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Motivation

• Diversity plays a crucial role in evolutionary 
computation, where we evolve sets (“populations”) of 
solutions

• Diversity 
– prevents premature convergence (”getting stuck early”)
– enables successful recombination/crossover
– allows to compute set of Pareto optimal solutions 

for multi-objective problems 
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Diversity
• Majority of approaches consider diversity in the objective 

space.
• Ulrich/Thiele considered diversity in the search space

(Tamara Ulrich’s PhD thesis, ~2011).
• Diversity with respect to other properties (features) is useful 

in various domains.
• Potential source for confusion: connections to subset selection 

problems, facility location problems (Operations Research), 
multi-modal optimisation, …

Goal: 
• Compute a set of good solutions that differ in terms of 

interesting properties/features.
– Think of (good) designs that vary with respect to important 

properties.  à The objective space is not of immediate interest!
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Application Areas

• Present a set of diverse high-quality solutions (instead of 
single one) to enable discussion for further refinement. 

• See how good solutions distribute with respect to 
important features of solutions

• Understanding of algorithm performance with respect to 
important features through diverse problem instances

• Construction of diverse set of problem instances for 
algorithm selection.
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Diversity of instances for TSP

• We want to construct a diverse set of TSP instances

Examples:
• Diverse set where a certain algorithm is performing 

badly (high approximation ratio)
• Diverse set where two solvers are performing differently.
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As in previous studies, we measure hardness of a given instance by the ratio of
the solution quality obtained by the considered algorithm and the value of an
optimal solution.

The approximation ratio of an algorithm A for a given instance I is defined
as

αA(I) = A(I)/OPT (I)

where A(I) is value of the solution produced by algorithm A for the given
instance I, and OPT (I) is value of an optimal solution for instance I. Within
this study, A(I) is the tour length obtained by 2-OPT for a given TSP instance
I and OPT (I) is the optimal tour length which we obtain in our experiments
by using the exact TSP solver Concorde [17].

We propose to use an evolutionary algorithm to construct sets of instances
of the TSP that are quantified as either easy or hard in terms of approximation
and are diverse with respect to underlying features of the produced problem
instances. Our evolutionary algorithm (shown in Algorithm1) evolves instances
which are diverse with respect to given features and meet given approximation
ratio thresholds.

The algorithm is initialized with a population P consisting of µ TSP instances
which have an approximation ratio at least αh in the case of generating a diverse
set of hard instances. In the case of easy instances, we start with a population
where all instances have an approximation ratio of at most αe and only instances
of approximation ratio at most αe can be accepted for the next iteration. In each
iteration, λ ≤ µ offspring are produced by selecting λ parents and applying muta-
tion to the selected individuals. Offsprings that don’t meet the approximation
threshold are rejected immediately.

The new parent population is formed by reducing the set consisting of parents
and offsprings satisfying the approximation threshold until a set of µ solutions
is achieved. This is done by removing instances one by one based on their con-
tribution to the diversity according to the considered feature.

The core of our algorithm is the selection among individuals meeting the
threshold values for the approximation quality according to feature values. Let
I1, . . . , Ik be the elements of P and f(Ii) be their features values. Furthermore,
assume that f(Ii) ∈ [0, R], i.e. feature values are non-negative and bounded
above by R.

We assume that f(I1) ≤ f(I2) ≤ . . . ≤ f(Ik) holds. The diversity contribu-
tion of an instance I to a population of instances P is defined as

d(I, P ) = c(I, P ),

where c(I, P ) is a contribution based on other individuals in the population
Let Ii be an individual for which f(Ii) #= f(I1) and f(Ii) #= f(Ik). We set

c(Ii, P ) = (f(Ii) − f(Ii−1)) · (f(Ii+1) − f(Ii)),

which assigns the diversity contribution of an individual based on the next
smaller and next larger feature values. If f(Ii) = f(I1) or f(Ii) = f(Ik), we



EA for evolving diverse instances 
for the Traveling Salesperson Problem
(Gao, Nallaperuma, Neumann (PPSN 16))
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Algorithm 1. (µ+ λ)-EAD

1 Initialize the population P with µ TSP instances of approximation ratio at least
αh.

2 Let C ⊆ P where |C| = λ.
3 For each I ∈ C, produce an offspring I ′ of I by mutation. If αA(I

′) ! αh, add I ′

to P .
4 While |P | > µ, remove an individual I = argminJ∈P d(J, P ) uniformly at

random.
5 Repeat step 2 to 4 until termination criterion is reached.

the cities. The goal is to find a Hamiltonian cycle whose sum of distances is
minimal. A candidate solution for the TSP is often represented by a permutation
π = (π1, . . . ,πn) of the n cities and the goal is to find a permutation π∗ which
minimizes the tour length given by c(π) = d(πn,π1) +

∑n−1
i=1 d(πi,πi+1).

