
Real World Verification

Experiences from the Verisoft Email Client

Gerd Beuster, Niklas Henrich, Markus Wagner∗

University Koblenz-Landau

{gb}|{nikhen}|{wagnermar}@uni-koblenz.de

Abstract

This paper reports our experiences developing a completely verified email client.
The formal specification of the email client includes all informal requirements and
security goals. Compliance to the formal specification has been proven for the
complete source code. The email client is part of project Verisoft, where pervasively
verified systems are developed.

1 Introduction

The goal of the Verisoft project is to create the tools and methods to allow the perva-
sive formal verification of computer systems, and to show that verification of real world
systems is viable [Pau05]. In Verisoft, formal methods and verification technology are
used throughout all aspects of system developing, including verified hardware, verified
development tools, and verified operating systems and verified application programs.
Four concrete systems are developed in Verisoft. Of these four systems, three are devel-
oped by or in cooperation with partners from the industry, and one is developed by the
academic partners. The industry projects include an Emergency Call System developed
in cooperation with the BMW group, a Biometric Identification System developed in
cooperation with T-Systems, and Hardware verification developed in cooperation with
Infineon Technologies. The academic project develops a secure email system. This pa-
per reports our experiences developing a completely verified email client as part of the
academic system.

1.1 The Academic System

The goal of the academic project is to show that common desktop technology can be
formally specified and verified. For this reason, the technology used in the academic
system tries to stay as close to “normal” systems, technologies, and standards as pos-
sible. The academic system is made up of different parts, as depicted in figure 1. The

∗This work was funded by the German Federal Ministry of Education, Science, Research and Tech-
nology (BMBF) in the framework of the Verisoft project under grant 01 IS C38. The responsibility for
this article lies with the authors. See http://www.verisoft.de for more information about Verisoft.

112 Empirically Successful Computerized Reasoning

Networking /
Communication

Application
Software

Software
System

Hardware

Tools

TCP/IP

Mail Server (SMTP)

Memory
Manage−
ment

Email Client
(User Interface)

Signature
Module

Operating
System

Micro−
kernel

Processor

Host System

Com−
piler

Keyboard
Screen
Network

File System

Figure 1: Components of the academic system

verified compiler compiles programs written in the C dialect C0 [LPP05]. The machine
code is run on fully verified hardware (processor) [ABKS05]. Three layers of software
build upon the hardware. The first layer consists of a fully verified micro-kernel, mem-
ory management unit and an accompanying operating system called Simple Operating
System [GHLP05]. The networking and communication layer consists of a fully veri-
fied SMTP mail server using a fully verified TCP/IP stack. This allows the academic
Verisoft system to interconnect with the “real world” like Intranets or the Internet. The
application software sits on top of the system software and communication layer.

As part of the Academic Verisoft System, we developed a completely verified email
client. The formal specification of the email client includes all informal requirements and
security goals. Compliance to the formal specification has been proven for the complete
source code. Each of the three main Sections 2–4 deals with one of the core results
of our work on the Verisoft email client. Section 2 explains how we formally specified
secure user interfaces. Section 3 describes the lessons learned from the early stages of
specification, and why developing a prototype was important. Section 4 reports our
experiences from verifying the Verisoft email client.

1.2 Related Projects

Another important fundamental research project in the area of verification and anal-
ysis is the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (AVACS), which is funded by the Deutsche Forschungs-
gemeinschaft (DFG). About 70 scientists of the Universities of Oldenburg, Freiburg and
Saarbruecken as well as the Max-Planck-Institute of Computer Sciences of Saarbruecken
are working on the improvement of techniques for mathematically precise verification,
including the development of tools. The goal of their work is to automate safety analyses
of critical embedded systems which are used for example in aircrafts, motor vehicles or

Empirically Successful Computerized Reasoning 113

railway transportation [DHO04].
Significant prior projects are DAEDALUS and VERIFIX. The DEADALUS con-

sortium was a research and technology development project in the Fifth Framework
Programme (FP5) of the European Union. With the contributions of universities from
France, Germany, Denmark, and Israel, the project developed methods and tools to
support the industrial validation of critical concurrent software by static analysis and
abstract testing [Gou01, CC02]. The goal of VERIFIX, another project funded by DFG,
was the construction of mathematically correct compilers, which included the develop-
ment of formal methods for specification and implementation of a compiler. One of the
project’s results was a fully verified LISP interpreter [GZ99].

