
On the Performance of Different Genetic
Programming Approaches for the SORTING

Problem

Markus Wagner markus.wagner@adelaide.edu.au
Optimisation and Logistics, University of Adelaide, Adelaide, Australia

Frank Neumann frank.neumann@adelaide.edu.au
Optimisation and Logistics, University of Adelaide, Adelaide, Australia

Tommaso Urli tommaso.urli@nicta.com.au
DIEGM, Università degli Studi di Udine, Udine, Italy

doi:10.1162/EVCO_a_00149

Abstract
In genetic programming, the size of a solution is typically not specified in advance, and
solutions of larger size may have a larger benefit. The flexibility often comes at the cost
of the so-called bloat problem: individuals grow without providing additional benefit
to the quality of solutions, and the additional elements can block the optimization
process. Consequently, problems that are relatively easy to optimize cannot be handled
by variable-length evolutionary algorithms. In this article, we analyze different single-
and multiobjective algorithms on the sorting problem, a problem that typically lacks
independent and additive fitness structures. We complement the theoretical results
with comprehensive experiments to indicate the tightness of existing bounds, and to
indicate bounds where theoretical results are missing.

Keywords
Computational complexity, genetic programming, variable-length representation,
sortedness, single-objective optimization, multiobjective optimization.

1 Introduction

Evolutionary algorithms using variable-length representations have been applied in
different problem domains (Falco et al., 2005; Lee and Antonsson, 2000). They are,
in particular, useful if there is a trade-off between the quality of a solution and its
complexity in terms of the size of its representation. This happens frequently in the area
of regression where a more complex model can give a better fit to the given data.

Genetic programming (GP) (Koza, 1992) is the most prominent example of a
variable-length evolutionary algorithm, as it often evolves tree-like solutions for a given
problem. Its main application area lies in the field of symbolic regression. The first com-
putational complexity results on this type of algorithm were obtained following the
line of successful research on evolutionary algorithms with fixed-length representation
(Auger and Doerr, 2011; Neumann and Witt, 2010, for an overview). In general, variable-
length representations increase the search space significantly, and it is desirable to better
understand the behavior of algorithms using such representations from a theoretical
point of view.

Manuscript received: October 31, 2014; revised: March 4, 2015; accepted: April 2, 2015.
C© 2015 by the Massachusetts Institute of Technology Evolutionary Computation 23(4): 583–609

M. Wagner, F. Neumann, and T. Urli

For example, Cathabard et al. (2011) investigated nonuniform mutation rates for
problems with unknown solution lengths. A simple evolutionary algorithm was used
to find a bit string with an unknown number of leading 1s, and although the bit string
had some predetermined maximum length, only an unknown number of initial bits was
used by the fitness function. A simple tree-based genetic programming algorithm was
investigated by Durrett et al. (2011). The problems were separable, with independent
and additive fitness structures. Similarly, Kötzing et al. (2012) analyzed simple GP
algorithms for the MAX problem. A new form of GP called geometric semantic genetic
programming was investigated, with positive results for Boolean, classification, and
regression domains (see, e.g., Moraglio et al., 2013; Mambrini et al., 2013).

Many evolutionary algorithms that work with a variable-length representation do
not work (in their most basic variant) with a form of bloat control. One popular way
to deal with the bloat problem is inspired by Occam’s Razor: in case two solutions are
equal in quality, the solution of lower complexity is preferred. Another frequently taken
approach to coping with the bloat problem is the use of multicriteria approaches that
use sets of solutions representing the different trade-offs according to the original goal
function and the complexity of a solution. Such multicriteria approaches are used even
in industrial GP packages such as Datamodeler by Evolved Analytics LLC (2010). Both
approaches to coping with the bloat problem have been examined for different problems
in the context of genetic programming (Neumann, 2012; Wagner and Neumann, 2012;
Nguyen et al., 2013).

In this article, we investigate the sorting problem, which is one of the fundamental
problems in computer science.1 In addition, the sorting problem is the first combi-
natorial optimization problem for which computational complexity results have been
obtained in the area of discrete evolutionary algorithms (Scharnow et al., 2004; Doerr
and Happ, 2008). Scharnow et al. (2004) formulated sorting as a problem where the
task is the minimization of unsortedness (or the maximization of sortedness) of a given
permutation of the input elements. Several different functions have been explored in the
past to measure unsortedness, and they have been studied with respect to the difficulty
of being optimized by permutation-based evolutionary algorithms. Depending on the
chosen measure and in contrast to the problems WORDER and WMAJORITY (see, e.g.,
Nguyen et al., 2013), the sorting problem cannot typically be split into subproblems
that can be solved independently. Consequently, the dependencies between the sub-
problems can significantly impact the time needed to solve the overall optimization
problem.

With our work, we continue the analyses started by Wagner and Neumann (2012),
which focussed on the advantages of a parsimonious algorithm over a multiobjective
one. Here, we present several analyses for a total of three single- and multiobjective
algorithms using five sortedness measurements. Despite our analyses, no (or no exact)
runtime bounds are given for different combinations of algorithms and problems. Be-
cause of this, we explore experimentally the open cases and questions. The intention
is that this will guide further rigorous analyses (similar to Lässig and Sudholt, 2010;
Briest et al., 2004; Urli et al., 2012) by exploring the important measures within a compu-
tational complexity analysis of the algorithms. We complement the theoretical results
with conjectures about the expected optimization times for the variants lacking a for-
mal proof. In our experimental investigations, we concentrate on important measures,
such as the size of the largest tree during the run of the single-objective algorithms

1Short versions of Sections 2– 6 of this article were published in Wagner and Neumann (2014).

584 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

analyzed by Durrett et al. (2011) and the maximum population size of the multiob-
jective algorithm analyzed by Neumann (2012). In both articles, these measures have
different implications for the computational complexities of the analyzed algorithms.

This article is organized as follows. We first introduce the sorting problem in Section
2. Then we present the different genetic programming algorithms, which are analyzed
in Section 3. In Section 4 we study the single-objective approach, in Section 5 the
parsimony approach, and in Section 6 the multiobjective approach. The experimental
investigations on the behaviors of (1+1)-GP and SMO-GP follow in Section 7. We finish
with some conjectures and concluding remarks in Section 8.

2 Preliminaries

Our goal is to investigate theoretically and experimentally the differences between bloat
control mechanisms for genetic programming. In our investigations, we consider simple
tree-based genetic programming already analyzed by Durrett et al. (2011); Neumann
(2012); Wagner and Neumann (2012); Nguyen et al. (2013) and Neumann et al. (2011)
for problems with isolated program semantics. A possible solution is represented by a
syntax tree. The tree’s inner nodes are labeled by function symbols from a set F, and the
tree’s leaves are labeled by terminals from a set T.

Even though many GP algorithms allow complex functions for the inner nodes, we
restrict the set of functions to the single binary function “join” J. Effectively, we use Js
to achieve variable-length lists by concatenating leaf nodes.

The problem that we use as the basis for our investigations is a classical prob-
lem from computational complexity analysis, namely, the sorting problem SORTING.
Scharnow et al. (2004) considered SORTING as an optimization problem, where differ-
ent functions measure the sortedness of a permutation of given input elements. They
discovered that different fitness functions lead to problems of different difficulties.

It is important to note that in contrast to WORDER and WMAJORITY (analyzed
in previous articles), the SORTING problem cannot be split into subproblems that can
be solved independently. These dependencies have a significant impact on the time
needed to solve the problem.

We analyze our algorithms on different measures of sortedness. The problem SORT-
ING can be stated as follows. Given a totally ordered set (of terminals) T = {1, . . . , n}
of n elements, the task is to find a permutation πopt of the elements of T such that

πopt(1) < πopt(2) < · · · < πopt(n)

holds, where < is the order on T. Without loss of generality, we assume πopt = id,
meaning that πopt(i) = i for all i, throughout our analyses.

The set of all permutations π forms a search space that has already been investigated
by Scharnow et al. (2004) for the analysis of permutation-based evolutionary algorithms.
The authors of that article investigated SORTING as an optimization problem where
the goal was to maximize the sortedness (or equivalently, minimize the unsortedness)
of a given permutation. Here, we consider the same fitness functions as introduced by
Scharnow et al. (2004):

INV (π) measures the number of pairs of neighboring elements in correct order
(larger values are better);

HAM (π) measures the number of elements that are at their correct position, which
is the number of indices i such that π (i) = i (larger values are better);

Evolutionary Computation Volume 23, Number 4 585

M. Wagner, F. Neumann, and T. Urli

RUN (π) measures the number of maximal sorted blocks, which is the number of
indices i such that π (i + 1) < π (i) plus 1 (smaller values are better);

LAS (π) measures the length of the longest ascending subsequence within π of
elements (larger values are better);

EXC (π) measures the smallest number of pairwise exchanges in π in order to sort
the sequence (smaller values are better);

Given a tree X, we determine the permutation π that it represents according to
Algorithm 1. Once we have seen an element during an in-order parse, we skip its dupli-
cates. This is necessary, as the resulting sequence of elements for which we determine
its sortedness should contain each element at most once. Note also that a single target
permutation can be represented by many different trees.

