
Contents

1
Computational Complexity Analysis of Genetic Programming 1

Frank Neumann, Una-May O’Reilly and Markus Wagner

Chapter 1

COMPUTATIONAL COMPLEXITY ANALYSIS
OF GENETIC PROGRAMMING - INITIAL
RESULTS AND FUTURE DIRECTIONS

Frank Neumann1, Una-May O’Reilly2 and Markus Wagner1

1School of Computer Science, University of Adelaide, Australia; 2CSAIL, MIT, Cam-
bridge, USA.

Abstract The computational complexity analysis of evolutionary algorithms work-
ing on binary strings has significantly increased the rigorous under-
standing on how these types of algorithm work. Similar results on the
computational complexity of genetic programming would fill an impor-
tant theoretic gap. They would significantly increase the theoretical
understanding on how and why genetic programming algorithms work
and indicate, in a rigorous manner, how design choices of algorithm
components impact its success. We summarize initial computational
complexity results for simple tree-based genetic programming and point
out directions for future research.

Keywords: genetic programming, computational complexity analysis, theory

2 GENETIC PROGRAMMING THEORY AND PRACTICE V

1. Introduction

Genetic programming (GP) (Koza, 1992) is a type of evolutionary
algorithm that has proven to be very successful in various fields including
modeling, financial trading, medical diagnosis, design and bioinformat-
ics (Poli et al., 2008). It differs from other types of evolutionary algorithms
by searching for solutions which are executable, i.e. that are program-like
functions, which can be interpreted or execute when their input variables
and formal parameters are bound. To apply variation operators that
transform one candidate solution (or program) into another, conventional
GP first converts an executable function into its parse tree (a.k.a. ab-
stract syntax tree) representation then randomly modifies the tree in a
way that preserves syntactic correctness but varies its size and/or struc-
ture. GP contrasts with other evolutionary algorithms, such as genetic
algorithms and evolution strategies, because, rather than optimizing a
given objective function, the goal in genetic programming is to search and
identify one or more programs that exhibit a set of desired functionality.
Usually this functionality is described in terms of desired input-output
behaviour.

In contrast to numerous successful applications of genetic programming,
the theoretical understanding of GP lags far behind its practical success
(see (Poli et al., 2010) for an excellent appraisal of state of the art). While
a number of theoretical approaches have been pursued and are active
(e. g. schema theory, building block analysis, Markov chains, search space,
bloat and problem difficulty analysis), a new direction which can provide
proofs of convergence and time and space complexity analysis is most
welcome. Our aim is to build up such a theory to gain new theoretical
insights into the working principles of GP.

Computational complexity of evolutionary
algorithms with binary representations

In the field of evolutionary algorithms that operate on binary solu-
tion representations, numerous theoretical insights have been gained in
the last 15 years by computational complexity analyses. Initial results
were obtained on simple pseudo-Boolean functions which point out basic
working principles of simple evolutionary algorithms using binary rep-
resentations (Droste et al., 2002). Results have been derived for a wide
range of classical combinatorial optimization problems such as minimum
spanning tress, shortest path and different cutting and covering problems
(see e. g. (Neumann and Witt, 2010) for an overview). Problem specific
algorithms for some of the classical problems enable them to be solved
in polynomial time. We can not and do not expect that evolutionary

Computational Complexity Analysis of Genetic Programming 3

algorithms to outperform such algorithms. However, studying the same
problems and deriving run time bounds for evolutionary algorithms that
solve them, allows us to gain a rigorous theoretical understanding of how
these evolutionary algorithms work. Further, it yields insights as to how
evolutionary algorithms are useful for tackling NP-hard variants of these
problems.

To explain the type of results that might arise from computation
complexity analysis of GP algorithms, it is helpful to review complexity
analysis results for binary evolutionary algorithms. A good counterpart
example is the classical minimum spanning tree problem which is one
of the first problems where computational complexity results have been
obtained for evolutionary algorithms working with binary representation.
Runtime in these studies is always measured as the number of constructed
solutions until an optimal solution has been found. In GP we would think
of this as the number of fitness evaluations. The runtime bound for a sim-
ple evolutionary algorithms called (1+1) EA is O(m2(log n+ logwmax)),
where m is the number of edges, n is the number of vertices, and wmax is
the largest weight of an edge in the given graph (Neumann and Wegener,
2007). Given evolutionary algorithms do not use global information,
it is remarkable that they can provably solve classical combinatorial
optimization problems in such a small amount of time. The analysis
carried out in (Neumann and Wegener, 2007) shows rigorously that the
result arises because several advantageous mutations can often be carried
out in each iteration. This, and related, results have later been used
to obtain a runtime bound for the NP-hard multi-objective minimum
spanning tree problem (Neumann, 2007). In this case, it is shown that
multi-objective evolutionary algorithms obtain a 2-approximation for
this NP-hard problem in expected polynomial time if the size of the
Pareto front is polynomially bounded. Note that this subsequent analysis
considers a more complex evolutionary algorithm—one that is population
based and using optimizing more than one objective.