2 User Interface Specification

Within the academic part of the Verisoft project, the Verisoft email client, for short
Vericlient, provides the interface to the user. When a user accesses the academic system,
he interacts with the email client. The email client itself has internal interfaces to
four components: The I/O facilities (via the operating system), the SMTP server for
delivery and reception of emails, and the signature module for generation and checking
of signatures. For its internal operation, the email client makes use of data structures
provided by the C library.

Providing a user interface is the core functionality of the email client. Vericlient
provides a text-based user interface as shown in Figure 2. Since a general design goal of
the Verisoft email system was to provide a secure environment for using email services,
special emphasis was put onto the security of the user interface.

2.1 User Interface Security Requirements

The definition of a secure user interface is based on the common definition of secure
computing as

Confidentiality Information is available to authorized parties only.
Integrity Neither the system nor services provided by and data

processed by the system can be manipulated.
Availability Accessibility of services and data is guaranteed.

We adapted these concepts to user interface security by restricting these definitions
to the aspects involving the user interface and human-computer interaction. For Con-
fidentiality, this means that eavesdropping on the input/output facilities must not be
possible. Integrity of the user interface is guaranteed if manipulation of the user inter-
face is not possible, i.e. if the user’s assumptions about the state of the application,
gained by observing and manipulating the application via the user interface, corresponds
to the actual state of the application. Availability of the user interface means that an
attacker can not get the user interface into a state where the full functionality is no
longer accessible.

114 Empirically Successful Computerized Reasoning

Figure 2: Vericlient prototype running: The numbers indicate the following screen
areas: (1) Status / current state of the email client (2) Editing area (3) Public key (4)
Commands available

Confidentiality A third party can not gain information from observing human-
computer interaction.

Integrity Whenever the user issues a command, all relevant information,
most notably the state of the program and the data processed,
is shown on the screen correctly.

Availability The functionality provided by the user interface is always ac-
cessible.

Translating these security constraints into a formal specification and writing an email
client application satisfying the constraints posed a number of challenges. It turned out
that a number of constraints raised by the email client development group required
functionality from outside the email client. For example, neither Confidentiality, nor
Integrity, nor Availability can be guaranteed if an attacker can manipulate the I/O
devices. Therefore a key requirement for a system using keyboard input and screen
output is the impossibility of man-in-the-middle attacks against the keyboard and the
screen. If an attacker can get in between the legitimate application and its input/output
facilities, the attacker can manipulate the user at will.

There is no easy way to prevent physical man-in-the-middle attacks like, for example,
covering the real keyboard with a faked keyboard as described in [BR02]. However, the
prevention of software-based attacks with Trojan horses, worms, viruses etc. is possible
if the operating system provides means to guarantee exclusive access to the keyboard
and screen. We call the process of acquiring exclusive access “locking” and the release
of the lock “unlocking.” Locking a resource is not sufficient to guarantee security. The
user must also know which process locks a resource and whether the system is busy

Empirically Successful Computerized Reasoning 115

or not. Providing (and verifying) this functionality is beyond the realm of a client
application like Vericlient; it has to be provided by the operating system. Therefore, in
the specification phase of the project a lot of communication with other development
group was necessary. Most changes where requirement from the operating system group.

2.2 User Interface Specification

In order to formally specify and verify the security of a user interface, it was necessary
to bring together formal methods, human computer interaction, and computer security.
All three of them are established fields of research. There are also works combining
each two of the fields. Formal methods have been used to specify human computer
interaction. User interfaces have been designed and evaluated under security aspects.
System security has been treated with formal methods. For the Verisoft email client,
we had to combine all three fields.

Confidentiality relies mainly on the operating system, which has to ensure that eaves-
dropping on the application and the communication channel is not possible. Availability
depends on all components involved. For the email client, it has to be shown that it
is always possible to write, sign and send email, and that is always possible to receive
email, check the signature, and read it. Integrity, defined as the requirement that data is
displayed correctly whenever the user issues a command, is primarily the responsibility
of the email client.