Note that EXC(π) can be computed in linear time because of the cycle structure
of permutations. The sequence is sorted if and only if it has n cycles. Otherwise, it is
always possible to increase the number of cycles by exchanging an element that is not
sitting at its correct position with the element that is currently sitting there. For any
given permutation π consisting of n−k cycles, EXC(π) = k.2

We investigate the five listed measures for variable-length evolutionary algorithms.
Consequently, we might have to deal with incomplete permutations, as not all elements
have to be contained in a given individual. Most measures can also be used for in-
complete permutation, but we have to make sure that complete permutations always
obtain a better fitness than incomplete ones, so that the sortedness measure guides the
algorithm from incomplete permutations to complete ones. Therefore, we use the sort-
edness measures as described and use the following special fitness assignments that
enforce these properties:

INV (π) is the number of pairs in order, except INV (π) = 0 if |π | = 0, and INV (π) =
0.5 if |π | = 1;

RUN (π) = n + 1 if |π | = 0, otherwise RUN (π) = b + m is the sum of the number of
maximal sorted blocks b, and the number of elements missing m = n − |π |;

If |π | ≤ n then EXC (π) = e + m + 1, else EXC (π) = e, where e is the number of
necessary exchanges, and m = n − |π | the number of missing elements.

Note that e can be computed for incomplete permutations as well, as only the order
< on the expressed variables has to be respected. This means that the permutations
π1 = (1, 4) and π2 = (1, 2, 3, 4) require no changes, but EXC (π1) �= EXC (π2), as the
number of missing elements differs.

2A cycle can be determined by starting at a position in the permutation and then following the
positions by using the values at the positions as indices for the next position. We recommend that the
reader write down a random permutation underneath the sorted sequence.

586 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

For example, for a tree X with π = (2, 3, 4, 5, 1, 6) and n = 7, the sortedness results
are HAM (X) = 1, RUN (X) = 2 + 1 = 2, and EXC (X) = 4 + 1 + 1 = 6.

MO-INV, MO-HAM, MO-RUN, MO-LAS, and MO-EXC are variants of the de-
scribed problems. They take as the second objective the complexity C of a syntax tree
(computed by the number of leaves of the tree), for instance, MO-INV (X) = (INV (X),
C(X)). Optimization algorithms can then make use of this in order to deal with the bloat
problem: given two solutions with identical fitness value, the algorithms can prefer the
solution of lower complexity.

3 Algorithms

In this article, all GP algorithms use only the HVL-Prime as the mutation operator to
generate new solutions. HVL-Prime is a variant of O’Reilly’s HVL mutation operator
(O’Reilly, 1995; O’Reilly and Oppacher, 1994) and it is motivated by minimality rather
than by problem-specific operations. HVL-Prime produces a new tree by making
changes to the original tree via three basic operators: insertion, deletion, and substitution
(see Algorithm 2). In each iteration of the algorithms, k mutations are applied to the
selected solution. For the single-operation variants of the algorithms, k = 1 holds. For
the multioperation variants, the number of operations performed is drawn each time
from the distribution k = 1 + Pois(1), where Pois(1) denotes the Poisson distribution
with mean 1.

The algorithm (1+1)-GP* that we investigate first has no explicit mechanism to
control bloat whatsoever. The only feature that can potentially prevent the solution’s
size from becoming too large is that only strict fitness improvements are accepted. Thus,
the maximum solution size is limited based on the size of the initial tree and by the
number of possible improvements that can be performed.3

The single-objective variant called (1+1)-GP*-single (see Algorithm 3) starts with
an initial solution X and produces in each iteration a single offspring Y by applying the
mutation operator HVL-Prime, given in Algorithm 2 with k = 1. This means that it is a
stochastic hill-climber that explores its local neighborhood. In the case of maximization,

3The naming of our GP variants follows the conventions often used in the computational complexity
analysis of evolutionary algorithms: An asterisk indicates that a strict fitness improvement over the
old solution is required in order for the new solution to replace the current solution.

Evolutionary Computation Volume 23, Number 4 587

M. Wagner, F. Neumann, and T. Urli

Y replaces X if f (Y) > f (X) holds. Minimization problems are tackled in the analogous
way.

The single-objective variant called (1+1)-GP (see Algorithm 4 for the single-mutation
variant) is identical to the just described (1+1)-GP* with the exception that in the case
of maximization Y replaces X if f (Y) ≥ f (X) holds. Again, minimization problems are
tackled in the analogous way. As a consequence of the relaxed acceptance condition, the
complexity of the solution can increase as long as the fitness does not decrease. Thus,
(1+1)-GP has no mechanism to prevent bloat whatsoever.

In order to introduce the parsimony pressure to (1+1)-GP, where in case of identical
fitnesses the solution of lower complexity is preferred, we employ the multiobjective
variants of the presented sortedness measures, for example, MO-INV. Without loss of
generality, we assume that the complexity C is to be minimized and all fitness functions
F except RUN and EXC are maximized.4 In the parsimony approach, we optimize the
defined multiobjective fitness functions MO-F(X) = (F (X), C(X)) with respect to the
lexicographic order, that is, MO-F(X) ≥ MO-F(Y) is true iff

F (X) > F (Y) ∨ (F (X) = F (Y) ∧ C(X) ≤ C(Y)) .

As the last algorithm, we consider the simple evolutionary multi-objective genetic
programming algorithm (SMO-GP, see Algorithm 5) introduced by Neumann (2012)

4The notions can be easily adjusted to other minimization/maximization problems.

588 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

and motivated by the SEMO algorithm for fixed-length representations by Laumanns
et al. (2004). Variants of SEMO have been frequently used in the runtime analysis
of evolutionary multiobjective optimization for fixed-length representations (see Giel,
2003; Neumann and Wegener, 2005; Friedrich et al., 2010; Giel and Lehre, 2010; Neumann
and Witt, 2010).

In this multiobjective variable-length algorithm, both criteria F and C are equally im-
portant. In order to compare two solutions, we consider the classical Pareto dominance
relations:

• A solution X weakly dominates a solution Y (denoted by X � Y) iff (F (X) ≥ F (Y)
∧C(X) ≤ C(Y)).

• A solution X dominates a solution Y (denoted by X 	 Y) iff ((X � Y) ∧ (F (X) >

F (Y) ∨ C(X) < C(Y)).

• Two solutions X and Y are called incomparable iff neither X � Y nor Y � X

holds.

A solution that is not dominated by any other solution in the search space is called
a Pareto optimal solution. The set of all such Pareto optimal solutions forms the Pareto
optimal set, and the set of all corresponding objective vectors forms the Pareto front. In
multiobjective optimization, the classical goal is to compute a Pareto optimal solution
for each objective vector of the Pareto front. Or, if the Pareto front is too large, the goal
then is to find a representative subset of the front—the definition of “representative”
depends on the investigator’s preference.

SMO-GP is a population-based approach that starts with a single solution. During
the optimization run it maintains a set of nondominated solutions. This set constantly
approximates the true Pareto front, that is, the set of optimal trade-offs between fit-
ness and complexity. In each iteration, it picks one solution uniformly at random and
produces one offspring Y by mutation. Y is introduced into the population iff it is
not weakly dominated by any other solution in P. If Y is added to the population, all
individuals that are dominated by Y are discarded.

Similar to the previously introduced algorithms, SMO-GP-single uses the mutation
operator HVL-Prime with k = 1. We also consider SMO-GP-multi, which differs from
SMO-GP-single by choosing k according to 1 + Pois(1).

We analyze the introduced single-objective algorithms in terms of the number of
iterations of their repeat loops until they have produced an optimal solution, that is, a
solution of maximal or minimal fitness value for the first time. The expected number of
iterations to achieve this goal is called the expected optimization time of the algorithm.
Considering multiobjective algorithms, the expected optimization time refers to the
expected number of iterations of the repeat loop until the population includes for each
Pareto optimal objective vector a corresponding solution.

