Single- and Multi-Objective Genetic Programming: New Runtime Results for SORTING

Markus Wagner and Frank Neumann
Overview

Genetic Programming (GP):

- Highly complex GP variants address challenging problems, e.g., in symbolic regression
- Currently, it seems to be impossible to analyse these complex variants on complex problems.

Our key questions

- Which optimisation problems can provably be solved by (simple) GPs in polynomial time?
- Can we provide design support to a practitioner?
Current Status “EA Theory”

Computational Complexity Analysis of Evolutionary Computing

- EAs for discrete combinatorial optimisation (lots of results)
- Evolutionary Multi-Objective Optimisation (many results)
- Ant Colony Optimisation (some results)
- EAs for continuous optimisation (initial results)
- Particle Swarm Optimisation (initial results)

- **Our Goal**: Rigorous insights into the working principles of GP using existing approaches!
Current Status “GP Theory”

Initial article [Durrett/Neumann/O'Reilly 2011]
“GP Computational Complexity on ORDER/MAJORITY”

Properties of the functions:
- Separable (subproblems can be optimised independently)
- Admit multiple solutions

- MAX problem, generalised ORDER/MAJORITY
- Different mutation strategies
- Different multi-objective GPs

In summary:
- Techniques: fitness-based partitions, random walks, coupon collector arguments, drift analysis, failure events, ...
- many bounds known
One of the basic problems in computer science.

Optimisation problem: maximise the sortedness in a given permutation of elements.

First combinatorial optimisation problem analysed for EAs.

Many measures of sortedness work provably well for permutation based EAs (Scharnow/Tinnefeld/Wegener 2002).
Measures of Sortedness

Given a permutation s (e.g. 1 3 2 4 5)

- $\text{INV}(s)$: pairs in order in s
- $\text{HAM}(s)$: Hamming distance to optimum
- $\text{RUN}(s)$: number of ascending (sorted) subsequences
- $\text{LAS}(s)$: longest ascending sequence length
- $\text{EXC}(s)$: number of pairwise exchanges

Scharnow/Tinnefeld/Wegener 2002: Polynomial upper bounds for all functions, except RUN.
GP and SORTING

Four Algorithms

- Tree-based approaches
- Inorder parse leads to (incomplete) permutation**
- Consider different sortedness (fitness) measures
Algorithms (summary)

(1+1)-GP*, F(X)

(1+1)-GP, F(X)
requires: not worse
noteworthy: no bloat control

(1+1)-GP, MO-F(X)
requires: at least not longer
noteworthy: parsimony pressure towards shorter solutions

SMO-GP, MO-F(X)
requires: weak dominance
noteworthy: number of different sortedness values limits population size
Variation Operator: HVL-mutate

With equal probability, do...

Choice of parameter k:
- $k=1$ do a single operation
- $k=1+\text{Poisson}(1)$ do multiple operations
Results (before this paper)

<table>
<thead>
<tr>
<th>F(X)</th>
<th>(1+1)-GP*, F(X)</th>
<th>(1+1)-GP, F(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>single</td>
<td>multi</td>
</tr>
<tr>
<td>INV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F(X)</th>
<th>(1+1)-GP, MO-F(X)</th>
<th>SMO-GP, MO-F(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>single</td>
<td>single/multi</td>
</tr>
<tr>
<td>INV</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>LAS</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>HAM</td>
<td>∞</td>
<td>$O(nT_{init} + n^4)$</td>
</tr>
<tr>
<td>EXC</td>
<td>∞</td>
<td>$O(nT_{init} + n^3 \log n)$</td>
</tr>
<tr>
<td>RUN</td>
<td>∞</td>
<td>$O(nT_{init} + n^3 \log n)$</td>
</tr>
</tbody>
</table>
Results (*this paper)