Usually, the specification of user input and system output is rather informal. Speci-
fications declare that something “is shown on the screen” and the user “enters a text.”
In most cases, this informal description is sufficient. However, if we want to formally
verify the integrity of a system, a formal definition is required.

In order to ensure integrity with formal methods, it is necessary that a) the output
device provides the “right” information, b) the information is up-to-date whenever the
user issues a command, and c) that the user is able to understand the information shown
by the output device. For the latter, a formal user model is required. While there are
some (semi-)formal methods for the description of user interfaces and human-computer
interaction, these are usually not suited for automatic reasoning. Our approach was to
formalize and extend the GOMS user model technique in a way that makes it suitable
for modeling human-computer interaction, including potential human errors, and for
automated reasoning [BB]. GOMS is a modeling technique (more specifically, a family
of modeling techniques) for analyzing the complexity of interactive systems. The user’s
behavior is modeled in terms of Goals, Operators, Methods and Selection rules. Briefly,
a GOMS model consists of methods that are used to achieve goals. A method is a
sequential list of operators that the user performs and (sub)goals that must be achieved.
If there is more than one method which may be employed to achieve a goal, a selection
rule is invoked to determine what method to choose, depending on the context.

For the Vericlient, we assume that the user knows about the system state if he
gets information about the last operation of the system (“email has been sent”), and
the data on which the operation was performed (i.e. the actual email). Guaranteeing
that screen output is up-to-date whenever the user issues a command is tricky, because
user interfaces are inherently asynchronous. There will always be moments during the
execution of the application, when the screen output does not reflect the actual state of

116 Empirically Successful Computerized Reasoning

Update
Screen

Update
Screen

Command
Get

Keyboard
& Screen

Lock

Exit

[Failed]

[OK]

Command
Execute

[Quit]

Figure 3: Statechart describing the main event loop.

the system, because only parts of the output screen have been updated, or because the
system just finished an internal operation and the screen output had not been updated.
The same is true for user input. Since keyboard input is usually buffered, it is possible
that the user triggers actions without having seen the current screen output.

We solved the problem of asynchronous input/output by defining strict points in the
main execution loop when the screen is updated, and by imposing restrictions on the
input buffer. A statechart of the main execution loop is given in Figure 3.

After locking keyboard and screen (required to guarantee Confidentiality and Au-
thenticity), the event loop receives keystrokes and executes the commands associated
with the keystrokes. It also takes care of keeping the screen up-to-date. Since the screen
may be inconsistent during state updates (i.e., the current screen display may not re-
flect the internal state of the system), the screen update function is called twice: Once
before the system waits for the next keystroke, and again before command execution.
In the second update, the screen area for displaying the current state shows the message
“processing.” When processing is finished, the loop starts over again, unless the user
has issued the command “quit.” Before the next command is accepted, the input buffer
is emptied. This way, the user can be ensured that the screen display is consistent with
the actual state of the application whenever the message “processing” is not shown.

The functional behavior of the email client, and thus the information to be displayed,
is defined by the statechart shown in Figure 4. For example, the system transits from
state Unsigned to state Signed if command “sign” was issued and the signing oper-
ation was successful. Of course, the states in such a statechart are abstractions of the
application’s actual internal configuration, which is much richer in detail. Nevertheless,
we assume that these states are the right abstraction in that the user has sufficient
information about the internal configuration of the application if he or she knows in
what abstract state the application is.

2.3 Example: Editing Mail

Not only the state of the system, but also the data has to be displayed correctly. Defin-
ing “correct” display of an email under security aspects is a challenging task. In the
real world, “phishing” attacks are major form of electronic fraud [Bac05]. Many of

Empirically Successful Computerized Reasoning 117

H

H

typing

Edit Pub. Key

Not Changed

Changed

move cursor

Edit Email

typing

Changed

Not Changed

H

poll / new email arrived

Checked

Not Checked

Sent

Unsigned

Signed

Command Mode

Run Mode

move cursor

check
[SUCCESS]

send

sign

[SUCCESS]

[SUCCESS]

[out of memory]

Receive Mode

Send Mode

generate key pair

insert pub. key
quit viewing

edit|view

quit editing

edit|view

quit

quit viewing | editing

Exit

Figure 4: Statechart of email client applications. State transitions represent execution
of program functions.

these attacks are based on exploitation of incorrect or ambiguous display of email mes-
sages. General concepts against these attacks are beyond the scope of this paper. For
the Verisoft email client, these attacks are prevented by restricting the way emails are
displayed. The Verisoft module for viewing and editing shows the pure ASCII represen-
tation of the email.