4 Standard Approach without Bloat Control

We begin our analyses with the theoretical investigation of (1+1)-GP (see Algorithm 3),
which has no mechanism to control bloat. The only feature that can potentially prevent
the solution size from becoming too large is that only strict fitness improvements are
accepted. Thus, the maximum solution size is limited based on the size of the initial

Evolutionary Computation Volume 23, Number 4 589

M. Wagner, F. Neumann, and T. Urli

solution, the increase in complexity per improvement, and the total number of fitness
improvements during the run of the algorithm.

Recall that the single-objective variant called (1+1)-GP*-single starts with an initial
solution X and produces in each iteration a single offspring Y by applying the mutation
operator given in Algorithm 2 with k = 1. This means that it is a stochastic hill-climber
that explores its local neighborhood. In the case of maximization, Y replaces X if f (Y) >

f (X) holds. Minimization problems are tackled in the analogous way.

4.1 Upper Bound

In this section we analyze the performance of our (1+1)-GP* variants on one of the
fitness functions introduced in Section 3.

We exploit a similarity between our variants and evolutionary algorithms to obtain
an upper bound on the time needed to find an optimal solution. We use the method
of fitness-based partitions, which was originally introduced for the analysis of elitist
evolutionary algorithms (see, e. g., Wegener, 2002), where the fitness of the current
search point can never decrease. Although the HVL-Prime operator is complex, we can
obtain a lower bound on the probability of making an improvement considering fitness
improvements that arise from the HVL-Prime suboperations insertion and substitution.
In combination with fitness levels defined individually for the sortedness measures, this
gives us the runtime bounds in this section.

We denote by Tmax the maximum size of the tree during the run of the algorithm
and show the following theorem.

THEOREM 1: The expected optimization time is O(n3Tmax) for (1+1)-GP*-single and (1+1)-
GP*-multi, using INV as the sortedness measure, where n is the number of elements that are to
be sorted.

PROOF: The proof is an application of the fitness-based partitions method. Based on
the observation that n · (n − 1)/2 + 1 different fitness values are possible, we define the
fitness levels A0, . . . , An·(n−1)/2 with

Ai = {π |INV(π) = i } ,

meaning that trees are assigned to the same fitness level if the number of pairs of
elements in the in-order parsed sequence of leaves (according to Algorithm 1) is
identical.

As there are at most n · (n − 1)/2 advancing steps between fitness levels to be made,
the total expected runtime is upper bounded by the sum over all times needed to make
such steps.

We bound the times by investigating the case when only a particular insertion of a
specific leaf at its correct position achieves an increase of the fitness.5 For this particular
insertion, we consider the lexicographically smallest pair (i, j), i < j , which is currently
incorrect: putting i directly before j makes this pair correct. We now have to show that
this does not make incorrect any other pair that was previously correct. Assume there is
a pair (k, l), k < l, that was previously correct and that has become incorrect because of
the insertion of i. As only i is moved, l = i has to hold, but we can show that this cannot
be the case. k has to be smaller than j; otherwise the pair cannot become incorrect. Thus,
k < i < j has to hold because k < l and i < j and because of our assumption l = i.
(k, j) was correct before the insertion, so it has to be lexicographically smaller than

5For example, the tree with the sequence of leaves (when parsed in order) l = (n, n, 1, 2, . . . , n − 1)
can only be improved (in a single HVL-Prime step) by inserting a leaf labeled 1 at the leftmost position.

590 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

(i, j). Therefore k is before j in the list of expressed leaf nodes. As i is placed directly
before j and therefore after k, (k, l) cannot become incorrect.

The probability for HVL-Prime to perform an insertion is 1
3 , and the probability

for the insertion to insert the new leaf at the correct position of the inner J-node is at
least 1

2 . This, together with the probability of selecting the right element to add, which
is bounded by 1

n
, and the probability of adding it to the right position in the tree,

which is bounded by 1
Tmax

, gives us a lower bound on the probability for doing such an
improvement in (1+1)-GP*-single :6

1
3

· 1
2

· 1
n

· 1
Tmax

= �

(
1

nTmax

)
.

For the multioperation variant, the probability for a single mutation operation
occurring (including the mandatory one) is 1/e, which is a constant. Thus we have an

improvement with probability �
(

1
nTmax

)
in the multioperation case as well. Therefore,

the expected optimization time for both algorithms is upper bounded by

n·(n−1)/2∑
k=0

O (nTmax) = O(n3Tmax).

�

4.2 Local Optima

In the following, we present several worst-case examples for HAM, RUN, LAS, and EXC
that demonstrate that (1+1)-GP* can get stuck in local optima during the optimization
process. This shows that evolving a solution with this GP system is much harder than
working with the permutation-based EA presented by Scharnow et al. (2004), where
only the sortedness measure RUN leads to an exponential optimization time.

We study worst-case solutions that are hard to improve by our algorithms. In the
following, we write down such solutions by the order of the leaves in which they are
visited by the in-order parse of the tree. We restrict ourselves to the case where we
initialize with a tree of size linear in n and show that even this leads to difficulties for
the previously mentioned sortedness measures. Note, that a tree of size linear in n is
necessary to represent a complete permutation of the given input elements.

For RUN and LAS, we investigate the initial solution Iw1, defined as

Iw1 = (n, n, . . . , n︸ ︷︷ ︸
n+1 instances of n

, 1, 2, 3, . . . , n),

and show that it can be hard to achieve an improvement.

THEOREM 2: Let Iw1 be the initial solution. Using the sortedness measures RUN and LAS, the
expected optimization time of (1+1)-GP*-single is infinite and that of (1+1)-GP*-multi is e�(n).

PROOF: We consider (1+1)-GP*-single first. It is clear that with a single HVL-Prime ap-
plication, it is possible to remove only one of the leftmost ns. To improve the sortedness
based on RUN or LAS, all leftmost n + 1 leaves have to be removed at once. Clearly,
(1+1)-GP*-single cannot do this, which results in an infinite runtime.

6For example, for the new element to be inserted as the leftmost node of the tree, insertion has to be
chosen, then the old leftmost node has to be chosen, and then the new node has to be placed as the left
sibling of the old leftmost node, not as its right sibling.

Evolutionary Computation Volume 23, Number 4 591

M. Wagner, F. Neumann, and T. Urli

Similarly, (1+1)-GP*-multi can only improve the sortedness if it removes the leftmost
n + 1 leaves. Hence, in order to successfully improve the sortedness, at least n + 1
suboperations have to be performed, assuming that we delete one of the leftmost ns
each time. As the number of suboperations per mutation is distributed as 1 + Pois(1),
the Poisson random variable has to take a value of at least n. Thus, the probability for
such a fitness-improving step is e−�(n), with the expected waiting time for such a step
being e�(n). �

Similarly, we consider the tree Iw2, defined as

Iw2 = (n, n, . . . , n︸ ︷︷ ︸
n+1 instances of n

, 2, 3, . . . , n − 1, 1, n),

and show that it is hard to improve the sortedness when using the measures HAM and
EXC.

THEOREM 3: Let Iw2 be the initial solution. Using the sortedness measures HAM and EXC, the
expected optimization time of (1+1)-GP*-single is infinite and of (1+1)-GP*-multi is e�(n).

PROOF: We use similar ideas as in the previous proof. Again, it is not possible for (1+1)-
GP*-single to increase the sortedness in a single step, as all n + 1 leftmost leaf nodes
need to be deleted in order for the rightmost n to become expressed. In addition, a leaf
labeled 1 has to be inserted at the beginning, or alternatively, one of the n + 1 leaves
labeled n has to be replaced by a leaf labeled 1. This results in a minimum number of
n + 1 suboperations that have to be performed by one HVL-Prime application, leading
to the lower bound of e�(n) for (1+1)-GP*-multi. �

5 Parsimony Approach

In this section we consider simple variable-length evolutionary algorithms using the
parsimony approach. The single-objective variant called (1+1)-GP is identical to the
previously investigated (1+1)-GP* with the exception that in the case of maximization,
Y replaces X if f (Y) ≥ f (X).

Wagner and Neumann (2012) showed that the optimization time of (1+1)-GP-single
on MO-EXC, MO-RUN, and MO-HAM is infinite when initialized with specific solu-
tions.

