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ABSTRACT
Approximation-Guided Evolution (AGE) [4] is a recently presented
multi-objective algorithm that outperforms state-of-the-art multi-
multi-objective algorithms in terms of approximation quality. This
holds for problems with many objectives, but AGE’s performance
is not competitive on problems with few objectives. Furthermore,
AGE is storing all non-dominated points seen so far in an archive,
which can have very detrimental effects on its runtime. In this ar-
ticle, we present the fast approximation-guided evolutionary algo-
rithm called AGE-II. It approximates the archive in order to control
its size and its influence on the runtime. This allows for trading-off
approximation and runtime, and it enables a faster approximation
process. Our experiments show that AGE-II performs very well for
multi-objective problems having few as well as many objectives. It
scales well with the number of objectives and enables practitioners
to add objectives to their problems at small additional computa-
tional cost.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search—Heuristic Methods

Keywords
Approximation, Evolutionary Algorithms, Multi-Objective Opti-
mization

1. INTRODUCTION
Almost all real-world optimization problems have multiple and

conflicting objectives. Therefore, such multi-objective optimiza-
tion (MOO) problems do not have a single optimal function value,
but usually encounter a wide range of function values with respect
to the different objective functions where one can not improve one
objective without worsening another one. The set of all the dif-
ferent trade-offs according to a given set of objective functions is
called the Pareto front of the underlying multi-objective optimiza-
tion problem. Even for two objectives the set of these trade-offs
can become exponential with respect to the given input for discrete
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optimization problems or even infinite in the case of continuous
optimization.

Evolutionary algorithms (as almost all other algorithms) for
multi-objective optimization restrict themselves to a smaller set of
solutions that should be a good approximation of the Pareto front.
Often, researchers in the field of evolutionary multi-objective op-
timization do not use a formal notion of approximation. Evolu-
tionary multi-objective optimization focus on two goals. The first
one is to get to the Pareto front and the second one is to distribute
the points along the Pareto front. The first goal is usually achieved
by optimizing the multi-objective problems according to the un-
derlying dominance relation, whereas the second goal should be
reached by the diversity mechanism that is usually incorporated
into the algorithm. There are different evolutionary algorithms for
multi-objective optimization such as NSGA-II [7], SPEA2 [22], or
IBEA [21], which try to achieve these goals by preferring diverse
sets of non-dominated solutions. However, they do not use a for-
mal notation of approximation, which makes it hard to evaluate and
compare algorithms for MOO problems.

Recently, approximation-guided evolution (AGE) [4] has been
introduced, which allows to incorporate a formal notion of approxi-
mation into a multi-objective algorithm. This approach is moti-
vated by studies in theoretical computer science studying multi-
plicative and additive approximations for given multi-objective op-
timization problems [5, 6, 9, 20]. Nevertheless, it is very flexible
and can (in principle) work with any formal notion of approxima-
tion. In this field of evolutionary multi-objective optimization, the
frequently used hypvervolume indicator [23] allows for a related
approach, which is however much harder to understand with re-
spect to its optimization goal [2, 12]. Furthermore, the theoretical
studies on ε-dominance [15] follow similar ideas, but they have not
lead to successful algorithms. The reason is that it does not adjust
itself to the optimization problem, but it works with a pre-set value
for the target approximation.

The framework of AGE presented in [4] is adaptable, it works
with a given formal notion of approximation, and it improves the
approximation quality during its iterative process. As the algorithm
cannot have complete knowledge about the true Pareto front, it uses
the best knowledge obtained so far during the optimization process.
The experimental results in [4] show that given a fixed time budget
AGE outperforms current state-of-the-art algorithms in terms of the
desired additive approximation, as well as the covered hypervol-
ume on standard benchmark functions. In particular, this holds for
problems with many objectives, which most other algorithms have
difficulties dealing with.

Despite its good performance, the runtime of AGE can suffer
in many-dimensional objective spaces. New incomparable solu-
tions are inserted unconditionally into AGE’s archive, independent



of how different they are. These unconditional insertions can lead
to huge archives that consequently slow down the algorithm.

We propose a fast and effective approximation-guided evolution-
ary algorithm called AGE-II. It is fast and performs well for prob-
lems with many as well as few objectives. It can be seen as a
generalization of AGE, but it allows to trade-off archive size and
speed of convergence. To do so, we adapt the ε-dominance ap-
proach [15] in order to approximate the different points seen so far
during the run of the algorithm (for similar approaches see, e.g.,
[17, 18]). Furthermore, we change the selection of parents being
used for reproduction such that the algorithm is able to achieve
a better spread along the Pareto front. Our experimental results
show that AGE-II is fast, highly effective and outperforms the best-
known approaches in terms of approximation quality measured by
the additive approximation for problems up to 20 objectives.