Computational Complexity Analysis of GP

Our long term ambition is to develop, from the present simple state of
art, an extended suite of computational complexity analyses for a range
of GP algorithms solving model problems which represent important and
commons aspects of real world GP counterparts. We intend to describe
GP algorithms in a strict mathematical sense which will help lead to a
rigorous understanding of GP algorithm convergence and time complexity
which, in turn, will reveal the complexity implications of a variety of
algorithm features (and specific choices) such as selection, variation

4 GENETIC PROGRAMMING THEORY AND PRACTICE V

and even bloat control. GP complexity analysis will appear similar to
binary evolutionary algorithm analysis with respect to analyzing each
algorithms in the context of solving a specific problem. In progressive
analyses, along a daunting path, the sophistication of the algorithm, can
optimistically ratchet upwards, likely in modest steps, from a simple hill
climbing algorithm (e.g. (1+1) EA) with simplified operators towards
population based versions with more realistic operators. The analysis,
in general, however, will be distinct and contrasting primarily because
GP algorithms work with executable candidate solutions. For example,
conventional, a.k.a. Koza or tree-style, GP’s variation operators modify
a tree by changing its size and or structure. The variable size and
tree-shape representations will challenge current complexity analysis
techniques because the tree size changes over time and genetic material
that can be added or deleted anywhere in any amount implies complicated
consequences on the likelihood of fitness improvement from parent to child.
The variation operators, particularly crossover, are more complicated,
than their counterparts in evolutionary algorithms working with binary
representations because of they are frequently designed to be quite
unconstrained in terms of where and how much material is exchanged.
New methods will be needed to analyze them.

We would aim to develop these methods and achieve computational
complexity results for a wide range of algorithmic design choices and
model problems so that practitioners will gain new insights into their
working principles. Theoretical insights would ideally be used to develop
even more powerful genetic programming techniques. We believe there
can be a close relationship between theoretical work which offers rigorous
proofs and substantial applied work that leads to new effective GP algo-
rithms. Additionally, insights gained by the computational complexity
analysis will help to teach this growing field of research in a much clearer
way to undergraduate and postgraduate students.

In the rest of this chapter, we give an overview on some initial results
we have derived and point different areas of research that we think are
interesting to work on. We start by defining simplified GP algorithms
that have been used to start the computational complexity analysis
of genetic programming in Section 2. Afterwards, we present some
initial results that have been obtained recently. The first results are
on two problem modeling isolated program semantics called ORDER
and MAJORITY. We present computational complexity results for these
functions in Section 3. In Section 4, we investigate results for fitness
functions motivated by the classical SORTING problem. For this
problem the different variables in a GP program depend on each other
which imposes other difficulties than for ORDER and MAJORITY. After

Computational Complexity Analysis of Genetic Programming 5

having giving some insights into recent results we outline possible topics
for future work which are often motivated by successful research projects
on the computational complexity analysis for binary search spaces.

2. Simple Algorithms

To use tree-based genetic programming (Koza, 1992), one must first
choose a set of primitives A, which contains a set F of functions and a
set L of terminals. Each primitive has explicitly defined semantics; for
example, a primitive might represent a Boolean condition, a branching
statement such as an IF-THEN-ELSE conditional, the value bound to an
input variable, or an arithmetic operation. Functions are parameterized.
Terminals are either functions with no parameters, i.e. arity equal to
zero, or input variables to the program that serve as actual parameters
to the formal parameters of functions.

In our derivations, we assume that a GP program is initialized by its
parse tree construction. In general, we start with a root node randomly
drawn from A and recursively populate the parameters of each function
in the tree with subsequent random samples from A, until the leaves of
the tree are all terminals. Functions constitute the internal nodes of the
parse tree, and terminals occupy the leaf nodes. The exact properties of
the tree generated by this procedure will not figure into the analysis of
the algorithm, so we do not discuss them in depth.