For our investigations cities are always in the normalized plane [0, 1]2, i. e.
each city has an x- and y-coordinate in the interval [0, 1]. In following, a TSP
instance always consists of a set of n points in [0, 1]2 and the Euclidean distances
between them.

Local search heuristics have been shown to be very successful when dealing
with the TSP and the most prominent local search operator is the 2-OPT opera-
tor [16]. The resulting local search algorithm starts with a random permutation
of the cities and repeatedly checks whether removing two edges and reconnect-
ing the two resulting paths by two other edges leads to a shorter tour. If no
improvement can be found by carrying out any 2-OPT operation, the tour is
called locally optimal and the algorithm terminates.

The key factor in the area of feature-based analysis is to identify the prob-
lem features and their contribution to the problem hardness for a particular
algorithm and problem combination. This can be achieved through investigating
hard and easy instances of the problem. Using an evolutionary algorithm, it is
possible to evolve sets of hard and easy instances by maximizing or minimizing
the fitness (tour length in the case of the TSP) of each instance [5–8]. However,
none of these approaches have considered the diversity of the instances explic-
itly. Within this study we expect to improve the evolutionary algorithm based
instance generation approach by introducing diversity optimization.

The structural features are dependent on the underlying problem. In [7],
there are 47 features in 8 groups used to provide an understanding of algorithm
performance for the TSP. The different feature classes established are distance
features, mode features, cluster features, centroid features, MST features, angle
features and convex hull features. The feature values are regarded as indicators
which allow to predict the performance of a given algorithm on a given instance.

3 Feature-Based Diversity Optimization

In this section, we introduce our approach of evolving a diverse set of easy or
hard instances which are diverse with respect to important problem features.

d(I,P) is the diversity contribution of instance I to the population P.
Let I be an individual (tour) and f(I) be its feature value. 
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As in previous studies, we measure hardness of a given instance by the ratio of
the solution quality obtained by the considered algorithm and the value of an
optimal solution.

The approximation ratio of an algorithm A for a given instance I is defined
as
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where A(I) is value of the solution produced by algorithm A for the given
instance I, and OPT (I) is value of an optimal solution for instance I. Within
this study, A(I) is the tour length obtained by 2-OPT for a given TSP instance
I and OPT (I) is the optimal tour length which we obtain in our experiments
by using the exact TSP solver Concorde [17].

We propose to use an evolutionary algorithm to construct sets of instances
of the TSP that are quantified as either easy or hard in terms of approximation
and are diverse with respect to underlying features of the produced problem
instances. Our evolutionary algorithm (shown in Algorithm1) evolves instances
which are diverse with respect to given features and meet given approximation
ratio thresholds.

The algorithm is initialized with a population P consisting of µ TSP instances
which have an approximation ratio at least αh in the case of generating a diverse
set of hard instances. In the case of easy instances, we start with a population
where all instances have an approximation ratio of at most αe and only instances
of approximation ratio at most αe can be accepted for the next iteration. In each
iteration, λ ≤ µ offspring are produced by selecting λ parents and applying muta-
tion to the selected individuals. Offsprings that don’t meet the approximation
threshold are rejected immediately.

The new parent population is formed by reducing the set consisting of parents
and offsprings satisfying the approximation threshold until a set of µ solutions
is achieved. This is done by removing instances one by one based on their con-
tribution to the diversity according to the considered feature.

The core of our algorithm is the selection among individuals meeting the
threshold values for the approximation quality according to feature values. Let
I1, . . . , Ik be the elements of P and f(Ii) be their features values. Furthermore,
assume that f(Ii) ∈ [0, R], i.e. feature values are non-negative and bounded
above by R.

We assume that f(I1) ≤ f(I2) ≤ . . . ≤ f(Ik) holds. The diversity contribu-
tion of an instance I to a population of instances P is defined as

d(I, P ) = c(I, P ),

where c(I, P ) is a contribution based on other individuals in the population
Let Ii be an individual for which f(Ii) #= f(I1) and f(Ii) #= f(Ik). We set

c(Ii, P ) = (f(Ii) − f(Ii−1)) · (f(Ii+1) − f(Ii)),

which assigns the diversity contribution of an individual based on the next
smaller and next larger feature values. If f(Ii) = f(I1) or f(Ii) = f(Ik), we

Reminder: 𝛂 is used here just as a quality constraint, 
and survivor selection does not consider it, but only the diversity (contribution)
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(Single-) feature diversity measure 

Diversity of a population:

“Diversity” of 
a single solution:

Feature f:

Compare with this:

Maximum: if solutions are 
equally spaced out,  as this is 

then the sum of squares 

dfi(Ii,P)

dfi(Ii,P)



Box plots features of “easy/hard” 
TSP instances for 2-opt 
(with and without 
diversity optimization)
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Fig. 1. (left) The boxplots for centroid mean distance to centroid feature values of a
population consisting of 100 different hard or easy TSP instances of different number of
cities without or with diversity mechnism. (right) The boxplots for cluster 10% distance
distance to centroid feature values of a population consisting of 100 different hard or
easy TSP instances of different number of cities without or with diversity mechnism.
Easy and hard instances from conventional approach and diversity optimization are
indicated by e(a), h(a) and e(b), h(b) respectively.

differences in the possible range of feature values for easy and hard instances.
We study the effect of the diversity optimization on the range of features by
comparing the instances generated by diversity optimization to the instances
generated by the conventional approach in [7]. Evolving hard instances based
on the conventional evolutionary algorithm, the obtained instances have mean
approximation ratios of 1.12 for n = 25, 1.16 for n = 50, and 1.18 for n = 100.
For easy instances, the mean approximation ratios are 1 for n = 25, 50 and 1.03
for n = 100.