In the following, we add to these results by proving polynomial runtime bounds for
the other functions. The idea behind the proof of the expected polynomial optimization
time on MO-LAS is as follows. Given a tree T with its tree size of Tinit and its sortedness
LAS(T) = k < n. For such a tree, we always have at least one of the following two ways
to create a new tree that is accepted. First, we can improve the sortedness by extending
the longest ascending sequence. Or, second, we can reduce the size of the tree, if the tree
has more than k leaves. If the latter is the case, we can trim the number of leaves down
to k, thus eliminating blocking elements and duplicates, and then we can build up the
sought permutation. Thus, we can now deal with trees such as Iw1 (see Section 4.2)
that have previously been problematic.

THEOREM 4: The expected optimization time of (1+1)-GP-single on MO-LAS is
O

(
Tinit + n2 log n

)
.

PROOF: We consider two phases. First, we show that we arrive at a tree with fitness k
and k leaves after O

(
Tinit + n log n

)
steps. Then we analyze the time needed to get from

there to the optimal solution.

592 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

1. Phase. Initially, let LAS(T) = k be the fitness of the current tree T with s leaves.
Then, the fitness distance to the desired tree size is d = s − k. As the probability for
HVL-Prime to perform a deletion is 1

3 , the probability to reduce the size via a deletion
in a single mutation step is at least

1
3

· s − k

s
= 1

3
· d

d + k
≥ 1

3
· d

d + n
,

where the term s−k
s

comes from the fact that we need to select one of the redundant
elements. Note that d cannot increase: for d to increase, k would have to decrease,
which is impossible, as the primary objective is the maximization of the LAS value.
Alternatively, d could increase if s increases. However, the tree size can only increase if
the last accepted step increased the sortedness as well. In a single step, if s increases by
1, then k had to increase by 1 as well, which leaves the distance s − k = d unchanged.

Now, with the fitness-based partitions method over the distance d, and the fitness
levels A0, . . . , ATinit with

Ai = {T |i = Tinit − d = Tinit − |T | + LAS(T) } ,

we can bound the expected runtime for this first phase:

Tinit∑
d=1

3
d + n

d
= 3

n∑
d=1

d + n

d
+ 3

Tinit∑
d=n+1

d + n

d

≤ 3
n∑

d=1

d + n

d
+ 3

Tinit∑
d=n+1

2

= O
(
n log n + Tinit

)
.

2. Phase. Next, we investigate the time needed in the second phase to arrive at the
optimum. Therefore, we again apply the described fitness-based partitions method. We
define the fitness levels A1, . . . , An with Ai = {T |LAS(T) = i }. As there are at most n − 1
advancing steps between fitness levels to be made, the total expected runtime is upper
bounded by the sum over all expected times needed to make such steps.

After the initial trimming phase, we do not have any blockages that prevent
elements from being expressed at their correct positions. Therefore, the existing longest
ascending sequence can be extended by inserting any of the n−k unblocked elements
that are missing in the sequence into its correct position. The probability for a sin-
gle of such an insertion to happen is at least 1

3 · 1
2 · 1

n
· n−k

n
= 1

6 · n−k
n2 . Consequently, the

expected runtime of the second phase can then be bounded from above by

n−1∑
k=1

6
n2

n − k
= 6n

n−1∑
k=1

n

n − k
= O

(
n2 log n

)
.

Hence, the expected optimization time of the algorithm is O
(
Tinit + n2 log n

)
. �

THEOREM 5: The expected optimization time of (1+1)-GP-single on MO-INV is upper bounded
by O

(
Tinit + n5

)
.

PROOF: We draw upon results from Theorems 1 and 4. First, after O
(
n log n + Tinit

)
steps, we arrive at a nonredundant tree. Next, as we can have at most n2 fitness-
improving insertions, the maximum tree size Tmax is bounded by O

(
n + n2

)
after the

Evolutionary Computation Volume 23, Number 4 593

M. Wagner, F. Neumann, and T. Urli

initial trimming phase. Consequently, the probability for a fitness-improving mutation
is bounded by �

(1
n3

)
. Thus, we can now bound the overall optimization time by

O
(
n log n + Tinit

) +
n·(n−1)/2∑

k=0

O
(
n3)

= O
(
n log n + Tinit

) + O(n5)

= O (Tinit) + O(n5).
�

Achieving a similar bound for the multimutation variant is not as easy, since the
insertion of a missing element (i.e., a fitness improvement) may be accompanied by the
insertion of many elements that are already present. Because of the Poisson-distributed
number of operations performed by HVL-Prime within (1+1)-GP-multi, the algorithm’s
typical local behavior is difficult to predict.

Therefore, we take an alternative approach, looking at a polynomial-sized sequence
of steps t = poly(n). Let Tinit be a tree with size |Tinit| = poly(n). The failure probability
for inserting at most nε in a single HVL-Prime operation is e−�(nε). Furthermore, given
any initial tree, we can have at most n improvements of the sortedness when the
measurements LAS and EXC are used. Now, we compute a bound of the tree size.
Looking at n mutations that increase the fitness, the failure probability for adding at
most nnε = n1+ε leaves in t time steps is exponentially small: te−�(nε) = e−�(nε). Thus,
the tree size does not exceed Tmax = Tinit + n1+ε within t = poly(n) time steps, with high
probability.

THEOREM 6: Let ε > 0 be a constant. The optimization time of (1+1)-GP-multi on MO-LAS is
O

(
Tinit + n2 log n

)
, with probability 1 − o(1).

PROOF: We split the proof into two parts: first, we bound the total time needed for
deletions during a run, and second, we investigate the time needed to perform the
necessary insertions to find the optimal solution.

First, given a solution where km elements have to be removed in order to arrive at
a nonredundant tree after the mth fitness-increasing insertion. In the following, let i be
the number of redundant elements in the tree, and let j be the number of nonredundant
elements in the tree.

Stage 1, i ≥ n + 1. As the probability for a single operation is 1
e
, the probability for

the deletion of a single redundant element at any time is lower bounded by

1
3e

i

i + j
≥ 1

3e

i

i + n
≥ 1

3e

1
2

= 1
6e

.

Then, the expected time to delete km elements is upper bounded by 6ekm.
Furthermore, as we know that we can delete at most Tmax leaves over a full
optimization run,

∑n
i=1 ki ≤ Tmax. Thus, we can bound the expected time needed for

all deletions (when i ≥ n + 1) by 6eTmax.
Let X1, . . . , Xd be independent random variables taking value 1 with Prob(Xi =

1) = 1
6e

if an element is deleted (in time step 1 ≤ t ≤ d), and 0 otherwise. With Chernoff’s

594 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

inequality7 (with δ = 1) we get that

Prob (X ≥ 12eTmax) = Prob
(
X ≥ 12e(Tinit + n1+ε)

)
≤ e−2e(Tinit+n1+ε) ≤ e−�(n1+ε).

Stage 2, i ≤ n. To bound the number of steps, we apply the technique of multiplica-
tive drift with tail bounds (see Definition 1 and Theorem 1 in Doerr and Goldberg,
2010).

In our situation, �(x) = i is a feasible ν-drift function on the number of
redundant elements (with implicit constant δ = 1). For the optimal solutions (”no
redundant elements left”) �(x) = 0 holds as required, �(x) ≥ 1 holds for all nonopti-

mal solutions, and E[�(xnew)] ≤ (
i − i

6en

) =
(

1 − 1
ν(n)

)
�(x). Thus, ν(n) = 6en and δ = 1.

Consequently, we get that the time needed for all deletions (when i ≤ n) during a run
exceeds 6en(ln n + n ln n) with probability at most n−c. As these deletion phases take
place at most n times, the resulting overall deletion time does not exceed O(n2 log n)
with probability 1 − n−c+1 = 1 − o(1).

Next, we consider the time necessary to perform the insertions of the missing
elements once the insertion was unblocked. We again apply the multiplicative drift
with tail bounds. Note that the situation is very similar: instead of reducing the number
of redundant elements, we are now reducing the number of missing elements.

Let j be the number of elements currently missing. As the probability for a single
operation is 1

e
, the probability for a single insertion of a missing element to happen at the

required position is lower bounded by 1
3e

1
2n

j

n
= j

6en2 . With E[�(xnew)] ≤
(
j − j

6en2

)
=(

1 − 1
ν(n)

)
�(x), we get ν(n) = 6en2 and δ = 1. Consequently, by applying Theorem 1

from Doerr and Goldberg (2010), we get that the time needed for all insertions during a
run exceeds 6en2(ln n + n ln n) with probability at most n−c. Thus, the resulting overall
time needed for all insertions does not exceed O(n2 log n) with probability 1 − n−c =
1 − o(1). �

6 Multiobjective Approach

In the following, we consider the simple evolutionary multi-objective genetic
programming algorithm (SMO-GP, see Algorithm 5) introduced by Neumann (2012),
which modifies the original SEMO algorithm of Laumanns et al. (2004) to work with
fixed-length representations.