HVL-Prime

The HVL-Prime operator is an update of O’Reilly’s HVL mutation
operator (O’Reilly, 1995; O’Reilly and Oppacher, 1994) and motivated by
minimality rather than inspired from a tree-edit distance metric. HVL
first selects a node at random in a copy of the current parse tree. Let
us term this the currentNode. It then, with equiprobability, applies one
of three sub-operations: insertion, substitution, or deletion. Insertion
takes place above currentNode: a randomly drawn function from F
becomes the parent of currentNode and its additional parameters are
set by drawing randomly from L. Substitution changes currentNode to
a randomly drawn function of F with the same arity. Deletion replaces
currentNode with its largest child subtree, which often admits large
deletion sub-operations.

The operator we consider here, HVL-Prime, functions slightly differ-
ently, since we restrict it to operate on trees where all functions take two
parameters. Rather than choosing a node followed by an operation, we
first choose one of the three sub-operations to perform. The operations
then proceed as shown in Figure 1-1. Insertion and substitution are

6 GENETIC PROGRAMMING THEORY AND PRACTICE V

exactly as in HVL; however, deletion only deletes a leaf and its parent
to avoid the potentially macroscopic deletion change of HVL that is
not in the spirit of bit-flip mutation. This change makes the algorithm
more amenable to complexity analysis and specifies an operator that
is only as general as our simplified problems require, contrasting with
the generality of HVL, where all sub-operations handle primitives of any
arity. Nevertheless, both operators respect the nature of GP’s search
among variable-length candidate solutions because each generates another
candidate of potentially different size, structure, and composition.

In our analysis on these particular problems, we make one further
simplification of HVL-Prime: substitution only takes place at the leaves.
This is because our two problems only have one generic “join” function
specified, so performing a substitution anywhere above the leaves is
a vacuous mutation. Such operations only constitute one-sixth of all
operations, so this change has no impact on any of the runtime bounds
we derive.

! !

"#$%&'!'$(&

!

! !

!

! "#
(a) Before insertion ! !

"#$

"#$

%&'(#)!)'*#

!

!

!

! !

(b) After insertion
! !

"#$%&'!'$(&

!

!

!

!

! "#
(c) Before deletion

! !

!!

!

! " # $

(d) After deletion
! !

"#$%&'!'$(&

!

!

!

!

! "#
(e) Before substitution

! !

"#$%&'&#&'()

!

!

!

!

! " #

$ %
(f) After substitution

Figure 1-1. Example of the operators from HVL-Prime.

Algorithms

We define two genetic programming variants called (1+1) GP and
(1+1) GP* . Both algorithms work with a population of size one and
produce in each iteration one single offspring. (1+1) GP is defined in
Figure 1-2 and accepts an offspring if it is as least as fit as its parent.

(1+1) GP* differs from (1+1) GP by accepting only solution that are
strict improvements (see Figure 1-3).

Computational Complexity Analysis of Genetic Programming 7

1 Choose an initial solution X.

2 Set X ′ := X.

3 Mutate X ′ by applying HVL-Prime k times. For each application,
randomly choose to either substitute, insert, or delete.

If substitute, replace a randomly chosen leaf of X ′ with a new
leaf u ∈ L selected uniformly at random.

If insert, randomly choose a node v in X ′ and select u ∈ L
uniformly at random. Replace v with a join node whose
children are u and v, with the order of the children chosen
randomly.

If delete, randomly choose a leaf node v of X ′, with parent p
and sibling u. Replace p with u and delete p and v.

4 If f(X ′) ≥ f(X), set X := X ′.

5 Go to 2.

Figure 1-2. (1+1) GP

4’. If f(X ′) > f(X), set X := X ′.

Figure 1-3. Acceptance for (1+1) GP*

8 GENETIC PROGRAMMING THEORY AND PRACTICE V

For each of (1+1) GP and (1+1) GP* we consider two further variants
which differ in using one application of HVL-Prime (“single”) or in using
more than one (“multi”). For (1+1) GP-single and (1+1) GP*-single,
we set k = 1, so that we perform one mutation at a time according to
the HVL-Prime framework. For (1+1) GP-multi and (1+1) GP*-multi,
we choose k = 1 + Pois(1), so that the number of mutations at a time
varies randomly according to the Poisson distribution.