Figure 1 (left) presents the variation of the mean distance of the distances
between points and the centroid feature (centroid mean distance to centroid) for
hard and easy instances of the three considered sizes 25, 50 and 100. Each set
consists of 100 instances generated by independent runs [7]. As shown in Fig. 1
(left) the hard instances have higher feature values than for easy instances for
all instance sizes. For example, for instance size 100 and for the hard instances
the median value (indicated by the red line) is 0.4157 while its only 0.0.4032 for
the easy instances. The respective range of the feature value is 0.0577 for the
hard instances and 0.0645 for the easy instances. For the instances generated by
diversity optimization (easy and hard instances are indicated by e(b) and h(b)
respectively), there is a difference in the median feature values for the hard and
easy instances similar to the instances generated by the conventional approach.
Additionally, the range of the feature values for both the hard and easy instances
has significantly increased. For example, for the instance size 100, the median
value for easy instances is 0.4028 and the range is 0.2382. For the hard instances
of the same size, the median is 0.04157 while the range is 0.1917 (see Fig. 1
(left)).

Similarly, Fig. 1 (right) presents the variation of cluster 10% distance to cen-
troid (cluster 10pct distance to centroid) feature for the hard and easy instances
generated by the conventional approach (indicated by (e(a) and h(a)) and for
the hard and easy instances generated by diversity optimization (indicated by

Works for other features, too… but not for all.

Feature values of evolved instances:
From left to right:
1. Easy instances / only using 𝛂
2. Hard instances / only using 𝛂
3. Easy instances / feature diversity (𝛂 as quality constraint)
4. Hard instances / feature diversity (𝛂 as quality constraint)



Diversity of Images

• Evolve a diverse set of images that are close to a given 
image.

• Close means:
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Figure 8: Population of images resulting from the evolution
for diversity of images for both GCF and Smooth. �e rows
represent increasing values forGCF. �e values forGCF and
Smooth, respectively, are shown above each image. Note how
the values for GCF and Smooth are contra-variant (©A. Neu-
mann).

Figure 9: Population of images resulting from the evolution
for diversity of images for both Symm and Hue. �e rows
represent increasing values for Symm. In each row there are
increasing values of the Hue feature. �e values for Symm
and Hue, respectively, are shown above each image. Note
how the values of these features vary more freely (©A. Neu-
mann).

If we plot the individuals in the populations for these experiments
across both feature dimensions, as we do in Figures 10 and 11we can
visualise how strongly these features are bound. In each of these
�gures we show the feature values at the end of each evolutionary
run. �e diameters of each point in these �gures is determined
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Figure 10: Plot of feature and contribution values at the end
of theGCF�Smooth run. �eGCF values are scaled to �t the
range [0, 1]. It can be seen that the feature values are very
highly correlated (coe�=�0.92)
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Figure 11: Plot of feature and contribution values at the end
of the Symm�Hue run. It can be seen that the feature values
have a very low correlation (coe�=0.04)

by the size of the contribution of that individual to the diversity
of the population. It can be seen the members of the population
in Fig 10 are almost co-linear and negatively related. Note that
in this experiment we scaled the Smooth feature so that its range
was similar to that of GCF so the search is not biased by the large
values that GCF can assume. �is result indicates that it is di�cult
to evolve images that score high or low on both feature measures.

In contrast the population in Fig 11 exhibits a good spread of
values in both dimensions indicating that it is possible for images to
move in both feature dimensions with relative freedom. As an addi-
tional note, the population in Fig 11 appears to cling to the perimeter
of a diamond. �is is at least in part due to the multi-dimensional
contribution metric in Eq 1. �is metric is based on a weighted sum,
which is an L1 distance measure which encourages individuals to
spread out maximally in each dimension independently.

To see how di�erent pairs of dimensions relate we ran correla-
tions on di�erent pairs of features. �e results are shown in Table 1.
As can be seen, most metrics are quite weakly related, which indi-
cates reasonable freedom to evolve individuals in both dimensions.
GCF � Sat exhibits a broad correlation. �is is partly due to the
fact that, due to limits on contrast in saturated images, it is di�cult
to evolve an image is both highly saturated and scores high for
GCF. Hue and SDHue are also moderately related. �is is partly
because images with a high SDHue are restricted in their choice
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(a)	

(b)	

(c)	

Figure 4: Individuals 1, 5, 10, 15, and 20 from the populations
for the Info (a), Hue (b) andGCF (c) features run against grey
images. �e RMSE10 constraint was used in all cases. �e
feature values for GCF were scaled by 1/20, 000

In all cases, when we started with a grey image, we saw relatively
limited structure in the resulting images. A similar result has been
observed in art generated from maximising neuron activations in
deep learning neural networks without the use of prior images [14].
To focus on the more interesting outcomes we limited our later,
higher-resolution, experiments to the church image from Fig 1.