In the following, we present a short excerpt of the specification of the Verisoft email
editing module. This example allows us to demonstrate how an interactive user interface
component can be specified. The email viewing and editing component has the following
characteristics: It is a full screen editor; the user can roam freely over the text using the
cursor keys. The text edited may not fit the screen. In that case, the editor will scroll
when the cursor reaches the screen borders.

The email message editing field is represented by a data structure textEdit :=
(s, cx, cy, co, ro) with s a list of strings where each element represents a line of the text,
(cx, cy) the cursor position and (ro, co) row and column offsets. If the text is larger than
the size of the screen, the offsets indicate which part of the email are shown.

The part of the main execution loop’s updateScreen responsible for showing the
email (with (x, y) a position on the screen) is specified as:

updateScreen[y, x] =










s[y + ro][x + co] if length(s) < y + ro and
length(s[y + ro]) < x + co

blank otherwise

118 Empirically Successful Computerized Reasoning

The specification of main execution loop function execute for email editing is defined
by the OCL specification given in Table 1. Note that INSERT CHAR represents the set of
all printable characters.

context execute(cmd, textEdit)

pre cmd ∈ { CURSOR LEFT, CURSOR RIGHT, CURSOR UP,
CURSOR DOWN, INSERT CHAR, DELETE CHAR,
QUIT }

post if cmd = CURSOR LEFT then

textEdit = cursorLeft(textEdit@pre) and

result = CURSOR MOVED

else if cmd = CURSOR RIGHT then

textEdit = cursorRight(textEdit@pre) and

result = CURSOR MOVED

else if cmd = CURSOR UP then

textEdit = cursorUp(textEdit@pre) and

result = CURSOR MOVED

else if cmd = CURSOR DOWN then

textEdit = cursorDown(textEdit@pre) and

result = CURSOR MOVED

else if cmd ∈ INSERT CHAR then

textEdit =
insertChar(cmd, textEdit@pre) and

result = CHAR INSERTED

else if cmd = DELETE CHAR then

textEdit = deleteChar(cmd, textEdit@pre) and

result = CHAR DELETED

else

result = QUIT

end if

Table 1: Command execution function

The auxiliary functions describing the effects of cursor movements and inserting/deleting
characters are straightforward. As an example, we only provide a definition for cursorRight:

cursorRight(a) = (s, cx′, cy′, co′, ro′)

with

cx′ =



















cx + 1 if a.cx + 1 < length(a.s[a.cy])
0 if a.cx + 1 ≥ length(a.s[a.cy]) and

a.cy + 1 < length(a.s)
cx otherwise

cy′ =











cy + 1 if a.cx + 1 ≥ length(a.s[a.cy]) and
a.cy + 1 < length(a.s)

cy otherwise

Empirically Successful Computerized Reasoning 119

co′ =











co + 1 if cx′ = co + screenWidth

0 if cx′ = 0
co otherwise

ro′ =

{

ro + 1 if cy′ = ro + screenHeight

ro otherwise

The correctness of the specification was ensured in two ways: It has been shown that
the editing component specification allows to enter an arbitrary text, and it has been
shown that the order of characters is preserved when an arbitrary text is shown by the
email client. While these two refinement proofs ensure basic correctness of the editing
component, they do not capture the interactive behavior of the editing component. A
prototypical implementation (see also Section 3) was used to ensure that the specification
of the editing component follows the user’s intuition about an interactive editor.

We have shown how user interface security is formalized and specified for the Verisoft
email client. In the next Sections, we report our experiences from implementing and
verifying the Verisoft email client specification.

3 Specification and Prototypical Implementation

The most direct way to develop a fully formally specified and verified application would
be to start by writing a formal specification. From this, one would either write an
implementation and proof its correctness, or refine the specification down to the imple-
mentation level, generating the correctness proofs on the way.