We will analyze these four algorithms in terms of the expected number
of fitness evaluations to produce an optimal solution for the first time.
This is called the expected optimization time of the algorithm.

3. ORDER and MAJORITY

We consider two separable problems called ORDER and MAJORITY
that have an independent, additive fitness structure. They both have
multiple solutions, which we feel is a key property of a model GP problem
because it holds generally for all real GP problems. They also both use
the same primitive set, where x̄i is the complement of xi:

F := {J}, J has arity 2.

L := {x1, x̄1, . . . , xn, x̄n}

The ORDER Problem

ORDER represents problems where the primitive sets include con-
ditional functions, which gives rise to conditional execution paths. GP
classification problems, for example, often employ a numerical compar-
ison function (e.g. greater than X, less than X, or equal to X). This
sort of function has two arguments (subtrees), one branch which will be
executed only when the comparison returns true, the other only when
it returns false (Koza, 1992). Thus, a conditional function results in
a branching or conditional execution path, so the GP algorithm must
identify and appropriately position the conditional functions to achieve
the correct conditional execution behavior for all inputs.

ORDER is an abstracted simplification of this challenge: the condi-
tional execution paths of a program are determined by tree inspection
rather than execution. Instead of evaluating a condition test and then ex-
ecuting the appropriate condition body explicitly, an ORDER program’s
conditional execution path is determined by simply inspecting whether a
primitive or its complement occurs first in an in-order leaf parse. Correct
programs for the ORDER problem must express each positive primitive
xi before its corresponding complement x̄i. This correctness requirement
is intended to reflect a property commonly found in the GP solutions

Computational Complexity Analysis of Genetic Programming 9

1 Derive conditional execution path P of X:

Init: l an empty leaf list, P an empty conditional execution path

1.1 Parse X inorder and insert each leaf at the rear of l as it is
visited.

1.2 Generate P by parsing l front to rear and adding (“expressing”)
a leaf to P only if it or its complement are not yet in P (i.e.
have not yet been expressed).

2 f(X) = |{xi ∈ P}|.

Figure 1-4. f(X) for ORDER

to problems where conditional functions are used: there exist multiple
solutions, each with a set of different conditional paths. For example, for
a tree X, with (after the inorder parse)

l = (x1, x̄4, x2, x̄1, x3, x̄6), P = (x1, x̄4, x2, x3, x̄6) and f(X) = 3.

ORDER has the characteristic that whenever a solutions is non-optimal
many successful mutation operators are possible to achieve an improve-
ment in fitness. More precisely, let k be the fitness of a solution then there
are Ω((n−k)2) different mutation operators that lead to an improvement.
Taking into a account the maximal tree size Tmax during the run of the
algorithm, one can show that the probability of an improvement is lower

bounded by Ω
(

(n−k)2

nTmax

)
in this situation. As the fitness is not decreasing

during the run of the algorithm, we can use the method of fitness-based
partitions (see Chapter 4.2 in (Neumann and Witt, 2010) for an explana-
tion of this method) to bound the runtime of our GP algorithms. This
leads to the following results on the expected optimization time.

Theorem 1.1 The expected optimization time of the single-operation
and multi-operation cases of (1+1) GP and (1+1) GP* on ORDER
is O(nTmax) in the worst case, where n is the number of xi and Tmax

denotes the maximal tree size at any stage during the evolution of the
algorithm.

The MAJORITY problem

MAJORITY reflects a general (and thus weak) property required of
GP solutions: a solution must have correct functionality and no incorrect
functionality. Like ORDER, MAJORITY is a simplification that uses

10 GENETIC PROGRAMMING THEORY AND PRACTICE V

1 Derive the combined execution statements S of X:

Init: l an empty leaf list, S is an empty statement list.

1.1 Parse X inorder and insert each leaf at the rear of l as it is
visited.

1.2 For i ≤ n: if count(xi ∈ l) ≥ count(x̄i ∈ l) and count(xi ∈
l) ≥ 1, add xi to S

2 f(X) = |S|.

Figure 1-5. f(X) for MAJORITY

tree inspection rather than program execution. A correct program in
MAJORITY must exhibit at least as many occurrences of a primitive
as of its complement and it must exhibit all the positive primitives
of its terminal (leaf) set. Both the independent sub-solution fitness
structure and inspection property of MAJORITY are necessary to make
our analysis tractable.