4.2 Single Dimensional Feature Experiments
We ran single dimensional experiments at 150x150 resolution for
the, Hue, SDHue, Sat, GCF, Info, Smooth, and Symm features. �ese
experiments were all run with the RMSE10 constraint. �e visual
results of these experiments are shown in Fig 5 shows images
sampled from the population of these single-feature runs. �e
�rst three rows in Fig 5 correspond to colour features. Row (a) is
produced by the Hue feature. Individuals in this population will be
spread across the colour spectrum, which is red at both ends. Row
(b) is produced by the SDHue feature. Images that score low in this
feature will be monochromatic and in the middle of the spectrum.
High-scoring images will appear red because it samples from both
extremes. Row (c) is produced by the Sat feature. Images that score
low in this feature are monochromatic and individuals that score
high are nearly fully saturated. All of the colour features produce
populations of images that follow an interesting progression of
colour combinations.

�e last four rows of Fig 5 correspond to features that are af-
fected by relative pixel luminosities. Row (d) is GCF which is scores
high for images with high contrasts at medium and low resolu-
tions. �e pixelated appearance of the highest scoring individual
and the low contrast evident in the lowest scoring individual are
indicative of GCF’s response. Row (e) is the Info feature which is
an approximation of the entropy of the image. �e images that
score high in this feature have sharply contrasting areas and the
low scoring images have relatively uniform contrast. Row (f) is
produced by the Smooth feature. �e low scoring individuals have
sharp edges and the high scoring individuals have a de-focused

(a)	

(b)	

(c)	

(d)	

(e)	

(f)	

(g)	

Figure 5: Individuals 1, 5, 10, 15, and 20 from the populations
for the Hue (a), SDHue (b), Sat (c), GCF (d), Info (e), Smooth
(f), and Symm (g) features. Each experiment was run with
the RMSE10 constraint. Here we scale GCF by 1/100, 000 to
account for the larger image size (©A. Neumann).

appearance. Finally the Symm feature produces higher levels of
asymmetry in the low scoring individuals. In the highest scoring
images the evolutionary process enhances existing image features
to produce highly symmetrical pa�erns centered around the details
in the church tower.

�e feature values that correspond to the individual images that
develop during the (µ +�)�EAD run can be traced over time. Fig 6
shows the trace of feature values for the populations sampled in
Fig 5. As can be seen for every feature the (µ + �)� EAD algorithm
steadily pushes the feature values apart. For the Hue, SDHue, Sat
and Info features the algorithm was able to spread the population

GECCO ’17, July 15-19, 2017, Berlin, Germany Alexander, Kortmann, and Neumann

2 RELATEDWORK
In evolutionary art, aesthetic and general feature metrics have been
applied to the production of new images using several evolutionary
frameworks[1, 2, 7, 8]. More recent work has correlated features
in the artworks produced by evolutionary search[2] to determine
how much aesthetic feature metrics agree with each other (and
themselves) when applied to evolved images. �is work also exam-
ined the impact of evolving images in a multi-objective se�ing for
more than one feature metric at a time. In a more general feature
se�ing Machado[1] used features embedded in cascading classi�ers
to create images from learned categories. Other recent work has
focused on tracking feature values during an evolutionary image
transition process[12].

�e work in this paper di�ers from this previous work targeting
diversity directly to maximise the coverage of the feature space by
a population of individual images.

�ere is also much work in the domain of using feature search
to produce image variants. Recent examples of such work include
the generation of art from image transitions[11, 12]; Gaty’s work
using deep learning to transfer artistic style to existing images[4];
and the use of priors from a Deep Generative Network to generate
image variants within a de�ned category[13].

Finally, there is related work that aims to improve the diversity
of populations in evolutionary art. Such work includes the use of
island models to improve exploration[2]; measures that favor image
novelty[7, 17]; and work that favours individuals that spawn novel
o�spring[6]; and work using coevolutionary artist/critic models to
improve novelty[9]. Our work di�ers from these because we aim
to maximise a population diversity measure directly in the feature
space rather than indirectly through searching for areas of novelty
in the feature or image space.

3 METHODOLOGY
�e evolutionary algorithm we use here is the (µ + �) � EAD algo-
rithm de�ned by Gao[3]. A version of (µ + �) � EAD , adapted for
the production of images, is shown in Algorithm 1. �e algorithm

Algorithm 1�e (µ + �) � EAD algorithm
1: input: an image S .
2: output: a population P = {I1, . . . , Iµ } of image variants.

