21 697.09± 41.89
G[Nt∈R] 21 659.17± 38.55 21 679.19± 47.29 21 693.70± 38.14
G[GN∈R] 21 639.74± 37.69 21 677.50± 39.46 21 699.69± 41.53

We can observe, that no penalty function is able to make
the solutions feasible using penalty G[1∈01] due to the limited
information. Interestingly, the results for G[Nt∈N0] show that
with the additional information of constraint violations per
turbine, feasible solution can be generated. However, the adap-
tive function loses feasible solutions during the optimization
process. This is often caused by a small penalty factor α,
which was reduced by the adaptive penalty function after
finding feasible solutions. At this stage of the optimization
process, the step size is often relatively small and the EA would
require numerous steps to move a turbine into the feasible
area again. Unfortunately, as the optimization process only
gets one Boolean value for each turbine from G[Nt∈N0], it

cannot distinguish if the turbine is far away or near the feasible
area and multiple steps to the feasible area are improbably.
The constant and balanced penalty functions are able to keep
the feasible solutions but there is no difference between both
penalty functions. For the G[GN∈N0] penalty, we can see
that the enhanced information from G leads to a significant
improvement applying the balanced function. For the adaptive
function, in 3 of 100 runs, optimized feasible solutions were
created, with a mean value of 21668.51.

Using a continuous co-domain, i.e., G[Nt∈R] and G[GN∈R],
all approaches are able to create optimized feasible solu-
tions. Comparing the penalty functions, the balanced approach
performs best. For G[GN∈R], comparing the results of the
balanced and the adaptive penalty function leads to a p-value
of 2.54 · 10−4 using a Wilcoxon signed rank-sum test [6]
which means the differences are significant. The p-value for
the comparison of the constant and balanced penalty function
is 3.45 · 10−13. In case of the adaptive function with G[Nt∈R]
in 1 of 100 runs, and in case of G[GN∈R] in 3 of 100 runs,
the optimized solutions have a penalty of more than 0.001, in
both cases, this runs are not used for mean calculation.
TABLE V. EXPERIMENTAL RESULTS OF SCENARIO 2 USING RANDOM

INITIAL SOLUTIONS.

Penalty Function
Constant Adaptive Balanced

Mean ± Std Mean ± Std Mean ± Std
Penalty P ± P in kW P ± P in kW P ± P in kW
G[1∈01] not feasible not feasible not feasible
G[Nt∈N0] 22 668.58± 49.83 not feasible 22 658.88± 47.52
G[GN∈N0] 22 667.66± 48.87 not feasible 22 673.51± 42.38
G[Nt∈R] 22 667.82± 44.60 22 671.06± 48.05 22 687.39± 45.89
G[GN∈R] 22 670.27± 50.42 22 665.49± 50.84 22 683.15± 43.57

The results from Scenario 2 shown in Table V confirm
the observations from Scenario 1. But the differences are
smaller than in Scenario 1. Thus, most single results are only
significant when applying a p-value of 0.05 as significance
threshold. But comparing all results for continuous penalties,
the balanced penalty function significantly outperforms both
other functions. Further, for the adaptive penalty function
using penalty G[GN∈N0] no feasible solutions are generated.
Penalty functions that use continuous penalties are performing
significantly better in Scenario 2. Again, for the adaptive
penalty function with G[GN∈R], in 1 of 100 runs, the optimized
solution has a penalty of more than 0.001.

B. Comparison with Feasible Initialization

In the next experiments, we analyze the behavior starting
with a feasible initial solution. Table VI shows the results.

TABLE VI. EXPERIMENTAL RESULTS OF SCENARIO 1 USING
FEASIBLE INITIAL SOLUTIONS.