For example, for a tree X, with (after the inorder parse)

l = (x1, x̄4, x2, x̄1, x̄3, x̄6, x1, x4), S = (x1, x2, x4) and f(X) = 3.

To solve the MAJORITY problem, a GP algorithm has to achieve
for each i at least as many xi as x̄i variables. Therefore, it is crucial
to analyze how to reduce the deficit of each variable according to the
following definition.

Definition 1.2 For a given GP tree, let c(xi) be the number of xi
variables and c(x̄i) be the number of negated xi variables present in the
tree. For a GP tree representing a solution to the MAJORITY problem,
we define the deficit in the ith variable by

Di = c(x̄i)− c(xi).

Definition 1.3 In a GP tree for MAJORITY, we say that xi is ex-
pressed when Di ≤ 0 and c(xi) > 0.

The analysis considers the evolution of the deficits Di over the course
of the algorithm as n parallel random walks. It is shown that each
positive Di reaches zero at least as quickly as a balanced random walk,
which is the condition for the corresponding xi to be expressed; this,
then, gives us the expected number of operations that we are required to
perform on a particular variable before it is expressed.

Computational Complexity Analysis of Genetic Programming 11

These arguments lead to the following result for (1+1) GP-single.

Theorem 1.4 Let D = maxiDi for an instance of MAJORITY ini-
tialized with T terminals drawn from a set of size 2n (i.e. terminals
x1, ..., xn, x̄1, ..., x̄n). Then the expected optimization time of (1+1) GP-
single is

O(n log n+DTmaxn log log n)

in the worst case.

Further results for ORDER and MAJORITY can be found in (Durrett
et al., 2011). This, in particular, includes an average-case analysis for
MAJORITY which shows that simple GP algorithms find solutions for
this problem very quickly when the initial tree is chosen uniformly at
random among all trees having a linear number of leaves.

4. The SORTING Problem

The problems ORDER and MAJORITY are in a sense easy as they
have isolated problem semantics, and thus allow one to treat subproblems
independently. The next step then is to consider problems that have
dependent problem semantics, and we will do this in the following based
on the SORTING problem. Sorting is one of the most basic problems in
computer science. It is also the first combinatorial optimization problem
for which computational complexity results have been obtained in the
area of discrete evolutionary algorithms (Scharnow et al., 2004; Doerr
and Happ, 2008). In (Scharnow et al., 2004), sorting is treated as an
optimization problem where the task is to minimize the unsortness of
a given permutation of the input elements. To measure unsortness,
different fitness functions have been introduced and studied with respect
to the difficulty of being optimized by permutation-based evolutionary
algorithms.

In general, given a set of n elements from a totally ordered set, sorting
is the problem of ordering these elements. We will identify the given
elements by 1, . . . , n.

The goal is to find a permutation πopt of 1, . . . , n such that

πopt(1) < πopt(2) < . . . < πopt(n)

holds, where < is the order on the totally ordered set. W. l. o. g. we
assume πopt = id, i. e. πopt(i) = i for all i.

The set of all permutations π of 1, . . . , n forms a search space that has
already been investigated in (Scharnow et al., 2004) for the analysis of
permutation-based evolutionary algorithms. The authors of this paper,
investigate sorting as an optimization problem whose goal is to maximize

12 GENETIC PROGRAMMING THEORY AND PRACTICE V

1 Derive a possibly incompletely defined permutation P of X:

Init: l an empty leaf list, P an empty list representing a possibly
incompletely defined permutation

1.1 Parse X in order and insert each leaf at the rear of l as it is
visited.

1.2 Generate P by parsing l front to rear and adding (“expressing”)
a leaf to P only if it is not yet in P , i. e. it has not yet been
expressed.

2 Compute f(X) based on P and the chosen fitness function.

Figure 1-6. Derivation of f(X) for SORTING

the sortedness of a given permutation. We consider the following two
fitness functions measuring the sortedness of a given permutation π.

INV (π), measuring the number of pairs in correct order,1 which is
the number of pairs (i, j), 1 ≤ i < j ≤ n, such that π(i) < π(j),

HAM(π), measuring the number of elements at correct position,
which is the number indices i such that π(i) = i.