{Initialise with µ mutated copies of source image}
3: P = {mutate(S), . . . ,mutate(S)}
4: repeat
5: randomly select C ✓ P where |C | = �

6: for I 2 C do
7: produce I 0 = mutate(I )
8: if valid(I 0) then
9: add I 0 to P
10: end if
11: end for
12: while |P | > µ do
13: remove an individual I = arg min� 2Pd(� , P)
14: end while
15: until Termination condition reached

is structured as a (µ + �) � EA which starts with a population of

Figure 1: Church benchmark starting image (©A.Neumann).

µ image variants. In each iteration the algorithm produces � new
variants, which are checked for validity and added to the new popu-
lation. �en the entire population is scanned to remove the variants
that contribute the least to feature diversity in the population. Once
the size of the population is reduced back to µ again the algorithm
proceeds to the next iteration. In all of our experiments we used
µ = 20 and � = 10 which gives a reasonable compromise between
the potential for population diversity and evolutionary speed.

�ere are several elements of the above algorithm that are spe-
cialised to our application domain. We discuss these in turn.

3.1 �e Starting Image
�e starting value S is a colour image. In our experiments we used
two starting images. �e �rst is a uniform grey square where each
colour channel is initialised to the middle of its range. �e second
benchmark is the square colour image of a church shown in Fig. 1.
In our experiments our image sizes range from 50 ⇥ 50 for our
preliminary experiments to 150 ⇥ 150 for later experiments.

3.2 �e Mutate Operator
�e mutate(I ) operator perturbs all three colour channels of one or
more pixels in the image I . For our experiments mutate(I ) mutates
a single pixel of I a random amount uniformly distributed in the
range [�20,+20] intensity levels1. Individually, these mutation
operations have a very small impact, which facilitates a gradual
and smooth evolutionary process at the cost of requiring many
iterations to substantially change an image.

3.3 �e Image Validity Check
During the evolutionary process all images are constrained using
the valid function. �e valid(I ) function checks to see if the variant
image I is within a certain feature distance of the starting image S .
Images that fail the constraint are excluded from the population.
In deriving a de�nition for valid we experimented with a number
of pixel and smoothness constraints. �e constraint that gave the
most visually pleasing results across the range of features used
was validRMSE10

which, given an image I of N pixels with 3 colour
channels is de�ned:

validRMSE10
(I ) =

r’N
i=1

’3
c=1

(Sic � Iic )2/3N < 10

�e validRMSE10
is a global constraint limiting each color channel

to an average deviation of 10 from the original image.

1�e intensity levels of all channels are integers in the range [0, 255].

RMSE to given image is less than 10.
On the right: either 1 feature or a 
linear combination of two features 
as targets
[Alexander, Kortman, A. Neumann, GECCO’17]



Multiple features

• For 2 or more features, weightening of diversity 
contributions might not lead to good diversity.

• Results depend on chosen weightening.

Questions:
• What is a good diversity measure?
• What is the diversity optimisation goal?
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Discrepancy (“the number of points in a volume 
should be proportionate to the volume”)
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Given a set of points X :={s1,..., sn}
with S = [0, 1]d , s1,..., sn ∈ S

For further investigations we assume feature values are in [0,1] 
(can be achieved through scaling)

We consider special case of star discrepancy a=0d



Example Runs Discrepancy
each dot is one solution (read: 1 image) in the 2D feature space
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Figure 3: All feature vectors generated in 10 runs of (µ + �)-EAT with 1000 iterations each (left), one run with 1000 iterations
(middle), the �nal population after 1000 iteration with discrepancy 0.22637 (right).

Algorithm 2: O���R�����W���M������� (X , tmax)
1 Let X is a image with pixels Xi j 2 X .
2 Y  X .
3 Choose starting pixel Yi j 2 Y uniformly at random.
4 Choose o�set o 2 [�r , r ]3 uniformly at random.
5 t  1.
6 while t  tmax do
7 Yi j = Yi j + o.
8 Choose Ykl 2 N (Yi j ) uniformly at random.
9 i  k , j  l .

10 t = t + 1.
11 Return Y .

(left), all feature vectors produced during one run (middle), and the
feature vectors of the �nal population (right). It can be observed
that the area where both feature values are high does not contain
any points (similarly if both feature values are very low). The seems
to indicate that the problem is constrained to a subspace of the unit
square. If this is true, then this has a direct consequence on the best
possible discrepancy value that can be obtained, as discrepancy is
a measure in [0, 1]d .

3.1 Self-Adjusting O�set RandomWalk
Mutation

The algorithm uses a variant of the random walk mutation intro-
duced in [22] for evolutionary image composition. This speeds up
the process of diversity optimization by three orders of magnitude
compared to [1] where for a mutation operator changing in each
step a single pixel 1�4million iterationswhere required to construct
a diverse set of images. Our new mutation operator enables us to
construct diverse sets of images for all three algorithms (including
the (µ + �)-EAC investigated in [1]) within just 2000 generations.