Let us recall that SMO-GP is a population-based approach that is initialized with
a single solution. During the run, it keeps in each iteration the set of nondominated
solutions obtained so far. This set of solutions constantly approximates the true Pareto
front, namely, the set of optimal trade-offs between fitness and complexity. In each
iteration, it picks one solution uniformly at random and produces one offspring Y by
mutation. Y is introduced into the population iff it is not weakly dominated by any
other solution in P. If Y is added to the population, all individuals that are dominated
by Y are discarded.

7Let random variables X1, . . . , Xn be independent random variables taking on values 0 or 1. Further,
assume that P (Xi = 1) = pi . Then, if we let X = ∑n

i=1 Xi and E[X] be the expectation of X, then the
following bound holds: P (X ≥ (1 + δ)E[X]) ≤ e−E[X]δ2/3, 0 < δ ≤ 1.

Evolutionary Computation Volume 23, Number 4 595

M. Wagner, F. Neumann, and T. Urli

In the following, we analyze the expected number of iterations before the set of
nondominated solutions becomes the true Pareto front. We call this the expected
optimization time of SMO-GP algorithms.

For arbitrary optimization problems, the following lemma bounds the expected
time needed for the populations to include the empty solution (i.e., the empty tree):

LEMMA 1 (Neumann, 2012): Let Iinit be the size of the initial solution and k be the number of
different fitness values of a problem F. Then the expected time until the population of SMO-GP-
single and SMO-GP-multi applied to MO-F contains the empty solution is O (kIinit).

THEOREM 7: The expected optimization time of SMO-GP-single and SMO-GP-multi is
O(n2Iinit + n5) on MO-INV, and O(nIinit + n3 log n) on MO-LAS.

PROOF: First, as INV has n(n − 1) different fitness values, using Lemma 1, the empty
solution is produced after an expected number of O

(
n2Iinit

)
steps. First, note that each

Pareto optimal solution with complexity 2i − 1 has an INV value of
∑i−1

1 i, if i ≥ 2.8

Second, we bound the time needed to discover the whole Pareto front once the
empty solution is introduced into the population. Assume that the population contains
all Pareto optimal solutions with complexities 2j − 1, 1 ≤ j ≤ i. Then, a population
that includes all Pareto optimal solutions with complexities 2j − 1, 1 ≤ j ≤ i + 1 can
be achieved by producing a solution Y that is Pareto optimal and that has complexity
2(i + 1) − 1. Y can be obtained from a Pareto optimal solution X with C(X) = 2i − 1
by inserting an element that increases the INV value by i − 1. This operation produces
from a solution of complexity 2i − 1 a solution of complexity 2(i + 1) − 1 = 2i + 1, as
one leaf node and one inner node are added.

Based on this idea we can bound the expected optimization time once we can bound
the probability for such steps to happen. With probability at least 1

n(n−1)/2+1 it is possible
to choose X, as the population size is upper bounded by n(n − 1)/2 + 1. Next, a single
mutation operation happens with probability at least 1/e, and the inserting operation
of HVL is chosen with probability 1/3. The probability to select one of the missing
elements is at least 1/n. However, the correct position for such a randomly chosen
element has to be chosen in order to produce a solution that is Pareto optimal and of
complexity i + 1. This probability is at least 1/2 · 1/n, as the number of leaf nodes is
bound by n, and the probability to insert as the correct child of the newly introduced
inner node is at least 1/2. Thus, the total probability of such a generation can be bounded
by 1

n(n−1)/2+1 · 1
3e

· 1
2n

· 1
n

.
Therefore, as only n Pareto optimal improvements are possible once the empty

solution has been introduced into the population, the expected time until all Pareto
optimal solutions have been generated is bounded by

n∑
i=0

(
1

n(n − 1)/2 + 1
· 1

3e
· 1

2n
· 1
n

)−1

= 6en5 = O(n5).

Similarly, we can prove an upper bound for MO-LAS. First, note that each Pareto op-
timal solution with LAS value i represents a perfectly sorted permutation of i elements.
Next, after an expected number of O (nIinit) steps the empty solution is produced,
as only n different LAS values are possible. As before, we assume that the popula-
tion already contains all solutions that are Pareto optimal and of complexities 2j − 1,

8For the sake of readability, the special cases for i = 0 and i = 1 are omitted in the following.

596 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

Table 1: Summary of computational complexity bounds for single-objective variants.

(1+1)-GP*, F(X) (1+1)-GP, F(X)

F(X) single multi single/multi

INV O(n3Tmax) ∗ O(n3Tmax) ∗

LAS ∞ ∗ �
((

n

e

)n)∗

HAM ∞ ∗ �
((

n

e

)n)∗ ?
EXC ∞ ∗ �

((
n

e

)n)∗

RUN ∞ ∗ �
((

n

e

)n)∗

The question mark indicates combinations for which we do not know
any bounds. Asterisks indicate the bounds presented in this article.
Tmax denotes the size of the largest tree at any stage during the
evolution of the algorithm.

1 ≤ j ≤ i. Then, the minimally larger population that includes all Pareto optimal solu-
tions with complexities 2j − 1, 1 ≤ j ≤ i + 1, can be achieved by inserting any of the
missing n−i elements into its correct position in the Pareto optimal individual X with
LAS (X) = C(X) = 2i − 1.

Therefore, as only n Pareto optimal improvements are possible once the empty
solution has been introduced into the population, the expected time until all Pareto
optimal solutions have been found is

n∑
i=0

(
1

n + 1
· 1

3e
· 1

2n
· n − i

n

)−1

= 6en2(n + 1) ·
n∑

i=0

1
n − i

= O(n3 log n).

�

7 Complementary Experimental Analyses

Tables 1 and 2 summarize our theoretical findings, list existing bounds, and show open
problems. As can be observed from the tables, all bounds consider tree sizes of some
kind: either the size Tmax of the largest tree or the size of the initial solution Tinit. In
particular, the runtime of (1+1)-GP*, F(X) depends on the maximum tree size Tmax,
since the expected time to get to the optimal solution grows larger and larger as the tree
grows in size. The runtimes of several MO-F(X) variants depend on the initial tree size
Tinit, as often the first step of the proof involves deconstructing the original solutions
until a tree of size zero is found. Furthermore, it is quite striking that not too many
bounds for the multioperation GP algorithms are known so far. It is also not known
whether the bounds are tight or not. As the maximum tree size for (1+1)-GP and the
population size for SMO-GP play a relevant role in the theoretical analyses, we focus
our attention on these.

In this section we carry out experimental investigations about the runtime of
different variable-length algorithms over the presented fitness functions. The purpose
of this analysis is threefold:

• to complement the theoretical results with conjectures about the expected
optimization times for the variants lacking a formal proof;

Evolutionary Computation Volume 23, Number 4 597

M. Wagner, F. Neumann, and T. Urli

Table 2: Summary of computational complexity bounds for multiobjective variants.

(1+1)-GP, MO-F(X) SMO-GP, MO-F(X)

F(X) single multi single/multi

INV O(Tinit + n5) ∗ ? O
(
n2Tinit + n5

) ∗

LAS O(Tinit + n2 log n) ∗ O(Tinit + n2 log n) †∗ O(nTinit + n3 log n) ∗

HAM ∞ ? O(nTinit + n4)
EXC ∞ ? O(nTinit + n3 log n)
RUN ∞ ? O(nTinit + n3 log n)

† indicates a bound that holds with probability 1 − o(1). Question marks indicate
combinations for which we do not know any bounds. Asterisks indicate bounds
presented in this article. Tinit denotes the size of the initial tree.

• to assess the impact on the runtime of two collected measures, namely, the
maximum tree size Tmax and, for SMO-GP, the maximum population size Pmax
encountered during an optimization run; and

• to give useful insight for guiding further rigorous theoretical analysis.

7.1 Experimental Setup

In our experimental investigations, we considered all the GP algorithms: (1+1)-GP on
F(X), (1+1)-GP on MO-F(X), (1+1)-GP* on F(X), and SMO-GP on MO-F(X). Each GP algo-
rithm was run in its single-mutation and multimutation variants, and we investigated
problems of sizes n = 20, 40, 60, . . . , 200. For the initialization of the individuals, we
considered the schemes init0 (empty tree) and initn (tree with n leaves constructed by
applying n insertion mutations at random positions on an initially empty tree). In total,
our experiments spanned ten problems: INV, HAM, RUN, LAS, and EXC in their single
and multiobjective variants.

