

#### Evolutionary Diversity Optimization Using Multi-Objective Indicators

Markus Wagner

Recent work with Carola Doerr, Wanru Gao, Aneta Neumann, Frank Neumann (original slides by Frank Neumann)



2019: Best Paper Nominated

#### adelaide.edu.au

## Motivation

- Diversity plays a crucial role in evolutionary computation, where we evolve sets ("populations") of solutions
- Diversity
  - prevents premature convergence ("getting stuck early")
  - enables successful recombination/crossover
  - allows to compute set of Pareto optimal solutions for multi-objective problems

# Diversity

- Majority of approaches consider diversity in the objective space.
- Ulrich/Thiele considered diversity in the search space (Tamara Ulrich's PhD thesis, ~2011).
- Diversity with respect to other properties (features) is useful in various domains.
- Potential source for confusion: connections to subset selection problems, facility location problems (Operations Research), multi-modal optimisation, ...

#### Goal:

- Compute a set of good solutions that differ in terms of interesting properties/features.
  - Think of (good) designs that vary with respect to important properties. → The objective space is not of immediate interest!

# **Application Areas**

- Present a set of diverse high-quality solutions (instead of single one) to enable discussion for further refinement.
- See how good solutions distribute with respect to important features of solutions
- Understanding of algorithm performance with respect to important features through diverse problem instances
- Construction of diverse set of problem instances for algorithm selection.

# Diversity of instances for TSP

• We want to construct a diverse set of TSP instances

Examples:

- Diverse set where a certain algorithm is performing badly (high approximation ratio)  $\alpha_A(I) = A(I)/OPT(I)$
- Diverse set where two solvers are performing differently.



# EA for evolving diverse instances for the Traveling Salesperson Problem

(Gao, Nallaperuma, Neumann (PPSN 16))

Algorithm 1.  $(\mu + \lambda)$ - $EA_D$ 

- 1 Initialize the population P with  $\mu$  TSP instances of approximation ratio at least  $\alpha_h$ .
- **2** Let  $C \subseteq P$  where  $|C| = \lambda$ .
- **3** For each  $I \in C$ , produce an offspring I' of I by mutation. If  $\alpha_A(I') \ge \alpha_h$ , add I' to P.
- 4 While  $|P| > \mu$ , remove an individual  $I = \arg \min_{J \in P} d(J, P)$  uniformly at random.
- **5** Repeat step 2 to 4 until termination criterion is reached.

d(I,P) is the diversity contribution of instance I to the population P. Let I be an individual (tour) and f(I) be its feature value.

We assume that  $f(I_1) \leq f(I_2) \leq \ldots \leq f(I_k)$  holds.

#### Reminder: $\alpha$ is used here just as a quality constraint, and survivor selection does not consider it, but only the diversity (contribution)



"Diversity" of a single solution:

$$d_{f_i}(I_i, P) = (f(I_i) - f(I_{i-1})) \times (f(I_{i+1}) - f(I_i))$$

Diversity of a population:  $d'(I,P) = \sum_{i=1}^k (w_i imes d_{f_i}(I,P))$ 

Maximum: if solutions are equally spaced out, as this is then the sum of squares



University of Adelaide

Box plots features of "easy/hard" TSP instances for 2-opt (with and without diversity optimization)

Feature values of evolved instances: From left to right:

- 1. Easy instances / only using  $\alpha$
- 2. Hard instances / only using  $\alpha$
- 3. Easy instances / feature diversity ( $\alpha$  as quality constraint)
- 4. Hard instances / feature diversity ( $\alpha$  as quality constraint)

Works for other features, too... but not for all.





D)

:)

as targets

9211

a)

University of Adelaide

# Multiple features

- For 2 or more features, weightening of diversity contributions might not lead to good diversity.
- Results depend on chosen weightening.

Questions:

- What is a good diversity measure?
- What is the diversity optimisation goal?

# Discrepancy ("the number of points in a volume should be proportionate to the volume")

For further investigations we assume feature values are in [0,1] (can be achieved through scaling)

Given a set of points 
$$X := \{s^1, ..., s^n\}$$
  
with  $S = [0, 1]^{d}$ ,  $s^1$ ,...,  $s^n \in S$ 

$$[a,b] := [a_1,b_1] \times \ldots \times [a_d,b_d]$$

 $\operatorname{Vol}([a,b]) - |X \cap [a,b]|/n$ 



 $D(X, \mathcal{B}) := \sup \{ \operatorname{Vol}([a, b]) - |X \cap [a, b]| / n \mid a \le b \in [0, 1]^d \}$ 

We consider special case of star discrepancy a=0<sup>d</sup>

#### Example Runs Discrepancy each dot is one solution (read: 1 image) in the 2D feature space



#### Final population of one run (1000 iterations)All solutions during these 1000 iterations



#### All solutions during 10 independent runs



University of Adelaide





Figure 4: Feature vectors for final population of  $(\mu + \lambda)$ -EA<sub>C</sub> (top) and  $(\mu + \lambda)$ -EA<sub>D</sub> (bottom) for images based on two features from left to right: (SDHue, Saturation), (Symmetry, Hue), (GCF, Smoothness).