The random walk in this paper di�ers from the one for image
composition given in [22] by changing the RGB values by an o�set
vector o 2 [�r , r ]3 chosen in each mutation step uniformly at
random. The mutation operator is shown in the Algorithm 2.

The random walk causes movement from the current pixel Xi j
to the next pixel by moving either right, left, down or up. We de�ne

the neighborhood N (Xi j ) of pixel Xi j as
N (Xi j ) =

�
X(i�1)j ,X(i+1)j ,Xi(j�1),Xi(j+1)

 
.

The random walk chooses an element of N (Xi j ) uniformly at
random in every step. Furthermore, the random walk is wrapped
around the boundaries of the image. We produce an o�spring Y
from X by setting each visited pixel Xi j to the value of Xi j + o.
Given a current image X , our (µ + �) � EAD algorithm uses the
random walk mutation to alter all visited pixels. Note that pixels
may be visited more than once and the o�set may be applied several
times in this case. The random walk paints all the visited pixels by
adding the chosen o�set vector o. Each random walk mutation is
run for tmax steps, where tmax is chosen in an adaptive way.

3.1.1 Self-Adjustment. We decrease the length of random walks
through decreasing tmax when the discrepancy value does not de-
crease as a result of an unsuccessful mutation. We increase tmax
if the discrepancy decreases as a result of a successful mutation.
This builds on the assumption that mutations doing less change
to the image are needed to obtain an improvement if it is hard
to make progress with the current choice of tmax. On the other
hand, a better progress may be achievable if the current setting
of tmax is already able to decrease the discrepancy. Our adaptive
approach makes use of the parameter adjusting scheme recently
used in [8]. This method, originally proposed in [14], applies the
classical 1/5-success rule from evolution strategies to a discrete
setting.

Our approach increases tmax for a successful outcome or de-
creases tmax in the case that the new o�spring is not accepted. In
our algorithm, tmax can take on values in tLB  tmax  tUB, where
tLB is a lower bound on tmax and tUB is an upper bound on tmax.

For a successful mutation, we set tmax B min {F · tmax, tUB}
and for an unsuccessful mutation, we set tmax B
max

n
F�1/k · tmax, tLB

o
, where F > 1 is a real value and

k � 1 an integer which determines the adaptation speed.
For our experimental investigations, we set tLB = 1000, tUB =

20000, F = 2, k = 8, and tmax = 1000 at initialization based on
preliminary experimental investigations.

3.2 Experimental settings
All algorithms were implemented inMatlab (R2017b). We ran all of
our experiments on single nodes of a Lenovo NeXtScale M5 Cluster

Final population of one run (1000 iterations)
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Figure 3: All feature vectors generated in 10 runs of (µ + �)-EAT with 1000 iterations each (left), one run with 1000 iterations
(middle), the �nal population after 1000 iteration with discrepancy 0.22637 (right).

Algorithm 2: O���R�����W���M������� (X , tmax)
1 Let X is a image with pixels Xi j 2 X .
2 Y  X .
3 Choose starting pixel Yi j 2 Y uniformly at random.
4 Choose o�set o 2 [�r , r ]3 uniformly at random.
5 t  1.
6 while t  tmax do
7 Yi j = Yi j + o.
8 Choose Ykl 2 N (Yi j ) uniformly at random.
9 i  k , j  l .

10 t = t + 1.
11 Return Y .

(left), all feature vectors produced during one run (middle), and the
feature vectors of the �nal population (right). It can be observed
that the area where both feature values are high does not contain
any points (similarly if both feature values are very low). The seems
to indicate that the problem is constrained to a subspace of the unit
square. If this is true, then this has a direct consequence on the best
possible discrepancy value that can be obtained, as discrepancy is
a measure in [0, 1]d .

3.1 Self-Adjusting O�set Random Walk
Mutation

The algorithm uses a variant of the random walk mutation intro-
duced in [22] for evolutionary image composition. This speeds up
the process of diversity optimization by three orders of magnitude
compared to [1] where for a mutation operator changing in each
step a single pixel 1�4million iterationswhere required to construct
a diverse set of images. Our new mutation operator enables us to
construct diverse sets of images for all three algorithms (including
the (µ + �)-EAC investigated in [1]) within just 2000 generations.

The random walk in this paper di�ers from the one for image
composition given in [22] by changing the RGB values by an o�set
vector o 2 [�r , r ]3 chosen in each mutation step uniformly at
random. The mutation operator is shown in the Algorithm 2.

The random walk causes movement from the current pixel Xi j
to the next pixel by moving either right, left, down or up. We de�ne

the neighborhood N (Xi j ) of pixel Xi j as
N (Xi j ) =

�
X(i�1)j ,X(i+1)j ,Xi(j�1),Xi(j+1)

 
.