Because of the character of the Verisoft project, this approach could not be followed
strictly. Since Verisoft started largely from scratch, all parts of Verisoft, including the
specification languages, the calculus, and the system components the email client relies
on, were developed in parallel. Over the course of the projects, more and more tools were
finished, the calculus and languages got fixed, and specifications and implementations
of other components became available. This led to a somewhat different design model.

At the beginning of the project, we started by informally defining the global de-
sign goals of the Verisoft email client. We developed a semi-formal specification using
OCL and statecharts. Based on this specification, a prototype was developed. The
prototype served two purposes. First, it allowed us to test the informal specification.
Verifying software is even more costly in terms of time and money than normal software
development. Therefore we wanted to ensure that the specification of the email clients
did not contain design errors. The main functionality of the email client is to provide
the user interface for other system parts, like the SMTP component and the signature
component. The design of the user interface of the email client must not only comply
to security requirements (“the email is shown correctly”), it must also comply to the
user’s expectation about “proper behavior” of a user interface. The prototype allowed
us to test our email client design before finalizing the formal specification.

For the development of the prototype, we used ordinary C, not C0, and we used
the ncurses library[Str91] instead of Verisoft’s operating system functionality for screen
output. The client compiles in a standard Linux environment. This has the advantage,
that we could provide a working prototypical version of the email client without being

120 Empirically Successful Computerized Reasoning

dependent on other system parts. C0 is a subset of C. By restricting our coding style
to the constructs allowed by C0, we learned how to deal with the limitations inherent
to the language. The prototype was more an evolutionary prototype than a throwaway
prototype. After more and more libraries and the final definition of C0 became available,
we adjusted the prototype step-by-step until it become the final implementation of
Vericlient.

The development of a prototype was crucial. We gained several insights on the
run-time behavior of the Vericlient and it helped to improve and even to correct the
specification. With the help of the prototype, we detected glitches in the user-interface
(for example, characters were inserted at the wrong place in email messages because of
an off-by-one error) as well as errors in the statechart specification of Vericlient’s overall
behavior. Since these errors were in the specification, they would not have been noticed
until Vericlient would have been fished.

Errors found at the earlier stages are easier to correct than errors found in a late
stage. This is even more the case for a verification projects, where errors in the speci-
fication may require the component to be proved again. A prototype helps to identify
errors or wrong decisions in the early design and specification phase of a project. Since
it was possible to evolutionary develop the final version from the prototype, the work
spent on the prototype was efficiently integrated into the project.

Over the course of the project, more functionality from other parts of the academic
Verisoft project became available. The Vericlient prototype gradually turned into the
final implementation of the Verisoft email client by integrating these modules once they
became available. The prototypical code developed to run in a normal Linux environ-
ment was maintained in parallel to the code developed for the Verisoft environment. The
advantage of this approach was that from the very beginning of the project, a working
version existed and changes in the specification could be tested. From our experience,
the little extra work required to develop two versions in parallel pays out enormously.
Since a working version of the email client existed from the very beginning, we always
knew precisely if the interfaces and specifications provided by other modules fit into the
email client, or if changes were required.

4 Verification and Integration

The goal of Verisoft is the pervasive verification of both system hardware and software.
In order to allow integration of the components developed in different parts of the
project, a common set of formal methods and tools is required. As a general design
decision, the Verisoft participants agreed to use Isabelle/HOL [NPW02] as the main
verification tool. Norbert Schirmer developed an Isabelle theory for the verification of C0
programs in Isabelle/HOL. The core of this theory is a Verification Condition Generator
for translation of specifications and code into HOL [Sch05]. C0 is a subset of C with
some limitations for easier verification. Side effects are not allowed in expressions, and
there can only be one return statement in each function. Pointers are typed. Pointer
arithmetic is forbidden, and arrays can not be allocated dynamically. The verified
compiler developed by Leinenbach et al.[LPP05] translates C0 programs into machine
code and into a format suitable for input into the Isabelle system.