We ran the experiments on Intel Xeon E5430 CPUs (2.66GHz) on Debian GNU/Linux
7 with Java SE RE 1.7. We limited the computation budget to a maximum runtime of
3 hours or 109 evaluations each, whichever was reached first. Furthermore, we repeated
each experiment 200 times, resulting in a standard error of the mean (the standard
deviation of the sampling distribution) of 1/

√
200 = 7%. As a curiosity, the whole set of

experiments took about 30 CPU-years to complete.
The complete source code of the framework is available on BitBucket (Mercurial, at

https://bitbucket.org/tunnuz/gpframework), on GitHub (Git, https://github.com/
tunnuz/gpframework), and on Google Code (Subversion at http://code.google.com/
p/gpframework).

7.2 Experimental Analysis of the (1+1)-GP Variants

We now analyze the experimental results of the (1+1)-GP variants with respect to the
maximum tree size obtained during execution and the required optimization time.

7.2.1 Tree Size
As mentioned, the known theoretical bounds for the (1+1)-GP variants depend on Tmax,
the size of the largest tree encountered during the run of the algorithm. It is important
to observe that the maximum solution size is not a parameter that is set in advance but
rather a measure that emerges from the nature of the employed fitness function and
mutation operators. In addition, the optimization can involve a degree of randomness,

598 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

which makes Tmax (and thus bloating) extremely difficult to predict. For this reason,
we investigate the maximum solution size experimentally to detect when bloat occurs
within the analyzed GP algorithms. As statistics, we employ the median (the second
quartile) as a measure of central tendency and the interquartile range (iqr , the distance
between the first and the third quartiles) as a measure of variance.

Table 3 reports results for n = 40, 80, 160, and the results for the other input sizes are
comparable. The missing data (—) represent experiments for specific input sizes where
the algorithms did not find an optimal solution within the time or evaluations bound
for more than 50% of the repetitions.9 For the sake of clarity we recall that (1+1)-GP*,
F(X) accepts a new solution only if the fitness is strictly better than the previous one,
while (1+1)-GP, F(X) always accepts a solution of the same value. (1+1)-GP, MO-F(X)
accepts a solution of the same fitness only if the complexity is lower.

We first analyze Tmax for the single-operation variant, where a single mutation
operator is applied at each step (upper half of Table 3). Here (1+1)-GP* and (1+1)-
GP, MO-F(X) share similar tree sizes of about 2n − 1 (sometimes 2n + 1), which is a
minimum for the optimal solution on all fitness values but INV, where (1+1)-GP, MO-
F(X) obtains a tree size of about 2.3n on both initialization schemes and (1+1)-GP* shows
a tree size close to 10n. On the other hand, (1+1)-GP, F(X) appears cursed by bloating in
all fitness functions, with tree sizes above 12n. Nonetheless, unlike (1+1)-GP*, (1+1)-GP,
F(X) seems independent on the employed initialization scheme and can reach optimal
solutions for INV and LAS even with initn where (1+1)-GP* fails. As for the interquartile
range, (1+1)-GP, MO-F(X) appears to be the most stable algorithm with an iqr of zero
on all fitness functions but INV. Overall, the best algorithm with respect to tree size,
interquartile range, and robustness with respect to initialization schemes is (1+1)-GP
with parsimony (MO-F(X) variant).

As for the multioperation variant, that is, where k = 1 + Pois(1) applications of
each mutation operator are executed at each step, tree sizes increase in every algorith-
mic variant on INV. On the other fitness functions, the negative impact of multiple
operations appears especially on the F(X) variants, while (1+1)-GP, MO-F(X) is less sus-
ceptible to this parameter. Overall, the interquartile range in the tree size increases along
with it. Again, with respect to tree size, interquartile range, and initialization scheme
independence, the best algorithm is (1+1)-GP with parsimony (MO-F(X) variant).

7.2.2 Average Case Optimization Time
Figures 1 and 2 indicate the asymptotic behavior of the investigated measures. They
show

• the distributions of values, represented as box plots;

• the failure rate, that is, the fraction of repetitions that did not make it to the end
because of the imposed timeout or evaluations budget, represented in red; and

• two blue lines representing for each input size the medians of the distributions
divided by some polynomial, whose interpretation gives an indication of the
asymptotic behavior of the measure.

In order to deduce the asymptotic behavior of a measure, one must look at the
polynomial line that is closest to constant (i.e., the most horizontal one). A horizontal line

9For the computation of the median, at least 50% of the independent runs need to be successful.

Evolutionary Computation Volume 23, Number 4 599

M. Wagner, F. Neumann, and T. Urli

Figure 1: Box plots showing the number of evaluations required by (1+1)-GP (initialized
with init0) until the individual Xopt with optimal fitness was found. No data are shown
when more than 50% of runs were unsuccessful. It is evident that the algorithms had
problems solving even small instances of RUN. In the configuration marked with an
asterisk, the method to find the upper and lower polynomials was unreliable because
of inflections.

600 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

Figure 2: Box plots showing the number of evaluations required by (1+1)-GP (initialized
with initn) until the individual Xopt with optimal fitness was found. No data are shown
when less than 50% of the runs were successful. When one compares these results with
those of Figure 1, it is evident that initialization with n leaf nodes can render the problem
unsolvable.

Evolutionary Computation Volume 23, Number 4 601

M. Wagner, F. Neumann, and T. Urli

Table 3: Sizes of the largest encountered trees until the individual Xopt with optimal
fitness is found. Shown are the median m and median interquartile ranges iqr .

k F(X) n (1+1)-GP*, F(X) (1+1)-GP, F(X) (1+1)-GP,MO-F(X)

init0 initn init0 initn init0 initn

m iqr m iqr m iqr m iqr m iqr m iqr

k = 1 INV 40 307 46 327 33.5 528 185.5 528 202.5 95 4 97 5.5
80 821 79 849 105 1259 472 1269 473 189 8 191 6

160 — — — — 2645 612 2688 627.5 375 10 381 14

LAS 40 79 0 — — 525 212 592 265.5 79 0 79 0
80 159 0 — — 1352 508.5 1401 526.5 159 0 159 0

160 319 0 — — 2670 527.5 — — 319 0 319 0

HAM 40 79 0 — — 1665 1042 1672 723.5 79 0 79 0
80 159 0 — — — — — — 159 0 159 0

160 319 0 — — — — — — 319 0 319 0

EXC 40 81 0 — — 1573 908 — — 81 2 — —
80 161 0 — — — — — — 161 0.5 — —

160 321 2 — — — — — — 321 0 — —

RUN 40 79 0 — — — — — — 79 0 — —
80 159 0 — — — — — — 159 0 — —

160 319 0 — — — — — — 319 0 — —

k = 1 +
Pois(1)

INV 40 249 33 259 34 512 183 543 199.5 107 8 112 10

80 611 48 627 58 1245 490 1308 435.5 213 12.5 219 14
160 — — — — 2793 733 2821 700 419 18 437 22

LAS 40 95 10 — — 555 276.5 560 261.5 79 2 79 2
80 187 10.5 — — 1334 592 1382 420.5 159 2 159 2

160 — — — — 2893 698 2789 498 319 2 319 2

HAM 40 87 6 — — 1767 926 1833 1042 79 2 79 2
80 177 8 — — — — — — 159 0 159 2

160 353 11.5 — — — — — — 319 2 319 2

EXC 40 93 6 — — 1852 1042 1964 964.5 81 0 83 2
80 — — — — — — — — 161 2 — —

160 — — — — — — — — — — — —

RUN 40 — — — — — — — — — — — —
80 — — — — — — — — — — — —

160 — — — — — — — — — — — —

means that barring a multiplicative factor, the measure behaves like the corresponding
polynomial, at least for the analyzed input sizes. The figures exclude the input sizes
where a failure rate above 50% did not allow computing a reliable median (and thus
obtaining a reliable estimate on the asymptotic behavior).

Figures 1 and 2 show the distributions of the required number of evaluations to
reach the first optimal solution for the (1+1)-GP variants, respectively, in the init0 and
initn initialization schemes.