The random walk chooses an element of N (Xi j ) uniformly at
random in every step. Furthermore, the random walk is wrapped
around the boundaries of the image. We produce an o�spring Y
from X by setting each visited pixel Xi j to the value of Xi j + o.
Given a current image X , our (µ + �) � EAD algorithm uses the
random walk mutation to alter all visited pixels. Note that pixels
may be visited more than once and the o�set may be applied several
times in this case. The random walk paints all the visited pixels by
adding the chosen o�set vector o. Each random walk mutation is
run for tmax steps, where tmax is chosen in an adaptive way.

3.1.1 Self-Adjustment. We decrease the length of random walks
through decreasing tmax when the discrepancy value does not de-
crease as a result of an unsuccessful mutation. We increase tmax
if the discrepancy decreases as a result of a successful mutation.
This builds on the assumption that mutations doing less change
to the image are needed to obtain an improvement if it is hard
to make progress with the current choice of tmax. On the other
hand, a better progress may be achievable if the current setting
of tmax is already able to decrease the discrepancy. Our adaptive
approach makes use of the parameter adjusting scheme recently
used in [8]. This method, originally proposed in [14], applies the
classical 1/5-success rule from evolution strategies to a discrete
setting.

Our approach increases tmax for a successful outcome or de-
creases tmax in the case that the new o�spring is not accepted. In
our algorithm, tmax can take on values in tLB  tmax  tUB, where
tLB is a lower bound on tmax and tUB is an upper bound on tmax.

For a successful mutation, we set tmax B min {F · tmax, tUB}
and for an unsuccessful mutation, we set tmax B
max

n
F�1/k · tmax, tLB

o
, where F > 1 is a real value and

k � 1 an integer which determines the adaptation speed.
For our experimental investigations, we set tLB = 1000, tUB =

20000, F = 2, k = 8, and tmax = 1000 at initialization based on
preliminary experimental investigations.

3.2 Experimental settings
All algorithms were implemented inMatlab (R2017b). We ran all of
our experiments on single nodes of a Lenovo NeXtScale M5 Cluster

All solutions during these 1000 iterations
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Figure 3: All feature vectors generated in 10 runs of (µ + �)-EAT with 1000 iterations each (left), one run with 1000 iterations
(middle), the �nal population after 1000 iteration with discrepancy 0.22637 (right).

Algorithm 2: O���R�����W���M������� (X , tmax)
1 Let X is a image with pixels Xi j 2 X .
2 Y  X .
3 Choose starting pixel Yi j 2 Y uniformly at random.
4 Choose o�set o 2 [�r , r ]3 uniformly at random.
5 t  1.
6 while t  tmax do
7 Yi j = Yi j + o.
8 Choose Ykl 2 N (Yi j ) uniformly at random.
9 i  k , j  l .

10 t = t + 1.
11 Return Y .

(left), all feature vectors produced during one run (middle), and the
feature vectors of the �nal population (right). It can be observed
that the area where both feature values are high does not contain
any points (similarly if both feature values are very low). The seems
to indicate that the problem is constrained to a subspace of the unit
square. If this is true, then this has a direct consequence on the best
possible discrepancy value that can be obtained, as discrepancy is
a measure in [0, 1]d .

3.1 Self-Adjusting O�set Random Walk
Mutation

The algorithm uses a variant of the random walk mutation intro-
duced in [22] for evolutionary image composition. This speeds up
the process of diversity optimization by three orders of magnitude
compared to [1] where for a mutation operator changing in each
step a single pixel 1�4million iterationswhere required to construct
a diverse set of images. Our new mutation operator enables us to
construct diverse sets of images for all three algorithms (including
the (µ + �)-EAC investigated in [1]) within just 2000 generations.

The random walk in this paper di�ers from the one for image
composition given in [22] by changing the RGB values by an o�set
vector o 2 [�r , r ]3 chosen in each mutation step uniformly at
random. The mutation operator is shown in the Algorithm 2.

The random walk causes movement from the current pixel Xi j
to the next pixel by moving either right, left, down or up. We de�ne

the neighborhood N (Xi j ) of pixel Xi j as
N (Xi j ) =

�
X(i�1)j ,X(i+1)j ,Xi(j�1),Xi(j+1)

 
.

The random walk chooses an element of N (Xi j ) uniformly at
random in every step. Furthermore, the random walk is wrapped
around the boundaries of the image. We produce an o�spring Y
from X by setting each visited pixel Xi j to the value of Xi j + o.
Given a current image X , our (µ + �) � EAD algorithm uses the
random walk mutation to alter all visited pixels. Note that pixels
may be visited more than once and the o�set may be applied several
times in this case. The random walk paints all the visited pixels by
adding the chosen o�set vector o. Each random walk mutation is
run for tmax steps, where tmax is chosen in an adaptive way.