 $(\mu + \lambda)$ - $EA_C(1)$  $(\mu + \lambda)$ - $EA_D$  (2)  $(\mu + \lambda)$ - $EA_T(3)$ std std std min mean stat min mean stat min mean stat  $2^{(-)}, 3^{(-)}$  $1^{(+)}$  $1^{(+)}$ (f1, f2) 0.2014 0.3234 0.0595 0.1272 0.2038 0.1157 0.1119 0.1530 0.0269  $1^{(+)}.2^{(+)}$  $2^{(-)}, 3^{(-)}$  $1^{(+)}.3^{(-)}$ (f3,f4) 0.1964 0.2945 0.0497 0.1574 0.2280 0.0592 0.1051 0.1417 0.0179  $2^{(-)}, 3^{(-)}$  $1^{(+)}$ 1<sup>(+)</sup> (f5, f6) 0.1363 0.0538 0.0234 0.1997 0.2769 0.0344 0.2025 0.1457 0.1800  $1^{(+)}$ 1(+)  $2^{(-)}, 3^{(-)}$ 0.0613 0.1062 0.0422 (f1, f2, f3) 0.3389 0.4327 0.1513 0.3335 0.2253 0.2814  $2^{(-)}, 3^{(-)}$ 1<sup>(+)</sup> 1<sup>(+)</sup> (f1, f4, f3) 0.2754 0.3395 0.0483 0.2100 0.3118 0.1309 0.2224 0.2600 0.0123  $1^{(+)}$  $2^{(-)}, 3^{(-)}$  $1^{(+)}$ 0.0125 0.0841 0.2021 0.1467 (f5, f4, f2) 0.4775 0.6488 0.3007 0.1983 0.2229

Table 1: Statistics of discrepancy values for images. f1, f2, f3, f4, f5, f6 denote features SD-hue, Saturation, Symmetry, Hue, GCF and Smoothness, respectively.





Figure 5: Feature vectors for final population of  $(\mu + \lambda)$ -EA<sub>C</sub> (top) and  $(\mu + \lambda)$ -EA<sub>D</sub> (bottom) for TSP based on two feature from left to right: (angle\_mean, mst\_dists\_mean), (centroid\_mean\_distance\_to\_centroid, mst\_dists\_mean), (mds\_mean, mst\_dists\_mean)

#### Okay, so there is some diversity... but can we do better?

University of Adelaide

#### TSP - Results

|              |        | $(\mu + \lambda)$ | $\lambda$ )-EA <sub>C</sub> |                                    |        | $(\mu + \lambda)$ | $\lambda$ )-EA <sub>D</sub> |                                    | $(\mu + \lambda)$ -EA <sub>T</sub> |        |        |                    |  |
|--------------|--------|-------------------|-----------------------------|------------------------------------|--------|-------------------|-----------------------------|------------------------------------|------------------------------------|--------|--------|--------------------|--|
|              | min    | mean              | std                         | stat                               | min    | mean              | std                         | stat                               | min                                | mean   | std    | stat               |  |
| (f1,f4)      | 0.4836 | 0.5535            | 0.0362                      | 2 <sup>(-)</sup> ,3 <sup>(-)</sup> | 0.2229 | 0.2942            | 0.0512                      | 1 <sup>(+)</sup> ,3 <sup>(-)</sup> | 0.2013                             | 0.2354 | 0.0252 | $1^{(+)}, 2^{(+)}$ |  |
| (f2, f4)     | 0.4657 | 0.5192            | 0.0256                      | $2^{(-)}, 3^{(-)}$                 | 0.3229 | 0.3708            | 0.0414                      | $1^{(+)}, 3^{(-)}$                 | 0.2816                             | 0.3363 | 0.0435 | $1^{(+)}, 2^{(+)}$ |  |
| (f3, f4)     | 0.5743 | 0.6296            | 0.0219                      | $2^{(-)}, 3^{(-)}$                 | 0.3590 | 0.4422            | 0.0534                      | $1^{(+)}$                          | 0.3831                             | 0.4113 | 0.0175 | $1^{(+)}$          |  |
| (f1, f3, f4) | 0.7765 | 0.7997            | 0.0204                      | $2^{(-)}, 3^{(-)}$                 | 0.4303 | 0.4585            | 0.0183                      | $1^{(+)}$                          | 0.4372                             | 0.4604 | 0.0422 | $1^{(+)}$          |  |
| (f2, f3, f4) | 0.7641 | 0.7962            | 0.0198                      | $2^{(-)}, 3^{(-)}$                 | 0.4197 | 0.4563            | 0.0215                      | $1^{(+)}$                          | 0.3730                             | 0.4514 | 0.0327 | $1^{(+)}$          |  |
| (f1, f2, f3) | 0.7593 | 0.7836            | 0.0111                      | $2^{(-)},3^{(-)}$                  | 0.3900 | 0.4095            | 0.0160                      | $1^{(+)}$                          | 0.3547                             | 0.3988 | 0.0217 | $1^{(+)}$          |  |

Table 2: Statistics of discrepancy values for TSP. f1, f2, f3, f4 denote the feature angle\_mean, centroid\_mean\_dist\_centroid, nnds\_mean, mst\_dists\_mean respectively.