Empirically Successful Computerized Reasoning 121

Implementation (Isabelle)

Implementation (C0)

Formal Specification (Isabelle)

Top Level Goals
(Informal)

Top Level Goals
(Formal)

Informal Specification

Paper

OCL State Charts

Proof

Tool

Figure 5: Types of models used in the specification of the Verisoft email client

The verification process of the Verisoft email client is depicted in Figure 5. Based
on the informal specifications, formal Isabelle specifications were developed. The pro-
totypical C implementation of the email client was adapted to C0, and correctness of
the automatically generated Isabelle translation of the code was proven. Independent of
this, formal definitions of the email client security requirements given in Section 2.1 were
developed. From the functional correctness of the email client specification, compliance
to the top level verification goals was deduced.

4.1 Verifying the Email Client

An important lesson from verifying the Verisoft email client is that implementation
follows verification. When there was a problem in verifying a piece of code, we did
not hesitate to change the implementation in order to make it easier to verify. Since
the tool for automatic translation from C0 to the Isabelle representation of C0 was
developed in Verisoft, and was therefore not available at the begin of the project, we
started by manually translating parts of the code and verifying it. We learned that
this goes very well with verification of the large and complex functions of the Verisoft
email client. In order to verify a large function, we started with small pieces of the code
and the specification. Once these fractions where verified successfully, more parts of the
specification and of the code were added. The final implementation of the Verisoft email
client consists of about 2800 lines of code. Verifying the Verisoft email client required
an Isabelle proof script of twice the size of the code. Compared to typical text book
examples, the proofs were rather simple. The Verisoft email client does not use data
structures more complex than lists of strings, and operations on the data structures do

122 Empirically Successful Computerized Reasoning

not involve recursion etc.

4.2 Interfaces to other components

The Verisoft email client has interfaces to a number of other components of the Verisoft
system: The operating system provides system calls to the I/O devices. Remote proce-
dure calls are used to pass mail to and from the SMTP server, and to the cryptographic
module for signing and checking signatures. The C0 library provides essential data
structures used by the email client. Since all of these components were developed in
parallel to the Verisoft email client, their specifications and implementations became
available over the course of the project.

In Section 3, we explained how we solved the problem of not having implementations
of other components available at the begin of the project. For the specification and
verification part, our approach to deal with this problem depended on the type of missing
component.

Some of the components are essentially “black boxes” for the email client. For
verifying the functional properties of the email client, the actual specification of the
signature component and the SMTP server are irrelevant. For the email client, we just
have to show that the SMTP and cryptographic functionality is executed at certain
points during the execution of the email client. Specification of these components is
needed only in the last step, when the email system is integrated and the top level goals
of the email system are proven. Therefore, we were able to specify and verify the email
client independent of these modules.

The situation was different for the data structures. For the specification and correct-
ness proofs about the email client, we had to make use of the specification of the string
and list data structures. Here, the Isabelle/HOL verification environment was benefi-
cial. HOL provides native string and data structures. In the first phases of the project,
we replaced the C0 data structures by their corresponding HOL data structures. Since
the C0 data structures are defined as refinements of the native HOL data structures,
integration of the real data structures was fairly straightforward. Only some additional
pre-conditions had to be changed in order to take into account the cases where the
behavior of the C0 data structure differs from the behavior of the HOL data structures.
For example while HOL data structures do not have upper bounds, the length of C0
data structures is limited.

It turned out that this two-step approach did not cause a significant overhead, be-
cause the old proofs, conducted with the HOL data structures, did not become obsolete.
They just had to be extended to deal with the additional constraints of the C0 data
structures.

In conclusion, using non-verified, interface compatible libraries built-in into the tools
and replacing them later on with their verified counterpart turned out to be a good
approach. It allowed us to start verifying at a time when the final libraries were not
available.

4.3 Integration

Different parts of the Verisoft academic system, and even different part of the Verisoft
email client, use different kinds of formal methods. Parts are specified in terms of pre-

Empirically Successful Computerized Reasoning 123

and post-conditions. These were verified in Hoare calculus. Other parts rely on temporal
properties. These were specified in temporal logics and proven by model checking. In
order to integrate both aspects, the specification and implementation of the email client
was split in two parts: The temporal properties were modeled as the state transition
diagram shown in Figure 4. The functional properties were embedded in this state
transition diagram. Each state transition represented a function call specified in Hoare
logics. Since all states are represented explicitly in Vericlient, and the main execution
loop executes the statechart, integration was achieved by showing that each functional
call executes the state transitions defined in the statechart.