602 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

By analyzing the results it can be noted that overall the init0 initialization scheme
is beneficial for (1+1)-GP*, F(X) both in single- and multioperation modes, allowing it
to optimize every fitness function in single-operation mode and to reach some optima
for all fitness functions except RUN for multioperation mode. To the contrary, (1+1)-GP
does not seem to be influenced significantly by a particular choice of initial individuals.
The performances of the two initialization schemes are identical for INV across every
algorithmic variant but consistently worse for initn in all other fitness values, at least in
terms of failure rate. In general, initializing the population with full trees appears to be
an obstacle to optimization. Also, multioperation when applied with the init0 scheme
appears to be detrimental.

The theoretical bounds are confirmed by the experiments, suggesting that they
might be tight.

7.3 Experimental Analysis of the SMO-GP Variants

We now analyze the experimental results of the SMO-GP variants. We focus on the max-
imum tree size and population size during execution, and on the expected optimization
time.

Table 4 shows two measurements. We list the maximum tree sizes and maximum
population sizes that were observed up to the two different but connected events: (1)
until the individual Xopt with optimal fitness is found, and (2) until the entire true Pareto
front PPareto is represented by the population.

7.3.1 Tree Size
With respect to maximum tree size we can note that with both init0 and initn initialization
schemes and both single- and multioperation variants the tree size is always very close
to the theoretical minimum of 2n − 1 except for INV, in which there is an increase of
about 6% in single operation mode and about 30%–37% in multioperation mode. The
interquartile range in these data is minimal, often zero in single operation mode and
up to 5% in multioperation mode. It is worth observing that the maximum attained tree
size is quite independent of the initialization scheme.

7.3.2 Population Size
While Tmax already appears as a factor in the computational complexity bounds for
the (1+1)-GP variants, the impact of Pmax on SMO-GP is not yet completely clear. It is
reasonable to presume that for large populations, for instance, exponential in n, the ex-
pected optimization time grows because of the lower probability of selecting the correct
individual to improve. Unfortunately it is not clear how often such a large population
occurs, since this depends on factors such as the number of different objectives and the
fitness levels for each of these objectives.

For the sorting problem, four out of five of the considered sortedness measures yield
a linear number of trade-offs, hence population individuals, between fitness value and
complexity. Only one of the fitness functions, namely INV, can potentially generate a
quadratic number of trade-offs. However, our experiments showed that even in the
case of INV the maximum population size is mostly about n and always linear in n
(see Figure 3, where the population size has been divided by log n and n). As for
the maximum population size, there is no evident correlation between the choice of a
particular initialization scheme and the maximum population size.

7.3.3 Average Case Optimization Time
Figure 4 shows the distribution of the expected optimization time for SMO-GP. For
multiobjective algorithms the expected optimization time is the number of evaluations

Evolutionary Computation Volume 23, Number 4 603

M. Wagner, F. Neumann, and T. Urli

Table 4: The maximum tree sizes and the maximum population sizes encountered for
SMO-GP on the multiobjective problem variants: (1) until the individual Xopt with
maximum fitness is found, (2) until the entire true Pareto front PPareto is represented by
the population. Shown are the median m and interquartile ranges iqr .

F(X) n Maximum Tree Size
Maximum Population

Size

to Xopt to PPareto to Xopt to PPareto

m iqr m iqr m iqr m iqr

SMO-GP,
with k = 1

init0 INV 80 169 4 169 4 85 1 85 1

LAS 80 159 0 159 0 81 0 81 0
HAM 80 159 0 159 0 81 0 81 0
EXC 80 159 2 159 2 81 1 81 1
RUN 80 159 0 159 0 81 0 81 0

initn INV 80 173 6 173 6 86 2 86 2
LAS 80 159 0 159 0 81 0 81 0
HAM 80 159 0 159 0 81 0 81 0
EXC 80 159 2 159 2 81 1 81 1
RUN 80 159 2 159 2 81 0 81 0

SMO-GP,
with k =
1 + Pois(1)

init0 INV 80 183 8 183 8 89 2 89 2

LAS 80 159 2 159 2 81 0 81 0
HAM 80 159 2 159 2 81 0 81 0
EXC 80 161 2 161 2 81 1 81 1
RUN 80 161 2 161 2 81 0 81 0

initn INV 80 185 10 185 10 89 3 89 3
LAS 80 159 2 159 2 81 0 81 0
HAM 80 159 2 159 2 81 0 81 0
EXC 80 161 0 161 0 81.5 1 81.5 1
RUN 80 161 2 161 2 81 0 81 0

to reach the true Pareto front. However, since for our experiments these two measures
almost always coincided, we droped the latter and promoted the comparison between
(1+1)-GP variants and SMO-GP variants.

As can be seen from the plots, the theoretical bounds on HAM, EXC, and RUN are
always verified, suggesting they are tight. As for INV and LAS, the polynomial lines
show a strong indication toward a runtime in �(n3 log n), mostly close to O(n3 log n).
Overall, when n is large, the single operation mode seems to yield better factors for the
polynomials and a lower failure rate than the multioperation mode.

8 Summary

Existing computational complexity analyses of simple genetic programming has
resulted in many insights into the inner workings. Through our theoretical and
experimental investigations, we contribute to the understanding of the algorithms.

604 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

Figure 3: Maximum population size for INV in SMO-GP, possibly quadratic but
practically linear in n.

Figure 4: Box plots showing the number of evaluations required until the first individual
with optimal fitness was found. This multiobjective approach is more reliable (albeit
slower) for solving the problem than the (1+1)-GP setups of Figures 1 and 2.

Evolutionary Computation Volume 23, Number 4 605

M. Wagner, F. Neumann, and T. Urli

Table 5: Single-objective problems: summary of proven bounds from Table 1 and our
average case conjectures.

F(X) (1+1)-GP*, F(X) (1+1)-GP, F(X)

single multi single multi

INV O(n3Tmax) O(n3Tmax) O(n log nTmax) † O(n log nTmax) †
LAS ∞ �

((
n

e

)n)
O(n log nTmax) † O(n log nTmax) †

HAM ∞ �
((

n

e

)n)
O(n3Tmax) † O(n3Tmax) †

EXC ∞ �
((

n

e

)n)
O(n3Tmax) † O(n3Tmax) †

RUN ∞ �
((

n

e

)n)
�

((
n

e

)n) † �
((

n

e

)n) †

† indicates case conjectures, Tinit denotes the size of the initial tree, and Tmax denotes
the size of the largest tree encountered during the optimization.

Table 6: Multiobjective problems: summary of proven bounds from Table 2 and our
average case conjectures.

F(X) (1+1)-GP, MO-F(X) SMO-GP, MO-F(X)

single multi single/multi

INV O(Tinit + n5), O(nTinit + n3) † O(nTinit + n3) † O
(
n2Tinit + n5

)
, O(nTinit + n3 log n) †

LAS O(Tinit + n2 log n) O(Tinit + n2 log n) O(nTinit + n3 log n) †
HAM ∞, O(n3) † O(n3) † O(nTinit + n4)
EXC ∞ O(nTinit + n5) ‡ O(nTinit + n3 log n)
RUN ∞ �

((
n

e

)n) † O(nTinit + n3 log n)

† indicates average case conjectures.
‡ marks a conjecture based on the idea that a single exchange operation can be simulated with HVL-Prime in
time O(n4). Tinit denotes the size of the initial tree, and Tmax denotes the size of the largest tree encountered
during the optimization.

We discussed two methods for dealing with bloat that frequently occurs when
using such a representation. In order to point out the differences between these two
approaches, we examined different measures of sortedness that have been analyzed for
evolutionary algorithms with fixed-length representations. Interestingly, our analysis
for the parsimony approach shows that variable-length representations might have
difficulties when dealing with simple measures of sortedness because of the presence of
local optima. Contrary to this, our runtime analysis for simple multiobjective algorithms
shows that they compute the whole Pareto front for all examined sortedness measures
in expected polynomial time. In order to complement the theoretical results, we carried
out comprehensive experimental investigations.

Crucial parameters in the theoretical analyses are the size of the largest solution
encountered during the run of the algorithm, as well as the population size when
dealing with multiobjective approaches. In addition, just a few runtime bounds for the
multioperation variants are known so far, and the tightness of all bounds is unclear.

Our empirical investigations allow us to conjecture average case complexities where
our theoretical analyses left gaps (see Tables 5 and 6):

• (1+1)-GP, F(X): When no bloat control is applied, the algorithm fails regularly
to solve RUN. INV and LAS appear to be solvable in O(n2 log n), while EXC
and HAM are solvable in O(n4).