# Evolutionary diversity optimization using multi-objective indicators

(A. Neumann, W. Gao, M. Wagner, F. Neumann, GECCO 2019)

#### Indicator-based Multi-Objective Optimization

- Let I be a search point
  - f:  $X \to R^d$  a function that assigns to each search point I an objective vector
  - q:  $X \rightarrow R^e$  be a function measures constraint violations
- An indicator Ind:  $2^X \rightarrow R$  measures the quality of a given set of search points



# Indicator-Based Diversity Optimisation

- Let I be a search point
  - f: X  $\rightarrow$  R<sup>d</sup> a function that assigns to each search point a feature vector
  - q: X → R be a function assigning a quality score to each I ∈ X e.g.: require q(I) ≥ α for all "good" solutions (constraint)
- Define Ind:  $2^X \rightarrow R$  which measures the diversity of a given set of search points.

#### Goal:

Compute set  $P = \{I_1, ..., I_\mu\}$  of  $\mu$  solutions maximizing (minimizing) Ind among all sets of  $\mu$  solutions under the condition that  $q(I) \ge \alpha$  holds for all  $I \in P$ , where  $\alpha$  is a given quality threshold.

### **Multi-Objective Indicators**

Popular indicators in multi-objective optimization:

• Hypervolume (HYP)

$$HYP(S,r) = VOL\left(\cup_{(s_1,\ldots,s_d)\in S} [r_1,s_1] \times \cdots [r_d,s_d]\right)$$

• Inverted generational distance (IGD) (with respect to reference set R)

$$IGD(R,S) = \frac{1}{|R|} \sum_{r \in R} \min_{s \in S} d(r,s),$$

• Additive epsilon approximation (EPS) (with respect to reference set R)

$$\alpha(R,S) := \max_{r \in R} \min_{s \in S} \max_{1 \le i \le d} (s_i - r_i).$$

### How to use Multi-Objective Indicators

- Diversity Optimisation aims to compute a diverse set of solutions for a given single-objective problem
- Multi-Objective indicators guide the search towards a diverse set of Pareto optimal solutions. (read: some vectors are better than others, but we do not want this in diversity optimisation)

Use of multi-objective indicators:

- Transform feature vectors of search points to make them incomparable.
- Apply multi-objective indicators after transformation has occurred.

# Transformations (1/2)

For 2 features (transform into 3D) as follows:

- Place the unit square with its original x/y-coordinates in the three- dimensional space using z = 0.
- We rotate it around the x and y axis by 45 degrees each time.
- Translate it such that the centre point of the transformed unit square is at (sqrt(2)/4)



# Transformations (2/2)

For d features:

• Double the number of dimensions to make vectors incomparable:



# Algorithm

#### **Algorithm 1:** $(\mu + \lambda)$ -*EA*<sub>D</sub>

- 1 Initialize the population *P* with  $\mu$  instances of quality at least  $\alpha$ .
- <sup>2</sup> Let  $C \subseteq P$  where  $|C| = \lambda$ .
- <sup>3</sup> For each  $I \in C$ , produce an offspring I' of I by mutation. If  $q(I') \ge \alpha$ , add I' to P.
- 4 While  $|P| > \mu$ , remove an individual with the smallest loss to the diversity indicator *D*.
- <sup>5</sup> Repeat step 2 to 4 until termination criterion is reached.

In plain English: it's a population-based EA that (1) mutates lambda individuals in each generation, and (2) considers diversity to select the survivors.







0.3

0.72

0.722

Symmetry

0.724

0.726

0.5

0.52

0.54

SDHue

0.56

0.58

0.6

0.027 0.0275

0.0255

0.025

0.026 0.0265

GCF





법 0.46

S 0.45

0.44

0.43 0.42

0.47

0.46

8 0.45

Satural 870

0.43

0.42 -0.48

0.5 0.52 0.54 0.56 0.58

SDHue

0.4

0.45

0.5





0.0245

0.025

GCD

0.027

0.026

hyp 0.6628

0.0255





0.6



0.74









29









discrepancy 0.2622

















GCF

0.027

hyp 0.6628





0.52

0.48 0.46

ng S 0.44

0.42

0.4

0.5

0.4

0.45 0.5 0.55

AHYP

 $\Xi$ 

discrepancy 0.2568

hyp 0.6912

0.65

igd 0.009

0.7

0.6

SDHue

discrepancy 0.1767 hyp 0.3423



0.45

0.4

₽ 10.35

0.