<table>
<thead>
<tr>
<th>F(X)</th>
<th>(1+1)-GP*, F(X)</th>
<th>(1+1)-GP, F(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>single</td>
<td>multi</td>
</tr>
<tr>
<td>INV</td>
<td>(O(n^3 T_{max})) *</td>
<td>(O(n^3 T_{max})) *</td>
</tr>
<tr>
<td></td>
<td>(\infty) *</td>
<td>(\Omega \left(\left(\frac{1}{e} \right)^n \right)) *</td>
</tr>
<tr>
<td>LAS</td>
<td>(\infty) *</td>
<td>(\Omega \left(\left(\frac{1}{e} \right)^n \right)) *</td>
</tr>
<tr>
<td>HAM</td>
<td>(\infty) *</td>
<td>(\Omega \left(\left(\frac{1}{e} \right)^n \right)) *</td>
</tr>
<tr>
<td>EXC</td>
<td>(\infty) *</td>
<td>(\Omega \left(\left(\frac{1}{e} \right)^n \right)) *</td>
</tr>
<tr>
<td>RUN</td>
<td>(\infty) *</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(1+1)-GP, MO-F(X)</th>
<th>SMO-GP, MO-F(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>single</td>
<td>multi</td>
</tr>
<tr>
<td>INV</td>
<td>(O(T_{init} + n^5)) *</td>
<td>?</td>
</tr>
<tr>
<td>LAS</td>
<td>(O(T_{init} + n^2 \log n)) *</td>
<td>(O(2T_{init} + n^5)) *</td>
</tr>
<tr>
<td>HAM</td>
<td>(\infty)</td>
<td>?</td>
</tr>
<tr>
<td>EXC</td>
<td>(\infty)</td>
<td>?</td>
</tr>
<tr>
<td>RUN</td>
<td>(\infty)</td>
<td>?</td>
</tr>
</tbody>
</table>

Advertisement
Approximation-Guided Evolution (AGE)
- Theory-motivated
- many dimension (2-20D)
At least not longer

\[\text{med(eval)} \]
\[\underline{\text{poly}} \]
\[n^2 \log(n) \quad n^3 \quad n^3 \log(n) \quad n^4 \quad n^5 \]

% fail. \[\square 0 \quad \square 10 \quad \square 20 \quad \square 30 \quad \square 40 \]
Algorithms (summary)

(1+1)-GP*, F(X) number of sortedness improving steps
limits solution size

(1+1)-GP, F(X) no bloat control

(1+1)-GP, MO-F(X) parsimony pressure

SMO-GP, MO-F(X) number of different sortedness values
limits population size
Results SMO-GP

Proof idea:
1. Introduce the empty solution in $O(kT_{\text{init}})$
2. Build up the Pareto front step by step.

Polynomial bounds for SMO-GP–single/-multi using INV & LAS
Algorithm (1/4)

(1+1)-GP*-single for maximisation

1. Choose an initial solution X;
2. repeat
3. \hspace{1em} Set $Y := X$;
4. \hspace{1em} Apply the mutation operator with $k = 1$ to Y;
5. \hspace{1em} if $f(Y) > f(X)$ then set $X := Y$;
Algorithm (1/4)
(1+1)-GP*-single for maximisation

1 Choose an initial solution X;
2 repeat
3 \hspace{1em} Set $Y := X$;
4 \hspace{1em} Apply the mutation operator with $k = 1$ to Y;
5 \hspace{1em} \textbf{if} $f(Y) > f(X)$ \hspace{1em} \textbf{then} set $X := Y$;
Algorithm (2/4)
(1+1)-GP - single for maximisation

1 Choose an initial solution X;
2 repeat
3 \quad Set $Y := X$;
4 \quad Apply the mutation operator with $k = 1 \text{ to } Y$;
5 \quad if $f(Y) \geq f(X)$ then set $X := Y$;
Algorithm (3/4)
(1+1)-GP - single for maximisation

1. Choose an initial solution X;
2. repeat
3. Set $Y := X$;
4. Apply the mutation operator with $k = 1$ to Y;
5. if $f(Y) \geq f(X)$ then set $X := Y$;

Parsimony pressure to favour short solutions: use MO-F(X) instead of F(X)