The outline of this paper is as follows. We introduce some basic
definitions as well as the original AGE in Section 2. In Section 3
we introduce our algorithm. In Section 4 we showcase the com-
putational speed-up. In Section 5 we report on our experimental
investigations. Finally, we finish with some conclusions.

2. MULTI-OBJECTIVE APPROXIMATION
GUIDED EVOLUTION

We now formalize the setting of multi-objective optimization and
summarize the approximation-guided evolution approach of [4].

2.1 Multi-objective optimization
In multi-objective optimization the task is to optimize a function

f = (f1, . . . , fd) : S → Rd+ with d ≥ 2, which assigns to each
element s ∈ S a d-dimensional objective vector. Each objective
function fi : S 7→ R, 1 ≤ i ≤ d, maps from the considered search
space S into the positive real values. Elements from S are called
search points and the corresponding elements f(s) with s ∈ S are
called objective vectors.

Throughout this paper, we consider the minimization problems
of d objectives. In multi-objective optimization the given objective
functions fi are usually conflicting, which implies that there no sin-
gle optimal objective vector. Instead of this the Pareto dominance
relation is defined, which is a partial order. In order to simplify the
presentation we only work with the Pareto dominance relation on
the objective space and mention that this relation transfers to the
corresponding elements of S.

The Pareto dominance relation � between two objective vectors
x = (x1, . . . , xd) and y = (y1, . . . , yd), with x, y ∈ Rd is defined
as

x � y :⇔ xi ≤ yi for all 1 ≤ i ≤ d.

We say that x dominates y iff x � y. If

x ≺ y :⇔ x � y and x 6= y

holds, we say that x strictly dominates y as x is not worse than y
with respect to any objective, and at least better with respect to one
of the d objectives.

The objective vectors x and y are called incomparable if

x ‖ y :⇔ ¬(x � y ∨ y � x)

holds. Two objective vectors are therefore incomparable if there are
at least two (out of the d) objectives where they mutually beat each
other. An objective vector x is called Pareto optimal if there is no
y = f(s) with s ∈ S for which y ≺ x holds. The set of all Pareto
optimal objective vectors is called the Pareto front of the problem
given by f . Note that the Pareto front is a set of incomparable
objective vectors.

Even for two objectives the Pareto front might grow exponen-
tially with respect to the problem size. Therefore, algorithms for
multi-objective optimization usually have to restrict themselves to
a smaller set of solutions. This smaller set is then the output of the
algorithm.

We make the notion of approximation precise by consider-
ing a weaker relation on the objective vectors called additive ε-
dominance. It is defined as

x �ε+ y :⇔ xi + ε ≤ yi for all 1 ≤ i ≤ d.

Furthermore, we also define additive approximation of a set of ob-
jective vectors T with respect to another set of objective vectors
S.

DEFINITION 1. For finite sets S, T ⊂ Rd, the additive approxi-
mation of T with respect to S is defined as

α(S, T ) := max
s∈S

min
t∈T

max
1≤i≤d

(si − ti).

We will use Definition 1 in order to judge the quality of a popu-
lation P with respect to a given archive A. In this way, we have a
measure on how good the current population is with respect to the
search points seen during the run of the algorithm.

Although, we are only using the notion of additive approxima-
tion, we would like to mention that our approaches can be easily
adapted to multiplicative approximation. To do this, we only need
to adjust the definitions accordingly.

Note that this indicator is sensitive to outliers. We prefer this
over taking the average of the approximations. The resulting indi-
cator would become very similar to the generational distance [19],
and it would lose its motivation from theory.

2.2 Approximation-Guided Evolution (AGE)
Definition 1 allows to measure the quality of the population of

an evolutionary algorithm with respect to a given set of objective
vectors. AGE [4] is an evolutionary multi-objective algorithm that
works with this formal notion of approximation. It stores an archive
A consisting of the non-dominated objectives vectors found so far.
Its aim is to minimize the additive approximation α(A,P ) of the
population P with respect to the archive A.