0.25



0.027

0.026

0.0255

igd 0.0011

eps 0.3956

• • • •

0.027 0.0275

0.025 0.0255 0.026 0.0265 0.027 0.0275

GCF

discrepancy 0.2299

0.0255

0.026 0.0265

GCF







discrepancy 0.2262







Not locally sensitive, even when using the vector of all ref.-grid approx.

### **Results Images**

#### 2-feature combinations

|     | $EA_{HYP-2D}$ (1) |       |       | A <sub>HYP-2D</sub> (1)           | $EA_{HYP}$ (2) |       |                                   | EA <sub>IGD</sub> (3) |       |                                      |       | H     | $EA_{EPS}$ (4)                       | $EA_{DIS}$ (5) |       |                                      |
|-----|-------------------|-------|-------|-----------------------------------|----------------|-------|-----------------------------------|-----------------------|-------|--------------------------------------|-------|-------|--------------------------------------|----------------|-------|--------------------------------------|
|     |                   | mean  | st    | stat                              | mean           | st    | stat                              | mean                  | st    | stat                                 | mean  | st    | stat                                 | mean           | st    | stat                                 |
| A   | $f_{1}, f_{2}$    | 0.347 | 0.004 | $4^{(+)},5^{(+)}$                 | 0.382          | 0.007 | $3^{(+)},4^{(+)},5^{(+)}$         | 0.335                 | 0.003 | $2^{(-)},5^{(+)}$                    | 0.198 | 0.019 | $1^{(-)},2^{(-)}$                    | 0.112          | 0.030 | $1^{(-)},2^{(-)},3^{(-)}$            |
| ę.  | $f_{3}, f_{4}$    | 0.344 | 0.004 | $2^{(+)},4^{(+)},5^{(+)}$         | 0.268          | 0.014 | $1^{(-)},3^{(-)},4^{(+)},5^{(+)}$ | 0.339                 | 0.004 | $2^{(+)}, 4^{(+)}, 5^{(+)}$          | 0.221 | 0.015 | $1^{(-)},2^{(-)},3^{(-)}$            | 0.105          | 0.025 | $1^{(-)},2^{(-)},3^{(-)}$            |
| E   | $f_{5}, f_{6}$    | 0.350 | 0.007 | $2^{(+)},3^{(+)},4^{(+)},5^{(+)}$ | 0.342          | 0.004 | $1^{(-)},4^{(+)},5^{(+)}$         | 0.332                 | 0.004 | $1^{(-)},4^{(+)},5^{(+)}$            | 0.220 | 0.045 | $1^{(-)},2^{(-)},3^{(-)}$            | 0.134          | 0.016 | $1^{(-)},2^{(-)},3^{(-)}$            |
| ۵.  | $f_{1}, f_{2}$    | 0.525 | 0.012 | $3^{(+)},4^{(+)},5^{(+)}$         | 0.693          | 0.013 | $3^{(+)},4^{(+)},5^{(+)}$         | 0.374                 | 0.006 | $1^{(-)}, 2^{(-)}, 4^{(+)}$          | 0.344 | 0.003 | $1^{(-)}, 2^{(-)}, 3^{(-)}$          | 0.363          | 0.014 | $1^{(-)}, 2^{(-)}$                   |
| Σ   | $f_{3}, f_{4}$    | 0.500 | 0.007 | $3^{(+)},4^{(+)},5^{(+)}$         | 0.681          | 0.010 | $3^{(+)},4^{(+)},5^{(+)}$         | 0.268                 | 0.072 | $1^{(-)}, 2^{(-)}, 4^{(+)}, 5^{(+)}$ | 0.280 | 0.010 | $1^{(-)},2^{(-)},3^{(-)}$            | 0.267          | 0.014 | $1^{(-)},2^{(-)},3^{(-)}$            |
| щ   | $f_{5}, f_{6}$    | 0.518 | 0.012 | $2^{(-)}, 4^{(+)}, 5^{(+)}$       | 0.663          | 0.010 | $1^{(+)},3^{(+)},4^{(+)},5^{(+)}$ | 0.335                 | 0.004 | $2^{(-)}, 4^{(+)}$                   | 0.317 | 0.006 | $1^{(-)},2^{(-)},3^{(-)}$            | 0.327          | 0.008 | $1^{(-)},2^{(-)}$                    |