5 Conclusions

Completely verifying the Verisoft email client posed a number of challenges:

• Other parts of the system, including the specification and implementation language
and the calculus, were not available when the project started.

• Interactive user interfaces and secure human-computer interaction had to be spec-
ified and verified.

• Theorems proven in different formal methods had to be integrated.

All of these problems were solved. Implementing a prototype and using prototypical
specifications of the other components proved to be a viable solution for the problem
that not all system parts were available in the beginning, a situation quite typical for
large-scale academic and industrial projects. Starting with a prototype, we could test
the viability of our specification and start verifying without having all other system
parts available. When more and more parts of the system became available, most of the
work spent on the prototype could be reused.

Formally specifying secure human-computer interaction required genuine scientific
work. By formalizing the user model and by adapting and formalizing secure computing
for human-computer interaction, it was possible to verify user interface security with
the formal methods employed in the Verisoft project. Here, it was beneficial that not
all other parts of the Verisoft academic system were already available at the start of
the project, because the requirements for a secure user interface directly affected the
specification of other parts, like the I/O device interface of the operating system.

For the integration of results achieved by Hoare calculus verification with results
achieved by model checking, it was a big advantage to have both methodologies inte-
grated into Isabelle/HOL. This way, the same statechart specification could be used
for model checking, and in the definition of pre- and post-conditions of the individual
functions.

References

[ABKS05] Nathaniel Ayewah, Sven Beyer, Nikhil Kikkeri, and Peter-Michael Seidel.
Challenges in the formal verification of complete state-of-the-art processors.
In International Conference on Computer Design, San Jose, 2005.

124 Empirically Successful Computerized Reasoning

[Bac05] Daniel Bachfeld. Nepper, Schlepper, Bauernfänger — Risiken beim Online-
Banking. c’t magazin für Computertechnik, pages 148–153, 2005.

[BB] Bernhard Beckert and Gerd Beuster. A method for formalizing secure user
interfaces. In Submitted to Eighth International Conference on Formal En-
gineering Methods (ICFEM 2006).

[BR02] L. Bussard and Y. Roudier. Authentication in ubiquitous computing. In
UBICOMP 2002, Workshop on Security in Ubiquitous Computing, Göteborg,
Sweden, September 2002.

[CC02] Patrick Cousot and Radhia Cousot. Modular static program analysis. In
N. Horspool, editor, Proceedings of the International Conference on Com-
piler Construction (CC 2002), LNCS 2304, pages 159–178, Grenoble, France,
April 6–14 2002.

[DHO04] W. Damm, H. Hungar, and E.-R. Olderog. On the verification of cooper-
ating traffic agents. In F.S. de Boer, M.M. Bonsangue, S. Graf, and W.-P.
de Roever, editors, Proc. FMCO ’03: Formal Methods for Components and
Objects, LNCS 3188, pages 78–110, 2004.

[GHLP05] Mauro Gargano, Mark Hillebrand, Dirk Leinenbach, and Wolfgang Paul. On
the correctness of operating system kernels. In Proceedings, 18th Interna-
tional Conference on Theorem Proving in Higher Order Logics (TPHOLs
2005), LNCS 3603, pages 2–16. Springer, 2005.

[Gou01] Éric Goubault. Static analyses of floating-point operations. In P. Cousot,
editor, SAS’01, LNCS 2126, pages 233–258, Paris, July 2001.

[GZ99] Gerhard Goos and Wolf Zimmermann. Verification of compilers. In Correct
System Design, pages 201–230, 1999.

[LPP05] Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the formal
verification of a c0 compiler. In Proceedings, 3rd International Conference
on Software Engineering and Formal Methods (SEFM 2005), Koblenz, Ger-
many, 5–9 September 2005.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[Pau05] Wolfgang Paul. Towards a worldwide verification technology. In Proceedings
of the Verified Software: Theories, Tools, Experiments Conference (VSTTE
2005), Zurich, Switzerland, October 2005.

[Sch05] Norbert Schirmer. A verification environment for sequential imperative pro-
grams in Isabelle/HOL. In F. Baader and A. Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, volume 3452, pages
398–414, 2005.

[Str91] John Strang. Programming with curses. O’Reilly & Associates, Inc., 1991.

Empirically Successful Computerized Reasoning 125