Considering tree-based genetic programming, we have to deal with the
fact that certain elements are not present in a current tree. We extend our
notation of permutation to incompletely defined permutations. Therefore,
we use π to denote a list of elements, where each element of the input set
occurs at most once. This is a permutation of the elements that occur
in the tree. Furthermore, we use π(x) = p to get the position p that
the element x has within π. In the case that x /∈ π, π(x) = ⊥ holds.
We adjust the definition of π to later accommodate the use of trees as
the underlying data structure. For example, π = (1, 2, 4, 6, 3) leads to
π(1) = 1, π(2) = 2, π(3) = 5, π(4) = 3, π(6) = 4, and π(5) = ⊥.

The basic idea behind for showing a runtime bound on INV is the
following. It is always possible to increase the fitness by inserting a
specific leaf at its correct position in order to achieve a fitness increment
of at least 1. Therefore, the probability for such an improvement for each

of our algorithms is Ω
(

1
nTmax

)
. Again Tmax denotes the maximal size

1Originally, INV measures the numbers of pairs in wrong order. Our interpretation has the
advantage that we need no special treatment of incompletely defined permutations.

Computational Complexity Analysis of Genetic Programming 13

of a tree during the run of the algorithm. Using the method of fitness-
based partitions, and based on the observation that n · (n − 1)/2 + 1
fitness values are possible, the optimization time is upper bounded by∑n(n−1)/2

k=0 O (nTmax) which leads to the following result.

Theorem 1.5 The expected optimization time of the single- and multi-
operation cases of (1+1) GP* with INV is O(n3Tmax).

For the sortedness measure HAM , we present a worst case example to
demonstrate that the single- and multi-operation cases of (1+1) GP* can
get stuck during the optimization process. Assuming that we initialize
the algorithms with the following initial solution called Tw

n, n, . . . , n︸ ︷︷ ︸
n+1 of these

, 2, 3, . . . , n− 1, 1, n

it is easy to see that it is hard to achieve an improvement. It is
clear that with a single HVL-Prime application, only one of the leftmost
n can be removed. For an improvement in the sortedness, all n + 1
leftmost leaves have to be removed in order for the rightmost n to
become expressed. Additionally, a leaf labeled 1 has to be inserted at the
beginning, or alternatively, one of the n+ 1 leaves labeled n has to be
replaced by a 1. This cannot be done by the (1+1) GP*-single, resulting
in an infinite runtime. However, (1+1) GP*-multi can improve the fitness,
but at least n+ 1 sub-operations have to be performed, assuming that
we, in each case, delete one of the leftmost ns. Because the number of
sub-operations per mutation is distributed as 1 + Pois(1), the Poisson
random variable has to take a value of at least n. This implies that the
probability for such a step is e−Ω(n) and the expected waiting time for
such a step is therefore eΩ(n).

Theorem 1.6 Let Tw be the initial solution to SORTING. Then the
expected optimization time of (1+1) GP*-single and (1+1) GP*-multi is
infinite respectively eΩ(n) for the sortedness measure HAM .

The proofs and further computational complexity results for genetic
programming on the SORTING problem can be found in (Wagner and
Neumann, 2011).

5. Future Directions

To conclude this chapter, we want to point out topics for future
research. The results mentioned in the previous sections are initial ones
and there are different ways to extend these studies. In the following, we

14 GENETIC PROGRAMMING THEORY AND PRACTICE V

point out which are the most interesting directions for future research
from our point of view.

Problems of Different Fitness Structure

The functions ORDER and MAJORITY can be seen as variants
of the OneMax problem for binary strings. The characteristic of this
problem is that each possible variable has the same weight and contributes
independently to fitness. It would be interesting to analyze simplified
GP algorithm on a much broader class where each variable contributes a
different weight. A special case is linear scaling and exponential scaling of
independent weights which has been studied experimentally in (Goldberg
and O’Reilly, 1998). The general model we are thinking of matches
the class of linear functions in the case of binary representations. The
analysis of evolutionary algorithms working with binary representations
carried out in (Droste et al., 2002) was a major breakthrough for the
binary case and we expect that such results and the therefore developed
methods will significantly pushed forward the theoretical understand of
GP algorithms and set basis analysis of more complex problems.

Complexity versus accuracy

GP algorithms face the problem that the tree gets too large during
the learning and optimization process. In the case of learning, it can
often be observed that there is a trade-off between the accuracy of the
learned function and the size of the tree (Gustafson et al., 2004). On
the other hand, GP algorithms allow to express patterns several times
in the tree although this does not increase the performs. Parsimony
GP algorithms prefer trees of a smaller size if they have equal good
performance. It would be interesting to study the impact of dealing
with the complexity of the tree size in different ways. First, it would
be interesting to study the impact of the parsimony approach and point
out the impact on the runtime behaviour. Accepting only trees of lower
complexity gives a clear search direction on plateaus, i. e. regions in the
search space where solutions have equal good fitness. The aim would be
to understand how this influences the run of a GP algorithm. One could
point out the benefits and drawbacks of this approach in a rigorous way
by computational complexity analyses.