Penalty Function
Constant Adaptive Balanced

Mean ± Std Mean ± Std Mean ± Std
Penalty P ± P in kW P ± P in kW P ± P in kW
G[1∈01] 21 642.90± 41.25 not feasible 21 640.44± 36.36
G[Nt∈N0] 21 637.61± 44.81 not feasible 21 638.59± 48.58
G[GN∈N0] 21 645.41± 40.18 most not feasible 21 690.34± 47.17
G[Nt∈R] 21 640.42± 42.39 21 663.51± 42.00 21 693.54± 36.21
G[GN∈R] 21 646.28± 39.30 21 662.01± 49.91 21 690.30± 43.94

We can observe that the constant and the balanced penalty
function behave similarly to the variants starting with ran-

dom initial solutions, except when using G[1∈01]. Here, death
penalty is not able to find feasible solutions. The similar
behavior is confirmed with p-values smaller than 0.001. We
observe that the performance of the adaptive penalty function is
slightly worse than the approach using random initial solutions
with less significant p-values between 0.01 and 0.03. In case
of the adaptive penalty function and GGN∈N0

, in 5 of 100
runs, optimized feasible solutions were created, with a mean
value of 21663.69. In case of G[Nt∈R], in 4 of 100 runs, and
for G[GN∈R] in 1 of 100 runs, the optimized solutions have a
penalty of more than 0.001.

TABLE VII. EXPERIMENTAL RESULTS OF SCENARIO 2 USING
FEASIBLE INITIAL SOLUTIONS.

Penalty Function
Constant Adaptive Balanced

Mean ± Std Mean ± Std Mean ± Std
Penalty P ± P in kW P ± P in kW P ± P in kW
G[1∈01] 22 653.96± 49.11 not feasible 22 662.29± 52.41
G[Nt∈N0] 22 654.02± 52.18 not feasible 22 656.16± 52.01
G[GN∈N0] 22 653.87± 57.39 not feasible 22 665.52± 47.71
G[Nt∈R] 22 654.82± 52.50 22 664.92± 51.43 22 677.67± 41.37
G[GN∈R] 22 650.68± 50.46 22 663.90± 47.85 22 673.21± 51.06

Again, the results of Scenario 2 approve the observations
from Scenario 1 qualitatively, but in this case, the differences
are even less significant. Also here, for the adaptive penalty
function using penalty G[GN∈N0] no feasible solutions are
generated and penalty functions with continuous penalties
are performing significantly better. For the adaptive penalty
function and G[Nt∈R], in 1 of 100 runs, and for G[GN∈R] in
1 of 100 runs, the optimized solutions have a penalty of more
than 0.001.

C. Analysis of Optimization Run

In this section, we analyze the behavior during the opti-
mization runs. From the 100 runs for each configuration, we
consider the runs with the median results. In the first step, we
look at the behavior of the penalty factor α.

0 400 800
Generation

10000

30000

50000

70000

A
lp
ha

adaptive

balanced

constant

0 400 800
Generation

10000

30000

50000

70000

A
lp
ha

adaptive

balanced

constant

Fig. 6. Behavior of the penalty factor α with G[Nt∈R] (left) and G[GN∈R]
(right)

Figure 6 shows α for the constant, adaptive, and balanced
penalty function. On the left side, G[Nt∈R] is used and on the
right side, G[GN∈R] is applied both with random initialization.
As expected, the constant penalty function does not change α.
We can see that the adaptive and balanced penalty function
use a high value for α at the beginning of the optimization
process and both decrease α after finding the first feasible
solution. During the optimization, there are situations, where
many infeasible solutions are in the population and the penalty
functions increase α. The balanced penalty function adapts α
very fast, while the adaptive penalty function changes α slower
than the balanced.

0 100 200
Generation

19000 kW

20000 kW

21000 kW

F
itn
es
s

adaptive

balanced

constant

300 500 700 900
Generation

21300 kW

21500 kW

21700 kW

F
itn
es
s

adaptive

balanced

constant

0 100 200
Generation

0

4

8

12

P
en
al
ty

adaptive

balanced

constant

300 500 700 900
Generation

0.00

0.04

0.08

P
en
al
ty

adaptive

balanced

constant

0 100 200
Generation

0

1000

2000

3000

4000

S
te
p
si
ze

adaptive

balanced

constant

300 500 700 900
Generation

0

40

80

120

S
te
p
si
ze

adaptive

balanced

constant

Fig. 7. Behavior of the fitness f , penalty G, and step size σ.