| ~   | $f_{1}, f_{2}$    | 0.001 | 0.335 | $2^{(+)}, 4^{(+)}, 5^{(+)}$       | 0.003          | 0.000 | $1^{(-)},3^{(-)}$                 | 0.001                 | 0.000 | $2^{(+)}, 4^{(+)}, 5^{(+)}$          | 0.003 | 0.000 | $1^{(-)},3^{(-)},5^{(+)}$            | 0.005          | 0.001 | $1^{(-)},3^{(-)},4^{(-)}$            |
| 5   | $f_{3}, f_{4}$    | 0.001 | 0.339 | $2^{(+)},4^{(+)},5^{(+)}$         | 0.004          | 0.000 | $1^{(-)},3^{(-)},5^{(+)}$         | 0.001                 | 0.000 | $2^{(+)},4^{(+)},5^{(+)}$            | 0.003 | 0.000 | $1^{(-)},3^{(-)},5^{(+)}$            | 0.005          | 0.001 | $1^{(-)}, 2^{(-)}, 3^{(-)}, 4^{(-)}$ |
| _   | $f_{5}, f_{6}$    | 0.002 | 0.332 | $2^{(+)},5^{(+)}$                 | 0.007          | 0.000 | $1^{(-)},3^{(-)},4^{(-)},5^{(-)}$ | 0.001                 | 0.000 | $2^{(+)}, 4^{(+)}, 5^{(+)}$          | 0.003 | 0.001 | $2^{(+)}, 3^{(-)}$                   | 0.004          | 0.001 | $1^{(-)},2^{(+)},3^{(-)}$            |
| ~   | $f_{1}, f_{2}$    | 0.190 | 0.198 | $2^{(+)},4^{(+)},5^{(+)}$         | 0.498          | 0.011 | $1^{(-)}, 3^{(-)}$                | 0.194                 | 0.032 | $2^{(+)},4^{(+)},5^{(+)}$            | 0.402 | 0.039 | $1^{(-)},3^{(-)},5^{(+)}$            | 0.600          | 0.106 | $1^{(-)},3^{(-)},4^{(-)}$            |
| Ĥ   | $f_{3}, f_{4}$    | 0.198 | 0.221 | $2^{(+)},4^{(+)},5^{(+)}$         | 0.569          | 0.016 | $1^{(-)},3^{(-)}$                 | 0.208                 | 0.035 | $2^{(+)},4^{(+)},5^{(+)}$            | 0.418 | 0.036 | $1^{(-)},3^{(-)},5^{(+)}$            | 0.615          | 0.069 | $1^{(-)},3^{(-)},4^{(-)}$            |
| _   | $f_{5}, f_{6}$    | 0.125 | 0.220 | $2^{(+)},4^{(+)},5^{(+)}$         | 0.946          | 0.001 | $1^{(-)},3^{(-)},4^{(-)}$         | 0.225                 | 0.064 | $2^{(+)}, 4^{(+)}, 5^{(+)}$          | 0.397 | 0.110 | $1^{(-)},2^{(+)},3^{(-)}$            | 0.587          | 0.063 | $1^{(-)},3^{(-)}$                    |
| ~   | $f_{1}, f_{2}$    | 0.171 | 0.018 | $2^{(+)},4^{(+)},5^{(+)}$         | 0.257          | 0.010 | $1^{(-)},4^{(+)}$                 | 0.201                 | 0.031 | $4^{(+)},5^{(+)}$                    | 0.686 | 0.064 | $1^{(-)},2^{(-)},3^{(-)},5^{(-)}$    | 0.204          | 0.116 | $1^{(-)},3^{(-)},4^{(+)}$            |
| DI5 | $f_{3}, f_{4}$    | 0.234 | 0.031 | $4^{(+)}$                         | 0.273          | 0.041 | $3^{(-)},4^{(+)},5^{(-)}$         | 0.198                 | 0.017 | $2^{(+)},4^{(+)}$                    | 0.606 | 0.054 | $1^{(-)}, 2^{(-)}, 3^{(-)}, 5^{(-)}$ | 0.228          | 0.059 | $2^{(+)},4^{(+)}$                    |
|     | $f_{5}, f_{6}$    | 0.221 | 0.026 | $4^{(+)}$                         | 0.263          | 0.070 | $3^{(-)},4^{(+)},5^{(-)}$         | 0.205                 | 0.055 | $2^{(+)}, 4^{(+)}$                   | 0.633 | 0.158 | $1^{(-)},2^{(-)},3^{(-)},5^{(-)}$    | 0.203          | 0.054 | $2^{(+)}, 4^{(+)}$                   |