The experimental results presented in [4] show that given a fixed
time budget it outperforms current state-of-the-art algorithms such
as NSGA-II, SPEA2, IBEA, and SMS-EMOA in terms of the de-
sired additive approximation, as well as the covered hypervolume
on standard benchmark functions. In particular, this holds for prob-
lems with many objectives, which most other algorithms have dif-
ficulties dealing with.

Quite surprisingly, it is the other way around when the problems
have just very few objectives. As can be seen in Figure 5 (that will
serve us for our final evaluation), the original AGE ( ) is clearly
outperformed by other algorithms in several cases when the prob-
lem has just two to three objectives. We identified the following
two important and disadvantageous properties of AGE:

1. A new but incomparable point is added to the archive inde-
pendent of how different it is (see Line 10, Algorithm 3, [4])).
These unconditional insertions can lead to huge archives that
consequently slow down the algorithm. In Section 3.1, we
introduce a technique to approximate the set of incompara-
ble solutions seen.

2. The parents for the mating process are selected uniformly at
random (see Line 6, Algorithm 3, [4])). Interestingly, this
random selection does not seem to be detrimental to the al-
gorithm’s performance on problems with many objectives.



Algorithm 1: Outline of AGE-II

1 Initialize population P with µ random individuals;
2 Set εgrid the resolution of the approximative archive Aεgrid ;
3 foreach p ∈ P do
4 Insert offspring floor(p) in the approximative archive

Aεgrid such that only non-dominated solutions remain;

5 foreach generation do
6 Initialize offspring population O ← ∅;
7 for j ← 1 to λ do
8 Select two individuals from P (see Section 3.2);
9 Apply crossover and mutation;

10 Add new individual to O;

11 foreach p ∈ O do
12 Insert offspring floor(p) in the approximative archive

Aεgrid such that only non-dominated solutions remain;
13 Discard offspring p if it is dominated by any point

increment(a), a ∈ A;

14 Add offsprings to population, i.e., P ← P ∪O;
15 while |P | > µ do
16 Remove p from P that is of least importance to the

approximation (for details on this step see [4]);

Algorithm 2: Function floor

input : d-dimensional objective vector x, archive parameter
εgrid

output: Corresponding vector v on the ε-grid

1 for i = 1 to d do v[i]←
⌊
x[i]
εgrid

⌋
;

Algorithm 3: Function increment

input : d-dimensional vector x, archive parameter εgrid
output: Corresponding vector v that has each of its

components increased by 1

1 for i = 1 to d do v[i]← o[i] + 1 ;

However, realizing that the selection process might be im-
proved motivated us to investigate algorithm-specific selec-
tion processes (see Section 3.2).

Of course, it is not clear whether approximating the archive gives
an approximation of the Pareto front. However, the intuition is that
after some time the archive approximates the front quite well, so
that an approximation of the archive directly yields an approxima-
tion of the front. The experiments presented later-on show that this
intuition is right, as our algorithm indeed finds good approxima-
tions of the fronts.

3. AGE-II
In this section, we present our algorithm. We show how we adapt

the ε-dominance approach (author?) [15] in order to approximate
the different points seen so far during the run of the algorithm. Sub-
sequently, we motivate our parent selection strategy.

3.1 Archive Approximation
The size of the archive can grow to sizes that slow down the orig-

inal AGE tremendously. Interestingly, we are thus facing a problem

f1

f2

εgrid 2 · εgrid 3 · εgrid 4 · εgrid

εgrid

2 · εgrid

3 · εgrid

Pareto front

A

P

Pε

Q

Qε

RRε

Figure 1: The newly generated points P , Q, and R are shown
with their corresponding additive ε-approximations Pε, Qε, and
Rε. Both objectives f1 and f2 are to be minimised, and the
current approximative archive is represented by . Only Pε will
be added to the approximative archive, replacingA. Both P and
Q will be candidates for the selection process to form the next
population.

that is similar to the original problem of multi-objective optimisa-
tion: a set of solutions is sought that nicely represents the true set
of compromise solutions. In order to achieve this, we reuse AGE’s
own main idea of maintaining a small set that approximates the true
Pareto front. By approximating the archive as well in a controlled
manner, we can guarantee a maximum size of the archive, and thus
prevent the archive from slowing down the selection procedure. We
achieve this based on the idea of ε-dominance introduced in (au-
thor?) [15]. Instead of using an archive At that stores at any point
in time t the whole set of non-dominated objective vectors, we are
using an archive A(t)

εgrid that stores an additive ε-approximation of
the non-dominated objective vectors produced until time step t.