In the next figure, we focus only on the median runs
of G[GN∈R]. Figure 7 shows the behavior of the fitness f ,
penalty G, and step size σ. On the left side, we can see the first
250 generations, on the right side, the last 750 generations. The
plotted function values are the results of the best solutions x∗

with f̃(x∗) ≥ f̃(x) for every x of the current population p.
At the beginning, the fitness f(x∗) is varying strongly. After
about 30 generations, the results become more stable, while
after about 100 generations, the fluctuations decrease. This
corresponds to the observation of penalty G(x∗), where after
about 30 generations, the first feasible solutions are found.
After less than 100 generations, only the adaptive and the
balanced penalty functions use solutions x∗ with G(x∗) > 0.
But the balanced approach employs clearly higher values for
G(x∗). The step size σ is increased at the beginning up to
its maximum value, which corresponds to the map size. After
about 50 generations, it starts to decrease. We can observe
that the step size in the balanced approach decreases slower
in comparison to the other approaches.

D. Placement Results

The left part of Figure 8 shows the best optimized solution
for Scenario 1 created by a balanced penalty function with
penalty type G[GN∈R] and random initial solution. The symbols
of the turbines visualize their positions, their heights do
not reflect the true proportions. Most importantly, a feasible
solution was created2. We can observe a clear organization
of the turbine locations within the feasible area. To interpret
the result, we need to keep in mind the wind distribution,
which mainly blows from south-west, see detailed distribution
shown in Figure 2. Three lines of turbines are turned towards
the wind. The first line, w. r. t. to the main wind direction,

2The turbine T16 is placed on a small feasible island.

building highway house river street

Fig. 8. Left: best solution for Scenarios 1 with balanced penalty function
using G[GN∈R] and random initial solution, right: best solution for Scenario 2
with balanced penalty function using G[Nt∈R] and feasible initialization

employs the largest number of turbines. As the wind mainly
comes from south-west, these turbines are very little affected
by wake effects, but cause wake effects. For this reason, the
distance between the first and the second line is larger than
the distance between the second and the third line. Fewer
turbines are placed in the second line than in the third one.
The turbines in the third line face more towards the direction,
where the wind comes from. Hence, turbines T16 and T28 can
use places at the border of the constraints allowing T29 to be
located behind the third line. Also the bottom of the scenario
is used by the turbines T10, T5, and T3.

The right part of Figure 8 shows the best solution achieved
for Scenario 2, which was generated with the balanced penalty
function using G[Nt∈R] and feasible initialization. The place-
ment result shows similar properties like the previous one,
in particular a feasible solution. Again, we can observe well-
organized lines of turbines that exploit the effects of the main
wind direction. In the south-west area, a feasible region is
effectively used by a small number of turbines.

VII. CONCLUSION

In the turbine placement problem, geographical constraints
induce a complicated optimization problem that require the
application of advanced constraint handing methods. In this
paper, we have shown that the employment of penalty func-
tions that allow infeasible solutions during the optimization
process significantly improves the results. We combined three
types of penalty functions with five penalty types modeled for
geographical constraints. Our experimental analysis revealed
that the balanced penalty function performs best. It allows
the immediate adaptation of penalty factor α to changes of
the feasibility ratio of the population. The best solution for
Scenario 1 has been generated with the balanced penalty
function using G[GN∈R] and random initialization, the best
solution for Scenario 2 also with the balanced variant, but
with G[Nt∈R] and feasible initialization. We did not observe
significant differences between the two initializaiton variants,
i.e., starting with random or with feasible solutions, except for
the variants with G[1∈01] .

As future work, we plan a comparison to further constraint
handling methods, i.e., multi-objective approaches, repair func-
tions, and meta-modeling of the contraint functions. Further,
we plan to test a hybrid approach using genetic algorithm and
differential evolution like proposed in [17].