#### 3-feature combinations<sub>discrepancy 0.1389</sub>

|        |                       |        | 0.5               | 00                 | •      |                   |                                    |                       |        |                                    |  |  |
|--------|-----------------------|--------|-------------------|--------------------|--------|-------------------|------------------------------------|-----------------------|--------|------------------------------------|--|--|
|        |                       |        | EA <sub>HYP</sub> | (1)                |        | EA <sub>IGD</sub> | (2)                                | EA <sub>DIS</sub> (3) |        |                                    |  |  |
|        |                       | mean   | st                | stat               | mean   | st                | stat                               | mean                  | st     | stat                               |  |  |
| Ь      | $f_1, f_2, f_3$       | 0.5251 | 0.0122            | $2^{(+)},3^{(+)}$  | 0.2096 | 0.0018            | 1 <sup>(-)</sup> ,3 <sup>(-)</sup> | 0.2196                | 0.0110 | $1^{(-)}, 2^{(+)}$                 |  |  |
| HΥ     | $f_1, f_4, f_3$       | 0.4998 | 0.0071            | $2^{(+)},3^{(+)}$  | 0.2142 | 0.0036            | 1 <sup>(-)</sup> ,3 <sup>(-)</sup> | 0.2286                | 0.0034 | $1^{(-)}, 2^{(+)}$                 |  |  |
|        | $f_{5}, f_{4}, f_{2}$ | 0.5181 | 0.0122            | $2^{(+)},3^{(+)}$  | 0.1785 | 0.0017            | $1^{(-)}, 3^{(-)}$                 | 0.1961                | 0.0023 | $1^{(-)}, 2^{(+)}$                 |  |  |
| $\sim$ | $f_1, f_2, f_3$       | 0.0146 | 0.0001            | $2^{(-)},3^{(+)}$  | 0.0067 | 0.0003            | $1^{(+)},3^{(+)}$                  | 0.0148                | 0.0003 | $1^{(-)}, 2^{(-)}$                 |  |  |
| IGI    | $f_1, f_4, f_3$       | 0.0150 | 0.0001            | $2^{(-)}$          | 0.0074 | 0.0002            | $1^{(+)},3^{(+)}$                  | 0.0151                | 0.0001 | $2^{(-)}$                          |  |  |
|        | $f_{5}, f_{4}, f_{2}$ | 0.0193 | 0.0001            | $2^{(-)},3^{(+)}$  | 0.0062 | 0.0002            | $1^{(+)},3^{(+)}$                  | 0.0199                | 0.0007 | 1 <sup>(-)</sup> ,2 <sup>(-)</sup> |  |  |
| ~      | $f_1, f_2, f_3$       | 0.3554 | 0.0458            | $2^{(+)},3^{(-)}$  | 0.3809 | 0.0522            | 1 <sup>(-)</sup> ,3 <sup>(-)</sup> | 0.3350                | 0.1002 | $1^{(+)},2^{(+)}$                  |  |  |
| DIS    | $f_1, f_4, f_3$       | 0.3493 | 0.0532            | $2^{(-)}$          | 0.2860 | 0.0342            | $1^{(+)},3^{(+)}$                  | 0.3118                | 0.1309 | $2^{(-)}$                          |  |  |
|        | $f_{5}, f_{4}, f_{2}$ | 0.4237 | 0.0643            | $2^{(-)}, 3^{(-)}$ | 0.3227 | 0.0557            | $1^{(+)}, 3^{(-)}$                 | 0.3007                | 0.1467 | $1^{(+)}, 2^{(+)}$                 |  |  |
|        |                       |        | 0.4               | 0.45               | 0.5    | 0.55<br>SDHue     | 0.6                                | 0.65                  | 0.7    |                                    |  |  |

30 independent runs per setup

#### Multi-Objective Indicators (TSP)



Not locally sensitive, even when using the vector of all ref.-grid approx.