In order to maintain such an approximation during the run of the
algorithm, a grid on the objective space is used to pick a small set
of representatives (based on ε-dominance). We reuse the update-
mechanism from [15], and thus can maintain the ε-Pareto setA(t)

εgrid

of the set A(t) of all solutions seen so far. Due to [15], the size is
bounded by ∣∣∣A(t)

εgrid

∣∣∣ ≤ m−1∏
j=1

⌊
K

εgrid

⌋
where

K =
d

max
i=1

(
max
s∈S

fi(s)

)
is the maximum function value attainable among all objective func-
tions.

Our new algorithm called AGE-II is parametrized by the desired
approximation quality εgrid ≥ 0 of the archive with respect to the
seen objective vectors. AGE-II is shown in Algorithm 1, and it uses
the helper functions given in Algorithms 2 and 3. The latter is used
to perform a relaxed dominance check on the offspring p in Line 13.
A strict dominance check here would require an offspring to be
not dominated by any point in the entire archive. However, as the
archive approximates all the solutions seen so far (via the flooring),
it might very unlikely, or even impossible, to find solutions that
pass the strict dominance test.

3.2 High Performance for Lower Dimensions
Quite interestingly, and despite AGE’s good performance on

problems with many objective, it is clearly outperformed by other



algorithms in several cases, when the problem has just two or three
objectives. The key discovery is that the random parent selection
of AGE is free of any bias. For problems with many objectives, this
is not a problem, and can even be seen as its biggest advantage. For
problems with just a few objectives, however, it is well known that
one can do better than random selection, such as selection based on
crowding distance, hypervolume contribution, etc. Such strategies
then select potential candidates based on their relative position in
the current population. For AGE, the lack of this bias means that
solutions can be picked for parents that are not necessarily candi-
dates with high potential. Consequently, it is not surprising to see
that the original AGE is outperformed by algorithms that do well
with their parent selection strategy, if their strategy is effective in
the d-dimensional objective space.

Based on the previous experiments, we choose the following
parent selection strategy for the final comparison against the es-
tablished algorithms. Firstly, the population is reduced: solutions
in the front i have a probability of 1/i of staying in the popula-
tion. Secondly, a binary tournament on two randomly selected so-
lutions from the reduced pool is performed for the parent selec-
tion, where solutions of higher crowding distance are preferred.
The consequence of the reduction is that all solutions that form
the first front are kept in the population, so are the extreme points.
Additionally, solutions that are dominated multiple times are less
likely to be selected as a potential parent. The use of the crowd-
ing distance then helps with maintaining a diverse set of solutions
in low-dimensional objective space. Both steps taken together sig-
nificantly increase the selection pressure over the original random
selection in AGE. At the same time, they are quick to compute and
their effects diminish when the number of objectives increases.

4. SPEED-UP THROUGH APPROXIMA-
TIVE ARCHIVES

AGE-II works at each time step t with an approximation A(t)
εgrid

of the set of non-dominated points At seen until time step t. Note,
that setting εgrid = 0 implies the original AGE approach that stores
every non-dominated objective vector. In this section, we want to
investigate the effect of working with different archives sizes (de-
termined by the choice of εgrid ) in AGE-II. Our goal is to under-
stand the effect of the choice of this parameter on the actual archive
size used during the run of the algorithm as well as on the approxi-
mation quality obtained by AGE-II.

Next, we outline the results of our experimental investigation
of the influence of approximative archives on the runtime and the
solution qualities. Note, that the computational complexity of the
original AGE is linear in the number of objectives, and this holds
for AGE-II, too. The algorithm was implemented in the jMetal
framework [10] and is publicly available1.

The parameter setup of AGE-II is as follows. As varia-
tion operators, the polynomial mutation and the simulated binary
crossover [1] were applied, which are both used widely in MOO
algorithms [7, 13, 22]. The distribution parameters associated with
the operators were ηm = 20.0 and ηc = 20.0. The crossover op-
erator is biased towards the creation of offspring that are close to
the parents, and was applied with pc = 0.9. The mutation oper-
ator has a specialized explorative effect for MOO problems, and
was applied with pm = 1/(number of variables). Population size
was set to µ = 100 and λ = 100, and each setup was given a
budget of 100,000 evaluations. We assess the selection schemes
and algorithms using the additive approximation measures ([4]):
we approximate the achieved additive approximation of the known
1http://cs.adelaide.edu.au/~ec/research/age.php

Pareto fronts by first drawing one million points of the front uni-
formly at random and then computing the additive approximation
that the final population achieved for this set.