The parsimony approach favours solutions of low complexity. Often
users of genetic programming algorithms are interested in the trade-off be-
tween complexity and accuracy and want to obtain a set of solutions that
gives them possible options according to these two objectives. Therefore,
it would be interesting to analyze the trade-off between complexity and

Computational Complexity Analysis of Genetic Programming 15

accuracy that genetic programming algorithms observe when optimizing
these two objective in a multi-objective approach. Our goal is understand
how multi-objective genetic programming algorithms construct this set
of trade-off solutions. For evolutionary algorithms working with binary
representations it has been shown that the multi-objective model gives
an additional search direction which allows to compute optimal solu-
tions or good approximations much quicker than in the single-objective
model (Neumann and Wegener, 2006; Friedrich et al., 2010). Therefore,
it is interesting to study situations where the multi-objective formulation
(complexity vs accuracy) is beneficial for the success of GP algorithms.

Populations, Crossover, and Diversity

One crucial parameter in a GP algorithm is the choice of the popula-
tion size. Theoretical studies on the impact of the population size for
evolutionary algorithms working on binary strings have shown that the
choice of the population size can have a drastic impact on the runtime
behaviour (Witt, 2006; Storch, 2008). Working with a population size of
1 leads to a hill-climbing behaviour that has the disadvantage of getting
stuck in local optima. Therefore, often a larger population size is chosen
to cope with this issue. The goal is to keep a diverse set of solutions
during the run of the algorithm which allows to explore different regions
of the search space. Closely connected to the choice of the population size,
is the application of diversity mechanisms that ensure that a population
consists of a diverse set of solutions. Such diversity mechanisms play a
crucial role for the success of these algorithms (Burke et al., 2004). There-
fore, our studies will concentrate on the impact of the population size in
conjunction with commonly used diversity mechanisms. Diversity can be
maintained by different mechanisms. One possibility is to compare the
structure of the trees that constitute the population. Another possibility
is to introduce a distance measure that is based on the number of subtrees
that two solutions in the population share. Furthermore, diversity can
be obtained by maintaining trees of different fitness. This allows to keep
solutions of lower fitness which usually have a different structure than
the best solutions in the population. It would be interesting to figure out
the differences of these approaches by computational complexity analyses
and show where they lead to significant different runtime results of such
algorithms. Having solutions of different structure in the population is
also crucial for successful crossover operators. Therefore, another topic
of research is to study the impact of crossover in conjunction with the
population size and appropriate diversity mechanisms.

16 GENETIC PROGRAMMING THEORY AND PRACTICE V

6. Conclusions

The computational complexity analysis of genetic programming can
provide new rigorous insight into the working principles of simplified
genetic programming algorithms. In this chapter, we have pointed out
the results of some initial studies. These studies show how to obtain
computational complexity bounds for GP algorithms on problems with
different characteristics. We outlined some topics for future research
which would help to gain further rigorous insights into the behavior
of genetic programming. We are optimistic that such computational
complexity results can be obtained in the near future and that they will
provide valuable new insights into this type of algorithms.

References

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone,
Frank D. (1998). Genetic Programming – An Introduction; On the Au-
tomatic Evolution of Computer Programs and its Applications. Morgan
Kaufmann, San Francisco, CA, USA.

Burke, Edmund K., Gustafson, Steven, and Kendall, Graham (2004).
Diversity in genetic programming: An analysis of measures and corre-
lation with fitness. IEEE Transactions on Evolutionary Computation,
8(1):47–62.

Castellini, Alexandre, Landa, Jorge, and Kikani, Jitendra (2004). Practi-
cal methods for uncertainty assessment of flow predictions for reservoirs
with significant history – a field case study. Paper A-33, presented at
the 9th European Conference on the Mathematics of Oil Recovery,
Cannes, France, August 30 - September 2.

Deutsch, Clayton V. (2002). Geostatistical Reservoir Modeling. Oxford
University Press.

