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1 Introduction

Understanding the performance of algorithms for hard optimization problems
such as the Travelling Salesperson Problem (TSP) is still a difficult task. Classi-
cal approaches taking a worst-case or an average-case perspective hardly capture
what is happening for real instances. For a given instance I of a combinatorial
optimization problem, it is often hard to predict the performance of an algo-
rithm A without running A on I. Hyper heuristics in the optimisation domain
and meta-learning in the machine learning domain focus on finding the con-
ditions which determine algorithm performance in advance. Smith-Miles and
Lopes [5] classify the research on problem hardness analysis into two different
directions. The first direction is to consider the problem as a learning problem,
where automatic algorithm selection [2] is done based on learned knowledge
from previous algorithm performance. The second direction is to analyse the
algorithms and problems theoretically [3] and experimentally [5] to understand
the reasons for performance on different problem instances. This understanding
is the key to future algorithm design for more complex real world problems.
The study consideres both approaches, where we investigate the performance of
several approximation algorithms for the TSP on different instances. We evolve
instances that are hard or easy for these algorithms and characterize features of
such instances. Our approach aligns well with the investigations of Mersmann et
al. [4] for the 2-opt algorithm. The insights can be used to improve feature based
performance prediction in order to support automatic algorithm selection.

1.1 The Travelling Salesperson Problem

The TSP is one of the most famous NP-hard combinatorial optimization prob-
lems problems. Given a set of n cities {1, . . . , n} and a distance matrix d = (dij),
1 ≤ i, j ≤ n, the goal is to compute a tour of minimal length which visits each
city exactly once and returns to the origin.

In general, the TSP is not only NP-hard but also hard to approximate. There-
fore we consider the still NP-hard Euclidean TSP where cities are given by points
in the plane and distances are given by the Euclidean intances between these
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points. The Euclidean TSP is a special case of the Metric TSP where the dis-
tances between the cities have to fullfill the triangle inequality, i. e. dik ≤ dij+djk
holds for i, j, k ∈ {1, . . . , n}. For the Metric TSP different approximation algo-
rithms are known and we investigate two of the most common ones.

Our goal is to evolve easy and hard instances for a well-known 2-approximation
algorithm and the 3/2-approximation algorithm by Christofides. A detailed de-
scription and analysis of these algorithms can be found in the textbook of Vazi-
rani (Section 3.2) [6].

2 EA based hard and easy instance generation

We use an evolutionary algorithm introduced by Mersmann et al. [4] to evolve
easy and hard instances for the two approximation algorithms. Evolutionary
algorithms are based to a large extend on random decisions. We use several runs
of an algorithm to create a diverse set of hard and easy instances.

We measure the hardness of an instance I for a given algorithm A by the
approximation ratio αA(I). For short we write α(I) if it is clear which algorithm
A is under investigation. The approximation ratio of an algorithm A for a given
instance I is defined as

α(I) = A(I)/OPT (I)

where A(I) is the tour length produced by algorithm A for the given instance
I and OPT(I) is the value of an optimal solution of I. An algorithm A is an
r-approximation algorithm if for any input I, α(I) ≤ r holds, i. e. the hardest
instance can have an approximation ratio of at most r.

Given an algorithm A, α(I) is chosen as the fitness function that assigns to
an instance I the approximation ratio. We only consider deterministic approxi-
mation algorithms in this paper which implies that we obtain A(I) by a single
run of algorithm A and a given instance I. OPT (I)is obtained by using the exact
TSP solver Concorde [1]. The search is guided by the approximation ratio of an
instances which is used as the fitness function in the evolutionary algorithm. We
maximize α(I) in order to generate hard instances and minimize α(I) in order
to generate easy instances for a given fixed algorithm A.

3 2-Approximation

We study features that lead to easy and hard instances in a similar way as
Mersmann et al. [4], including statistics based on: the distance matrix, clusters,
nearest-neighbour distances between cities, the minimum spanning tree, angles
between cities and the convex hull of the cities in the plane. Different TSP
instance sizes are considered for the analysis. Cities are generated in [0, 1]2 and
placed on a discretized grid enabling cross comparison of features. Instances with
various difficulty levels in between easy and hard are generated using a point
matching strategy. These instances provide an understanding of the correlation
between instance features and problem difficulty.
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Fig. 1. Examples of the evolved instances of both types (easy, hard) for 2 Approxima-
tion including the optimal tours computed by Concorde for different instance sizes and
rounding strategies (round before normal mutation (rnd), round after normal mutation
(nrnd)).

Our experimental results for the 2-approximation algorithm show the fol-
lowing. The distances between cities on the optimal tour are more uniform in
the hard instances than in the easy ones. Examples of the hard and the easy
instances are shown in Figure 1. The approximation ratio is very close to 1 for
all the generated easy instances where as for the hard instances it is significantly
higher ranging from 1.79 to 1.87. Standard deviations of the distances on the
optimal tour of the easy instances are roughly twice as high than for the hard in-
stances when considering small instance sizes. This gap gets decreased to 1.5 for
larger instances. It is observable that the easy instances consist of small clusters
of cities opposed to a more uniform distribution in the hard instances. Visually,
optimal tours for the easy instances lead to higher angles than in optimal tours
of the hard instances. The mean angles of the easy instances are significantly
smaller than the values of the hard instances. These mean angle values for both
the hard and the easy instances slightly decrease with the instance size. Instance
shapes for small instances structurally differ from the respective shapes of larger
instances. Consequently, the area covered by the convex hull is higher for larger
instances.

4 Christofides 3/2-Approximation

We conduct a similar analysis for the Christofides algorithm. Example instances
are shown in Figure 2. Instance shapes do not exhibit a significant difference be-
tween easy and hard instances. However, statistics provide more evidence on dif-
ferences. Approximation ratio is close to 1 for all the easy instances and roughly
1.4 for the hard instances. Standard deviations of the distances on the optimal
tour of the easy instances are considerably higher than for the hard instances.
This gap stays stable with increasing instance size. The mean angles of the
easy instances are higher than for the hard instances when considering small in-
stances, and lower for larger instance sizes. The opposite is true for the standard
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Fig. 2. Examples of the evolved instances of both types (easy, hard) for Christofides
including the optimal tours computed by Concorde for different instance sizes and
rounding strategies (round before normal mutation (rnd), round after normal mutation
(nrnd)).

deviation of angles. This is a hint that the hard instances have higher angles
than the easy ones for larger instance sizes.

5 Future Work

We have carried out an evolutionary algorithm approach to generate easy and
hard instances for two classical approximation algorithms and the traveling sales-
person problem. Future work will concentrate on the derivation of rules to classify
easy and hard instances based on feature values, comparing these approximation
algorithms to heuristic methods such as local search, and using our insights for
algorithm selection.
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