Figure 2 shows the results averaged over 100 independent runs.
Note how different the archive growth is for the different selected
functions in the cases of εgrid = 0, where every non-dominated
point is stored. For DTLZ 1, d = 2 the archive stays very small,
with about 80 solutions in the end. Even in the case of DTLZ 3,
d = 10 (a function with a similar objective space to that of DTLZ 1)
only about every tenth solution is kept in the archive, which eventu-
ally contains about 9,000 solutions. For the similar objective spaces
of DTLZ 2, d = 3 and DTLZ 4, d = 20 this situation is signifi-
cantly different, and the rate of producing non-dominated points is
significantly higher. In the case of the latter, over 90% of all gener-
ated solutions are added to the archive, if the insertion is just based
on non-dominance. This situation changes only slightly, when a
relatively "coarse" εgrid = 0.1 is used. For DTLZ 3, d = 10, the
same value of the grid results in an enormous reduction in archive
size.

Consequently, the choice of εgrid has a significant impact on the
runtime and even on the solution quality. For DTLZ 1, d = 2 the
quality of the final population can be increased, whereas the use
of an approximative archive has little impact on the archive size
in this case. Of the tested values for DTLZ 2, d = 3 the choice
of εgrid = 0.01 offers a speed-up by a factor of eight. Additional
speed-ups can be achieved, but they come at the cost of worse final
approximations. For DTLZ 3, d = 10 a similar observation can be
made: if a minor reduction in quality is tolerable, then a speed-up
by a factor of four can be achieved. The situation is very differ-
ent for the 20-dimensional DTLZ 4, where a speed-up by a factor
of over 250 can be achieved, while achieving even better quality
solutions as well.

5. BENCHMARK RESULTS
In this section, we compare AGE-II to well know evolution-

ary multi-objective algorithms including the original AGE on com-
monly used benchmark functions.

5.1 Experimental Setup
We use the jMetal framework [10] to compare our AGE-II with

the original AGE, and with the established algorithms IBEA [21],
NSGA-II [7], SMS-EMOA [11], and SPEA2 [22] on the bench-
mark families WFG [14], LZ [16], and DTLZ [8]. The test setup
is identical to that of [4], and to the already outlined setup of Sec-
tion 4. It is important to note that we limit the calculations of the
algorithms to a maximum of 50,000/100,000/150,000 fitness evalu-
ations for WFG/DTLZ/LZ and to a maximum computation time of
4 hours per run, as the runtime of some algorithms increases expo-
nentially with respect to the size of the objective space. The further
parameter setup of the algorithms is as follows. Parents were se-
lected through a binary tournament (unless further specified). We
will present our results for population size µ = 100 and λ = 100,
averaged over 100 independent runs.

We assess the algorithms by taking their final populations, and
then using the afore-described additive approximation measure and
the hypervolume [23]. The latter is a popular performance measure
that measures the volume of the dominated portion of the objec-
tive space relative to a reference point r. For the quality assess-
ment on the WFG and LZ functions, we computed the achieved
additive approximations and the hypervolumes with respect to the
Pareto fronts given in the jMetal package. For DTLZ 1 we choose
r = 0.5d, otherwise r = 1d. We approximate the achieved hy-
pervolume with an FPRAS [3], which has a relative error of more
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Figure 2: Influence of εgrid on the archive size, the runtime, and the final quality. Shown are the means of the archive sizes, and
their standard deviation is shown as error bars. Additionally, the means of the runtime t in seconds and the achieved additive
approximation a of the true Pareto front are listed (smaller values are better). Note: the archive can grow linearly with the number
of solutions generated, even when problem have just d = 3 objectives. Furthermore, if the front is small compared to the volume of
the objective space (see DTLZ 1 and 3), then the archive can grow and shrink during the optimisation.

than 2% with probability less than 1/1000. The volumes shown
for DTLZ 1 are normalized by the factor 2d. As it is very hard to
determine the minimum approximation ratio achievable or the max-
imum hypervolume achievable for all populations of a fixed size µ,
we only plot the theoretical maximum hypervolume for µ→∞ as
a reference.

Note that, by the design of the additive approximation indicator,
the approximation values indicate the distributions of the solution
and their distances from the Pareto front, as no point on the Pareto
front is approximated worse than the indicator value.