606 Evolutionary Computation Volume 23, Number 4

Genetic Programming and SORTING

• (1+1)-GP*, F(X): This situation changes quite dramatically for the worse when
introducing the minimal bloat control mechanism of accepting new solutions
only if they are of better fitness. INV is solved in O(n4) (as theory predicted),
assuming a maximum tree size Tmax = O(n) (see Table 3). All other sortedness
measures are unsuccessful when the initial tree already has n leaves. When
initializing with the empty tree, the single-mutation variant achieves a runtime
of O(n2 log n) on LAS, EXC, and RUN, and a runtime of O(n3) on HAM.

• (1+1)-GP, MO-F(X): Here, the combination of applying just a single mutation
at a time and initializing with the empty tree is the most successful one. When
initialized with trees with C(X) = 2n − 1, the algorithm has some chance to get
stuck in a local optimum on MO-HAM but still achieves an upper bound of
O(n3) in the average case.

• SMO-GP, MO-F(X): All problems are solved in O(n3 log n), except for
MO-HAM, which is solved on average in O(n4). Regarding the missing proofs,
it should now be easy to show the O(n3 log n) for MO-INV, assuming that the
maximum population size Pmax = O(n), as supported by Figure 3.

Note that our results are based on an initial tree size Tinit, which is always linear
in n. Consequently, the O(n log n) term always dominates the Tinit term suggested by
theoretical results. In spite of this, it is easy to prove that the Tinit term can become
relevant when arbitrarily large initial trees are used.

To continue this avenue of research, it would be interesting to theoretically prove
the conjectured bounds, and to investigate how the maximum tree sizes and population
sizes can be bounded in different scenarios.

In general, in order to narrow the gap between theory and application, the investi-
gated problems need to resemble real-world problems more closely. One direction that
we might take is the analysis of variable-length algorithms when they are used for sym-
bolic regression, which is one of the most relevant use cases for genetic programming.

References

Auger, A., and Doerr, B. (2011). Theory of randomized search heuristics: Foundations and recent
developments. Singapore: World Scientific Publishing.

Briest, P., Brockhoff, D., Degener, B., Englert, M., Gunia, C., Heering, O., Jansen, T., Leifhelm,
M., Plociennik, K., Röglin, H., Schweer, A., Sudholt, D., Tannenbaum, S., and Wegener,
I. (2004). Experimental supplements to the theoretical analysis of EAs on problems from
combinatorial optimization. In Proceedings of the International Conference on Parallel Problem
Solving from Nature, pp. 21–30. Lecture Notes in Computer Science, Vol. 3242.

Cathabard, S., Lehre, P. K., and Yao, X. (2011). Non-uniform mutation rates for problems with
unknown solution lengths. In Proceedings of the Workshop on Foundations of Genetic Algorithms,
pp. 173–180.

Doerr, B., and Goldberg, L. A. (2010). Drift analysis with tail bounds. In Proceedings of the In-
ternational Conference on Parallel Problem Solving from Nature, pp. 174–183. Lecture Notes in
Computer Science, Vol. 6238.

Doerr, B., and Happ, E. (2008). Directed trees: A powerful representation for sorting and or-
dering problems. In Proceedings of the IEEE World Congress on Computational Intelligence,
pp. 3606–3613.

Evolutionary Computation Volume 23, Number 4 607

M. Wagner, F. Neumann, and T. Urli

Durrett, G., Neumann, F., and O’Reilly, U.-M. (2011). Computational complexity analysis of
simple genetic programing on two problems modeling isolated program semantics. In Pro-
ceedings of the Workshop on Foundations of Genetic Algorithms, pp. 69–80.

Evolved Analytics LLC (2010). DataModeler 8.0. www.evolved-analytics.com

Falco, I. D., Tarantino, E., Cioppa, A. D., and Gagliardi, F. (2005). A new variable-length genome
genetic algorithm for data clustering in semiotics. In Proceedings of the ACM Symposium on
Applied Computing, pp. 923–927.

Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., and Witt, C. (2010). Approximating cover-
ing problems by randomized search heuristics using multi-objective models. Evolutionary
Computation, 18:617–633.

Giel, O. (2003). Expected runtimes of a simple multi-objective evolutionary algorithm. In Proceed-
ings of the Congress on Evolutionary Computation, pp. 1918–1925.

Giel, O., and Lehre, P. K. (2010). On the effect of populations in evolutionary multi-objective
optimisation. Evolutionary Computation, 18:335–356.

Kötzing, T., Sutton, A. M., Neumann, F., and O’Reilly, U.-M. (2012). The max problem revis-
ited: The importance of mutation in genetic programming. In Proceedings of the International
Conference on Genetic and Evolutionary Computation Conference (GECCO), pp. 1333–1340.

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection.
Cambridg, MA: MIT Press.

Lässig, J., and Sudholt, D. (2010). Experimental supplements to the theoretical analysis of mi-
gration in the island model. In Proceedings of the International Conference on Parallel Problem
Solving from Nature, pp. 224–233. Lecture Notes in Computer Science, Vol. 6238.

Laumanns, M., Thiele, L., and Zitzler, E. (2004). Running time analysis of multiobjective evolution-
ary algorithms on pseudo-Boolean functions. IEEE Transactions on Evolutionary Computation,
8:170–182.

Lee, C., and Antonsson, E. K. (2000). Variable length genomes for evolutionary algorithms. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), p. 806.

Mambrini, A., Manzoni, L., and Moraglio, A. (2013). Theory-laden design of mutation-based
geometric semantic genetic programming for learning classification trees. In Proceedings of
the Congress on Evolutionary Computation, pp. 416–423.

Moraglio, A., Mambrini, A., and Manzoni, L. (2013). Runtime analysis of mutation-based geo-
metric semantic genetic programming on Boolean functions. In Proceedings of the Conference
on Foundations of Genetic Algorithms, pp. 119–132.

Neumann, F. (2012). Computational complexity analysis of multi-objective genetic programming.
In Proceedings of the International Conference on Genetic and Evolutionary Computation (GECCO),
pp. 799–806.

Neumann, F., and Wegener, I. (2005). Minimum spanning trees made easier via multi-objective
optimization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),
pp. 763–770.

Neumann, F., and Witt, C. (2010). Bioinspired computation in combinatorial optimization: Algorithms
and their computational complexity. New York: Springer.

Neumann, F., O’Reilly, U.-M., and Wagner, M. (2011). Computational complexity analysis of
genetic programming: Initial results and future directions. In R. Riolo, E. Vladislavleva,
and J. H. Moore (Eds.), Genetic programming theory and practice IX, Genetic and evolutionary
computation, pp. 113–128. New York: Springer.

608 Evolutionary Computation Volume 23, Number 4

file:www.evolved-analytics.com

Genetic Programming and SORTING

Nguyen, A., Urli, T., and Wagner, M. (2013). Single- and multi-objective genetic programming:
New bounds for weighted order and majority. In Proceedings of the Workshop on Foundations
of Genetic Algorithms, pp. 161–172.

O’Reilly, U.-M. (1995). An analysis of genetic programming. Unpublished doctoral dissertation,
Carleton University, Ottawa, ON K1S 5B6.

O’Reilly, U.-M., and Oppacher, F. (1994). Program search with a hierarchical variable length
representation: Genetic programming, simulated annealing and hill climbing. In Proceedings
of the International Conference on Parallel Problem Solving from Nature, pp. 397–406. Lecture
Notes in Computer Science, Vol. 866.

Scharnow, J., Tinnefeld, K., and Wegener, I. (2004). The analysis of evolutionary algorithms
on sorting and shortest paths problems. Journal of Mathematical Modelling and Algorithms,
3:349–366.

Urli, T., Wagner, M., and Neumann, F. (2012). Experimental supplements to the computational
complexity analysis of genetic programming for problems modelling isolated program se-
mantics. In Proceedings of the International Conference on Parallel Problem Solving from Nature,
pp. 102–112. Lecture Notes in Computer Science, Vol. 7491.

Wagner, M., and Neumann, F. (2012). Parsimony pressure versus multi-objective optimization
for variable length representations. In Proceedings of the International Conference on Parallel
Problem Solving from Nature, pp. 133–142. Lecture Notes in Computer Science, Vol. 7491.

Wagner, M., and Neumann, F. (2014). Single- and multi-objective genetic programming: New
runtime results for sorting. In Proceedings of the IEEE Congress on Evolutionary Computation,
Special Session, pp. 125–132.

Wegener, I. (2002). Methods for the analysis of evolutionary algorithms on pseudo-Boolean
functions. In R. Sanker, M. Mohammadian, and X. Yao (Eds.), Evolutionary optimization, pp.
349–369. New York: Springer.

Evolutionary Computation Volume 23, Number 4 609