### **Results TSP**

#### 2-feature combinations

|        | $EA_{HYP-2D}$ (1) |       |      | $EA_{HYP}$ (2)              |       |      | EA <sub>IGD</sub> (3)             |       |      | $EA_{EPS}$ (4)              |       |       | EA <sub>DIS</sub> (5)                |       |      |                                   |
|--------|-------------------|-------|------|-----------------------------|-------|------|-----------------------------------|-------|------|-----------------------------|-------|-------|--------------------------------------|-------|------|-----------------------------------|
|        |                   | mean  | st   | stat                        | mean  | st   | stat                              | mean  | st   | stat                        | mean  | st    | stat                                 | mean  | st   | stat                              |
| 2D     | $f_1, f_4$        | 0.338 | 2E-3 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.309 | 4E-3 | $1^{(-)},4^{(+)}$                 | 0.331 | 3E-3 | $4^{(+)},5^{(+)}$           | 0.190 | 1E-3  | $1^{(-)},2^{(-)},3^{(-)}$            | 0.256 | 1E-2 | $1^{(-)},3^{(-)}$                 |
| Ę      | $f_{2}, f_{4}$    | 0.317 | 3E-3 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.303 | 5E-3 | $1^{(-)},3^{(-)},4^{(+)}$         | 0.316 | 3E-3 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.178 | 1E-7  | $1^{(-)},2^{(-)},3^{(-)}$            | 0.252 | 1E-2 | $1^{(-)},3^{(-)}$                 |
| H      | $f_3, f_4$        | 0.303 | 2E-2 | $2^{(+)}, 4^{(+)}, 5^{(+)}$ | 0.296 | 5E-3 | $1^{(-)},3^{(-)},4^{(+)},5^{(+)}$ | 0.304 | 2E-2 | $2^{(+)}, 4^{(+)}, 5^{(+)}$ | 0.190 | 2E-3  | $1^{(-)},2^{(-)},3^{(-)}$            | 0.238 | 2E-2 | $1^{(-)},2^{(-)},3^{(-)}$         |
| ۰.     | $f_{1}, f_{4}$    | 0.645 | 5E-3 | $4^{(+)},5^{(+)}$           | 0.638 | 7E-3 | $4^{(+)},5^{(+)}$                 | 0.639 | 6E-3 | $4^{(+)},5^{(+)}$           | 0.424 | 2E-3  | $1^{(-)},2^{(-)},3^{(-)}$            | 0.529 | 3E-2 | $1^{(-)},2^{(-)},3^{(-)}$         |
| ΤX     | $f_{2}, f_{4}$    | 0.609 | 7E-3 | $2^{(-)},4^{(+)},5^{(+)}$   | 0.632 | 1E-2 | $1^{(+)},4^{(+)},5^{(+)}$         | 0.621 | 6E-3 | $4^{(+)},5^{(+)}$           | 0.398 | 1E-6  | $1^{(-)},2^{(-)},3^{(-)}$            | 0.505 | 2E-2 | $1^{(-)},2^{(-)},3^{(-)}$         |
| щ      | $f_{3}, f_{4}$    | 0.584 | 3E-2 | $2^{(-)}, 4^{(+)}$          | 0.621 | 9E-3 | $1^{(+)},3^{(+)},4^{(+)},5^{(+)}$ | 0.595 | 4E-2 | $2^{(-)}, 4^{(+)}, 5^{(+)}$ | 0.410 | 2E-3  | $1^{(-)}, 2^{(-)}, 3^{(-)}$          | 0.485 | 3E-2 | $2^{(-)},3^{(-)}$                 |
| $\sim$ | $f_{1}, f_{4}$    | 0.001 | 2E-5 | $4^{(+)},5^{(+)}$           | 0.001 | 6E-5 | $3^{(-)},4^{(+)}$                 | 0.001 | 4E-5 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.003 | 2E-5  | $1^{(-)},2^{(-)},3^{(-)}$            | 0.002 | 2E-4 | 1(-),3(-)                         |
| Β      | $f_2, f_4$        | 0.001 | 3E-5 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.002 | 6E-5 | $1^{(-)},3^{(-)},4^{(+)}$         | 0.001 | 3E-5 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.003 | 2E-10 | $1^{(-)},2^{(-)},3^{(-)}$            | 0.002 | 2E-4 | $1^{(-)},3^{(-)}$                 |
| _      | $f_{3}, f_{4}$    | 0.002 | 3E-4 | $4^{(+)},5^{(+)}$           | 0.002 | 6E-5 | $3^{(-)},4^{(+)},5^{(+)}$         | 0.002 | 3E-4 | $2^{(+)}, 4^{(+)}, 5^{(+)}$ | 0.003 | 3E-5  | $1^{(-)},2^{(-)},3^{(-)}$            | 0.003 | 3E-4 | $1^{(-)},2^{(-)},3^{(-)}$         |
| ~      | $f_{1}, f_{4}$    | 0.196 | 2E-2 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.249 | 2E-2 | $1^{(-)},3^{(-)},4^{(+)}$         | 0.189 | 2E-2 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.423 | 1E-3  | $1^{(-)},2^{(-)},3^{(-)}$            | 0.345 | 4E-2 | 1(-),3(-)                         |
| Ë      | $f_2, f_4$        | 0.226 | 8E-3 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.256 | 2E-2 | $1^{(-)},3^{(-)},4^{(+)},5^{(+)}$ | 0.228 | 1E-2 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.499 | 2E-16 | $1^{(-)},2^{(-)},3^{(-)}$            | 0.360 | 5E-2 | $1^{(-)},2^{(-)},3^{(-)}$         |
|        | $f_{3}, f_{4}$    | 0.260 | 4E-2 | $4^{(+)},5^{(+)}$           | 0.278 | 2E-2 | $4^{(+)},5^{(+)}$                 | 0.265 | 4E-2 | $4^{(+)},5^{(+)}$           | 0.477 | 3E-3  | $1^{(-)},2^{(-)},3^{(-)}$            | 0.368 | 5E-2 | $1^{(-)},2^{(-)},3^{(-)}$         |
|        | $f_{1}, f_{4}$    | 0.222 | 2E-2 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.353 | 2E-2 | $1^{(-)},3^{(-)},4^{(+)}$         | 0.249 | 2E-2 | $2^{(+)},4^{(+)}$           | 0.589 | 4E-3  | $1^{(-)},2^{(-)},3^{(-)},5^{(-)}$    | 0.292 | 5E-2 | 1(-),4(+)                         |
| Ĩ      | $f_2, f_4$        | 0.230 | 2E-2 | $2^{(+)},4^{(+)},5^{(+)}$   | 0.274 | 2E-2 | $1^{(-)},4^{(+)},5^{(+)}$         | 0.252 | 1E-3 | $4^{(+)},5^{(+)}$           | 0.609 | 1E-16 | $1^{(-)}, 2^{(-)}, 3^{(-)}, 5^{(-)}$ | 0.336 | 4E-2 | $1^{(-)},2^{(-)},3^{(-)},4^{(+)}$ |
|        | $f_3, f_4$        | 0.418 | 6E-2 | $4^{(+)}$                   | 0.416 | 3E-2 | $4^{(+)}$                         | 0.401 | 7E-2 | $4^{(+)},5^{(+)}$           | 0.719 | 6E-3  | $1^{(-)},2^{(-)},3^{(-)},5^{(-)}$    | 0.448 | 9E-2 | $3^{(-)},4^{(+)}$                 |