Doerr, Benjamin and Happ, Edda (2008). Directed trees: A powerful
representation for sorting and ordering problems. In 2008 IEEE World
Congress on Computational Intelligence, pages 3606–3613. IEEE Com-
putational Intelligence Society, IEEE Press.

Droste, Stefan, Jansen, Thomas, and Wegener, Ingo (2002). On the
analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci.,
276:51–81.

Durrett, Greg, Neumann, Frank, and O’Reilly, Una-May (2011). Com-
putational complexity analysis of simple genetic programming on two
problems modeling isolated program semantics. In FOGA ’11: Proceed-
ings of the 11th ACM SIGEVO workshop on Foundations of Genetic
Algorithms. ACM. (to appear).

Computational Complexity Analysis of Genetic Programming 17

Friedrich, Tobias, He, Jun, Hebbinghaus, Nils, Neumann, Frank, and
Witt, Carsten (2010). Approximating covering problems by randomized
search heuristics using multi-objective models. Evolutionary Computa-
tion, 18(4):617–633.

Goldberg, David E. and O’Reilly, Una-May (1998). Where does the
good stuff go, and why? how contextual semantics influence program
structure in simple genetic programming. In Banzhaf, Wolfgang, Poli,
Riccardo, Schoenauer, Marc, and Fogarty, Terence C., editors, Pro-
ceedings of the First European Workshop on Genetic Programming,
volume 1391 of LNCS, pages 16–36, Paris. Springer-Verlag.

Gustafson, Steven, Ekart, Aniko, Burke, Edmund, and Kendall, Graham
(2004). Problem difficulty and code growth in genetic programming.
Genetic Programming and Evolvable Machines, 5(3):271–290.

Koza, John R. (1992). Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, Cambridge, MA,
USA.

Neumann, Frank (2007). Expected runtimes of a simple evolutionary
algorithm for the multi-objective minimum spanning tree problem.
European Journal of Operational Research, 181(3):1620–1629.

Neumann, Frank and Wegener, Ingo (2006). Minimum spanning trees
made easier via multi-objective optimization. Natural Computing,
5(3):305–319.

Neumann, Frank and Wegener, Ingo (2007). Randomized local search,
evolutionary algorithms, and the minimum spanning tree problem.
Theor. Comput. Sci., 378(1):32–40.

Neumann, Frank and Witt, Carsten (2010). Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their Computational
Complexity. Springer.

O’Reilly, Una-May (1995). An Analysis of Genetic Programming. PhD
thesis, Carleton University, Ottawa-Carleton Institute for Computer
Science, Ottawa, Ontario, Canada.

O’Reilly, Una-May and Oppacher, Franz (1994). Program search with
a hierarchical variable length representation: Genetic programming,
simulated annealing and hill climbing. In Davidor, Yuval, Schwefel,
Hans-Paul, and Manner, Reinhard, editors, Parallel Problem Solving
from Nature – PPSN III, number 866 in Lecture Notes in Computer
Science, pages 397–406, Jerusalem. Springer-Verlag.

Poli, Riccardo, Langdon, William B., and McPhee, Nicholas Freitag
(2008). A field guide to genetic programming. Published via http://lulu.com
and freely available at http://www.gp-field-guide.org.uk. (With
contributions by J. R. Koza).

18 GENETIC PROGRAMMING THEORY AND PRACTICE V

Poli, Riccardo, Vanneschi, Leonardo, Langdon, William B., and McPhee,
Nicholas Freitag (2010). Theoretical results in genetic programming:
the next ten years? Genetic Programming and Evolvable Machines,
11(3-4):285–320.

Scharnow, Jens, Tinnefeld, Karsten, and Wegener, Ingo (2004). The
analysis of evolutionary algorithms on sorting and shortest paths
problems. Journal of Mathematical Modelling and Algorithms, 3:349–
366.

Storch, Tobias (2008). On the choice of the parent population size.
Evolutionary Computation, 16(4):557–578.

Wagner, Markus and Neumann, Frank (2011). Computational complex-
ity results for genetic programming and the sorting problem. CoRR,
abs/1103.5797.

Witt, Carsten (2006). Runtime analysis of the (mu + 1) EA on simple
pseudo-boolean functions. Evolutionary Computation, 14(1):65–86.

Yu, Tina, Wilkinson, Dave, and Castellini, Alexandre (2006). Construct-
ing reservoir flow simulator proxies using genetic programming for
history matching and production forecast uncertainty analysis. sub-
mitted.