MO-F(Y) \geq MO-F(X) holds iff $F(Y) > F(X)$ or $(F(Y) = F(X)$ and $C(Y) \leq C(X))$
Algorithm (4/4)
SMO-GP

1 Choose an initial solution X;
2 Set $P := \{X\}$;
3 repeat
4 \[
\text{Choose } X \in P \text{ uniformly at random;}
\]
5 Set $Y := X$;
6 Apply mutation to Y;
7 if $\{Z \in P \mid Z \succeq Y\} = \emptyset$ then set
8 \[
P := (P \setminus \{Z \in P \mid Z \succ Y\}) \cup \{Y\};
\]
A proper MO algorithm for the sortedness $F(X)$ and the solution quality $C(X)$.
Results \((1+1)-GP^*\)

→ The expected optimisation time is \(O(n^3T_{max})\) using INV.

Proof based on fitness-based partition:

- \(n(n-1)/2+1\) different sortedness values possible
- Probability to make an improving mutation:
 \[
 \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{n} \cdot \frac{1}{T_{max}} = \Omega \left(\frac{1}{nT_{max}} \right)
 \]
- Overall optimisation time bounded by:
 \[
 \sum_{k=0}^{n \cdot (n-1)/2} O(nT_{max}) = O(n^3T_{max})
 \]

For HAM, LAS, RUN & EXC: local optima exist that can only be left in expected exponential time with \(n\) mutations.
Results (1+1)-GP

⇒ No results for the (1+1)-GP, F(X).

⇒ The expected optimisation time of (1+1)-GP-single on MO-LAS is $O(T_{\text{init}} + n^2 \log n)$.

Proof idea:

- Deleting all blocking and surplus leaves takes $O(T_{\text{init}} + n \log n)$
- Correctly inserting the missing leaves then takes $O(n^2 \log n)$

“Multi” case: a sortedness improvement may be accompanied by the insertion of many elements...
Results (1+1)-GP

Bound the solution size \[t = \text{poly}(n) \text{ steps and } C(T_{\text{init}}) = \text{poly}(n) \]

- Failure probability for inserting at most \(n^\epsilon \) in a single HVL operation is \(e^{-\Omega(n^\epsilon)} \).
- For LAS and EXC, at most \(n \) sortness improving steps are possible.
- Thus, the failure probability for adding at most \(nn^\epsilon \) in \(t \) time steps is \(te^{-\Omega(n^\epsilon)} = e^{-\Omega(n^\epsilon)} \).
- Thus, the size does not exceed \(T_{\text{init}} + nn^\epsilon \) within \(\text{poly}(t) \) time steps, with high probability.

⇒ The optimisation time of (1+1)-GP-multi on MO-LAS is \(O(T_{\text{init}} + n^2 \log n) \), with probability 1-\(o(1) \).

Proof idea:
- As before
- Use Chernoff bounds and multiplicative drift with tail bounds to consider multiple mutations.
Methods

Huge set of methods for the analysis is available:

- Fitness-based partitions
- Expected distance decrease
- Coupon Collector’s Theorem
- Markov, Chebyshev, Chernoff, Hoeffding bounds
- Markov chain theory: waiting times, first hitting times
- Rapidly mixing Markov chains
- Random walks: gambler’s ruin, drift analysis, martingale theory
- Identifying typical events and failure events
- Potential functions
Computational Complexity Analysis

Black Box Scenario
- Measure the runtime T by the number of fitness evaluations.
- Consider time to reach
 - an optimal solution
 - a good approximation

Alternative: Analyse
- expected number of fitness evaluations
- success probability after a fixed number of t steps.
Introduction

There are many
- successful applications and
- experimental studies
of Genetic Programming.

We want to
- argue in a rigorous way about GP algorithms and
- contribute to their theoretical understanding.

This is also important for the acceptance of GP outside the EC community.
Classical Algorithm Analysis

- Classical algorithm analysis has a large focus on runtime and approximation behavior of algorithms.

Our key questions

- Which optimization problems can provably be solved by (simple) GPs in polynomial time?
- (Which functions can provably be learned by (simple) GP systems in polynomial time?)