#### 3-feature combinations

|     |                       | E      | EA <sub>HYI</sub> | P (1)                              | Η      | EA <sub>IGE</sub> | <b>(</b> 2)                        | $EA_{DIS}$ (3) |      |                                    |  |
|-----|-----------------------|--------|-------------------|------------------------------------|--------|-------------------|------------------------------------|----------------|------|------------------------------------|--|
|     |                       | mean   | st                | stat                               | mean   | st                | stat                               | mean           | st   | stat                               |  |
| പ   | $f_1, f_2, f_3$       | 0.4511 | 1E-2              | $2^{(+)},3^{(+)}$                  | 0.4261 | 7E-3              | 1 <sup>(-)</sup> ,3 <sup>(+)</sup> | 0.3385         | 6E-3 | 1 <sup>(-)</sup> ,2 <sup>(-)</sup> |  |
| ΗX  | $f_1, f_3, f_4$       | 0.4579 | 8E-3              | $2^{(+)},3^{(+)}$                  | 0.4260 | 6E-3              | 1 <sup>(-)</sup> ,3 <sup>(+)</sup> | 0.3430         | 6E-3 | $1^{(-)}, 2^{(-)}$                 |  |
|     | $f_2, f_3, f_4$       | 0.4478 | 8E-3              | $2^{(+)},3^{(+)}$                  | 0.4262 | 6E-3              | $1^{(-)}, 3^{(+)}$                 | 0.3430         | 6E-3 | 1 <sup>(-)</sup> ,2 <sup>(-)</sup> |  |
| _   | $f_{1}, f_{2}, f_{3}$ | 0.0083 | 3E-4              | $2^{(-)}, 3^{(+)}$                 | 0.0075 | 2E-4              | 1 <sup>(+)</sup> ,3 <sup>(+)</sup> | 0.0110         | 1E-4 | $1^{(-)}, 2^{(-)}$                 |  |
| IGL | $f_1, f_3, f_4$       | 0.0082 | 2E-4              | $2^{(-)},3^{(+)}$                  | 0.0077 | 1E-4              | $2^{(+)},3^{(+)}$                  | 0.0107         | 1E-4 | 1 <sup>(-)</sup> ,2 <sup>(-)</sup> |  |
|     | $f_2, f_3, f_4$       | 0.0086 | 2E-4              | $2^{(-)}, 3^{(+)}$                 | 0.0080 | 2E-2              | $2^{(+)},3^{(+)}$                  | 0.0112         | 8E-5 | 1 <sup>(-)</sup> ,2 <sup>(-)</sup> |  |
|     | $f_{1}, f_{2}, f_{3}$ | 0.4115 | 3E-2              | 2 <sup>(+)</sup> ,3 <sup>(+)</sup> | 0.4839 | 3E-2              | 1(-),3(-)                          | 0.4399         | 2E-2 | 1 <sup>(-)</sup> ,2 <sup>(+)</sup> |  |
| DIS | $f_1, f_3, f_4$       | 0.5220 | 4E-2              | 3(-)                               | 0.5474 | 3E-2              | 3 <sup>(-)</sup>                   | 0.4757         | 2E-2 | $1^{(+)}, 2^{(+)}$                 |  |
|     | $f_2, f_3, f_4$       | 0.4669 | 3E-2              | $2^{(+)}$                          | 0.5111 | 3E-2              | 1 <sup>(-)</sup> ,3 <sup>(-)</sup> | 0.4667         | 2E-2 | $2^{(+)}$                          |  |
|     |                       |        |                   |                                    |        |                   |                                    |                |      |                                    |  |

#### In summary:

- EA<sub>HYP</sub> and EA<sub>IGD</sub> perform best
- Beats our GECCO'18 results (discrepancy theory)

#### 30 independent runs per setup

### Some of the next questions to answer:

- What type of features are good to characterize problem instances of a given problem (e.g. TSP) for a particular algorithm.
- What is a good diversity measure?
- What is the runtime behavior of EAs maximizing searchspace/feature diversity?
- How do we compute diverse sets of high-quality solutions for important combinatorial optimization problems?
- How do we change state of the art solvers to compute diverse sets of solutions (instead of a single one)
- We provide code: <u>https://tinyurl.com/geccoDiversity</u> (Java code, Matlab wrapper provided)
- Email: <u>markus.wagner@adelaide.edu.au</u>