ACKNOWLEDGMENT

We thank the German Weather Service for providing the
COSMO-DE data and the Ministry for Science and Culture of
Lower Saxony for supporting this work with the PhD program
System Integration of Renewable Energy (SEE). Also, this
work has been supported by the ARC Discovery Early Career
Researcher Award DE160100850.

REFERENCES

[1] H. Beyer and H. Schwefel. Evolution strategies - A comprehensive
introduction. Natural Computing, 1(1):3–52, 2002.

[2] C. A. Coello Coello. Constraint-handling using an evolutionary multi-
objective optimization technique. Civil Engineering and Environmental
Systems, 17:319–346, 2000.

[3] German Weather Service. COSMO-DE: numerical weather prediction
model for Germany, 2012. http://tinyurl.com/dwd-cosmo-de.

[4] T. Höfer, Y. Sunak, H. Siddique, and R. Madlener. Wind farm siting
using a spatial analytic hierarchy process approach: A case study of the
städteregion aachen. Applied Energy, 163(C):222–243, 2016.

[5] J. Joines and C. Houck. On the use of non-stationary penalty functions
to solve nonlinear constrained optimization problems with GAs. In
1st IEEE Conference on Evolutionary Computation, pages 579–584,
Orlando, Florida, 1994. IEEE Press.

[6] G. Kanji. 100 Statistical Tests. SAGE Publications, 1993.
[7] S. Koziel and Z. Michalewicz. Evolutionary algorithms, homomorphous

mappings, and constrained parameter optimization. Evolutionary Com-
putation, 7(1):19–44, 1999.

[8] O. Kramer. A review of constraint-handling techniques for evolution
strategies. Applied Computational Intelligence and Soft Computing,
2010:3:1–3:19, 2010.

[9] O. Kramer, U. Schlachter, and V. Spreckels. An adaptive penalty
function with meta-modeling for constrained problems. In IEEE
Congress on Evolutionary Computation, CEC, pages 1350–1354, 2013.

[10] A. Kusiak and Z. Song. Design of wind farm layout for maximum wind
energy capture. Renewable Energy, 35(3):685–694, 2010.

[11] D. Lückehe, M. Wagner, and O. Kramer. On evolutionary approaches
to wind turbine placement with geo-constraints. In Genetic and Evolu-
tionary Computation Conference, GECCO, pages 1223–1230, 2015.

[12] R. Luebbe and B. Finch. Theory of constraints and linear program-
ming: a comparison. International Journal of Production Research,
30(6):1471–1478, 1992.

[13] P. Neis, D. Zielstra, and A. Zipf. The street network evolution of
crowdsourced maps: OpenStreetMap in Germany 2007–2011. Future
Internet, 4(1):1–21, 2011.

[14] H. Neustadter. Method for evaluating wind turbine wake effects on
wind farm performance. Journal of Solar Energy Engineering, pages
107–240, 1985.

[15] M. Schoenauer and Z. Michalewicz. Evolutionary computation at the
edge of feasibility. In Parallel Problem Solving from Nature, PPSN,
volume 1141 of LNCS, pages 245–254. Springer, 1996.

[16] The Wind Power. Wind farms in Lower Saxony, Germany, 2015.
http://tinyurl.com/parks-lower-saxony.

[17] A. Trivedi, D. Srinivasan, S. Biswas, and T. Reindl. Hybridizing genetic
algorithm with differential evolution for solving the unit commitment
scheduling problem. Swarm and Evolutionary Computation, 23:50–64,
2015.

[18] United Nations Climate Change Conference. COP21, 2015.
http://www.cop21.gouv.fr/en/.

[19] M. Wagner, J. Day, and F. Neumann. A fast and effective local search
algorithm for optimizing the placement of wind turbines. Renewable
Energy, 51(0):64–70, 2013.

[20] M. Wagner, K. Veeramachaneni, F. Neumann, and U.-M. O’Reilly.
Optimizing the layout of 1000 wind turbines. In European Wind Energy
Association Annual Event, 2011.

[21] W. Weibull. A statistical distribution function of wide applicability.
Applied Mechanics, Transactions of ASME, 3(18):293–297, 1951.