5.2 Experiment results
The benchmarking results for the different algorithms are shown

in Figures 3, 4, and 5. In summary, AGE-II ranks among the best
algorithms on the low-dimensional WFG and LZ functions. This
holds for both the additive approximation quality, as well as for the
achieved hypervolumes. Interestingly, NSGA-II ( ) that nor-
mally performs rather well on such problems, is beaten in almost
all cases. SPEA2 ( ) and IBEA ( ) on average perform bet-
ter. AGE ( ), SMS-EMOA ( ), and AGE-II (εgrid = 0.1: ,
εgrid = 0.01: ) often perform very similarly.

Our investigations on the DTLZ family prove to be more differ-
entiating. As these can be scaled in the number of objectives, the
advantages and disadvantages of the algorithms’ underlying mech-
anisms become more apparent:

• AGE-II (εgrid = 0.1: , εgrid = 0.01: ) shows a sig-
nificantly improved performance on the lower-dimensional

DTLZ 1, DTLZ 3, and DTLZ 4 variants. Furthermore, it
is either the best performing algorithm, or in many cases, it
shows at least competitive performance.

• It is interesting to see that our AGE-II incorporates the
crowding distance idea from NSGA-II ( ) for a fitness
assignment, but is not influenced by its detrimental effects
in higher dimensional objective spaces. This is thanks to the
way how the next generation is formed (i.e., based on con-
tributions to the approximation achieved of the archive, see
Line 16 of Algorithm 1).

• When compared with the original AGE ( ), then our
modification does exhibit a performance improvement in
all cases. Still, as AGE-II shows a consistent performance
across all scaled functions, we deem the minimal loss in qual-
ity (in our experimental setup) as negligible.

• Remarkably, NSGA-II ( ), SMS-EMOA ( ), and
SPEA2 ( ) are unable to find the front of the high-dimen-
sional DTLZ 1 and DTLZ 3 variants. This results in ex-
tremely large approximations and zero hypervolumes.

• The reason for IBEA’s decreasing behaviour for very large
dimension (d ≥ 18) is that it was stopped after 4 hours and
it could not perform 100, 000 iterations. The same holds al-
ready for much smaller dimensions for SMS-EMOA ( ),
which uses an exponential-time algorithm to internally de-
termine the hypervolume. It did not finish a single genera-
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Figure 3: Comparison of the performance of our AGE-II (εgrid = 0.1: , εgrid = 0.01: ) with the original AGE ( ), IBEA ( ), NSGA-
II ( ), SMS-EMOA ( ), and SPEA2 ( ) with varying dimension d. The figures show the average of 100 repetitions each. Only non-zero
hypervolume values are shown.
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Figure 5: Comparison of the performance of our AGE-II (εgrid = 0.1: , εgrid = 0.01: ) with the original AGE ( ),
IBEA ( ), NSGA-II ( ), SMS-EMOA ( ), and SPEA2 ( ) with varying dimension d. The figures show the average of
100 repetitions each. Only non-zero hypervolume values are shown. For reference, we also plot ( ) the maximum hypervolume
achievable for µ→∞.



tion for d ≥ 8 and only performed around 5, 000 iterations
within four hours for d = 5. This implies that the higher-
dimensional approximations plotted for SMS-EMOA actu-
ally show the approximation of the random initial popula-
tion.

• Interestingly, the approximations achieved by NSGA-
II ( ) and SPEA2 ( ) are even worse as they are tuned
for low-dimensional problems and move their population too
far out to the boundaries for high dimensions.

6. CONCLUSIONS
Approximation guided evolutionary algorithms work with a for-

mal notion of approximation and have the ability to work with prob-
lems of many dimensions. Our new approximation-guided algo-
rithm called AGE-II efficiently solves problems with few and with
many conflicting objectives. Its computation time increases only
linearly with the number of objectives. We control the size of the
archive which mainly determines its computational cost, and thus
observed runtime reductions by a factor of up to 250 over its pre-
decessor, without a sacrifice of final solution quality.

Our experimental results show that given a fixed time budget it
outperforms current state-of-the-art approaches in terms of the de-
sired additive approximation on standard benchmark functions for
more than four objectives. On functions with two and three objec-
tives, it lies level with the best approaches. Additionally, it also
performs competitive or better regarding the covered hypervolume,
depending on the function. This holds in particular for problems
with many objectives, which most other algorithms have difficul-
ties dealing with.

In summary, AGE-II is an efficient approach to solve multi-
problems with few and many objectives. It enables practitioners
now to add objectives with only minor consequences, and to ex-
plore problems for even higher dimensions.
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