Heuristically Creating Test Cases for Program Verification Systems

Joint work with Bernard Beckert and Thorsten Bormer from the Karlsruhe Institute of Technology
Who guards the guardians?

How to improve trust in verification systems?

Modern verification systems are large and complex systems

• Soundness bugs are not rare
• Such bugs are often hard to detect in a real proof
“Auto-active” Verification Systems

Validating verification systems by

- Formal methods
- Code inspection
- Testing
- ...

Program + Spec → Verification System → Validation
Program Language Semantics

Static checkers Verifying compilers Logic frameworks

We have to test both!
But how to determine the quality of the test cases?
A test case is a program P, together with requirement and auxiliary specifications.

Computing coverage for the test cases takes from a few minutes to several hours.
Case study: KeY
The KeY System

- Deductive verification system for JavaCard
- Sequent calculus for Java Dynamic Logic, uses symbolic execution for Java programs
- Interactive verification with automatic proof mode
Coverage Results (naïve, TAP 2013)

The 319 completeness tests of KeY covered 31% of all axioms (474 out of 1520).
Heuristic Approaches
Reusing Test Cases

Idea: given a test case T, run the tool with just a subset of the 1520 axioms.

- Axioms / $\{\text{axiom}_1\}$
- Axioms / $\{\text{axiom}_2\}$
- Axioms / $\{\text{axiom}_3\}$

滴掉一个

essential

axiom

New coverage

- Drop one essential axiom
- New coverage
Reusing Test Cases

Three simple heuristics to pick the “next axiom to drop”:

1. Depth-first
2. Random selection
3. Greedy (try to remove groups)

Complimentary by design, verified by experiments (see Table 3).
Three simple heuristics to pick the “next axiom to drop”:
[0. Base case] 474 (31%)
1. Depth-first
2. Random selection
3. Greedy (try to remove groups)

Complimentary by design, verified by experiments (see Table 3).
Clustering Analysis (excerpt)
MIC 2015 NOTTINGHAM

Dario Silva & Per Kristian Lehre
Markus Wagner

University of Nottingham
University of Adelaide
Test Case Selectivity

Only specific test cases, or test cases with broad coverage for an axiom may not be sufficient.