3.1.1 Self-Adjustment. We decrease the length of random walks
through decreasing tmax when the discrepancy value does not de-
crease as a result of an unsuccessful mutation. We increase tmax
if the discrepancy decreases as a result of a successful mutation.
This builds on the assumption that mutations doing less change
to the image are needed to obtain an improvement if it is hard
to make progress with the current choice of tmax. On the other
hand, a better progress may be achievable if the current setting
of tmax is already able to decrease the discrepancy. Our adaptive
approach makes use of the parameter adjusting scheme recently
used in [8]. This method, originally proposed in [14], applies the
classical 1/5-success rule from evolution strategies to a discrete
setting.

Our approach increases tmax for a successful outcome or de-
creases tmax in the case that the new o�spring is not accepted. In
our algorithm, tmax can take on values in tLB  tmax  tUB, where
tLB is a lower bound on tmax and tUB is an upper bound on tmax.

For a successful mutation, we set tmax B min {F · tmax, tUB}
and for an unsuccessful mutation, we set tmax B
max

n
F�1/k · tmax, tLB

o
, where F > 1 is a real value and

k � 1 an integer which determines the adaptation speed.
For our experimental investigations, we set tLB = 1000, tUB =

20000, F = 2, k = 8, and tmax = 1000 at initialization based on
preliminary experimental investigations.

3.2 Experimental settings
All algorithms were implemented inMatlab (R2017b). We ran all of
our experiments on single nodes of a Lenovo NeXtScale M5 Cluster

All solutions during 10 independent runs
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Figure 4: Feature vectors for �nal population of (µ + �)-EAC (top) and (µ + �)-EAD (bottom) for images based on two features
from left to right: (SDHue, Saturation), (Symmetry, Hue), (GCF, Smoothness).

(µ + �)-EAC (1) (µ + �)-EAD (2) (µ + �)-EAT (3)
min mean std stat min mean std stat min mean std stat

( f1, f2 ) 0.2014 0.3234 0.0595 2(�),3(�) 0.1272 0.2038 0.1157 1(+) 0.1119 0.1530 0.0269 1(+)

( f3, f4 ) 0.1964 0.2945 0.0497 2(�),3(�) 0.1574 0.2280 0.0592 1(+),3(�) 0.1051 0.1417 0.0179 1(+),2(+)

( f5, f6 ) 0.1997 0.2769 0.0344 2(�),3(�) 0.1363 0.2025 0.0538 1(+) 0.1457 0.1800 0.0234 1(+)

( f1, f2, f3 ) 0.3389 0.4327 0.0613 2(�),3(�) 0.1513 0.3335 0.1062 1(+) 0.2253 0.2814 0.0422 1(+)

( f1, f4, f3 ) 0.2754 0.3395 0.0483 2(�),3(�) 0.2100 0.3118 0.1309 1(+) 0.2224 0.2600 0.0123 1(+)

( f5, f4, f2 ) 0.4775 0.6488 0.0841 2(�),3(�) 0.2021 0.3007 0.1467 1(+) 0.1983 0.2229 0.0125 1(+)

Table 1: Statistics of discrepancy values for images. f1, f2, f3, f4, f5, f6 denote features SD-hue, Saturation, Symmetry, Hue, GCF
and Smoothness, respectively.

with two Intel Xeon E5�2600 v4 series 16 core processors, each
with 64GB of RAM.

Firstly, we consider the discrepancy-based diversity optimization
for two features. We select features in order to combine di�erent
aesthetic and general features based on our initial experimental
investigations and previous investigations in [21]. Furthermore, we
set f min and f max as follows. The f min values used for SD-hue ,
Hue , Saturation, Smoothness , GCF , S�mmetr� are 0.42, 0.25, 0.42,
0.42, 0.906, 0.0245, and 0.715, respectively. The corresponding f max

values are 0.7, 0.4, 0.5, 0.5, 0.918, 0.0275, and 0.74, respectively.
After considering the combination of two features, we investigate

sets of three features. Here, we select di�erent features combining
aesthetic and general features together used in the previous experi-
ment. In order to obtain a clear comparison between experiments,
we apply the same range of feature values as before.

Furthermore, we run the (µ + �)-EAC diversity algorithm
from [21] using the self-adjusting random walk mutation operator

in order to compare the two approaches for diversity optimization.
We use the same settings for the (µ+�)-EAC as for our discrepancy-
based diversity algorithm, the (µ +�)-EAD . Finally, we consider the
(µ + �)-EAT , which uses discrepancy-based diversity optimization
plus tie-breaking according to weighted feature contributions when
more than one individual exists whose removal would result in the
same minimal discrepancy value.

We run each algorithm for 2000 generations with a population
size of µ = 20 and � = 1. In order to evaluate our results using
statistical tests, each algorithm is run 30 times with the same setting
applied to each considered pair and triple of features.

3.3 Experimental Results
We perform a series of experiments to evaluate the performance
of our discrepancy-based diversity evolutionary algorithm. Our
experiments establish that global constraints like mean-squared
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Figure 4: Feature vectors for �nal population of (µ + �)-EAC (top) and (µ + �)-EAD (bottom) for images based on two features
from left to right: (SDHue, Saturation), (Symmetry, Hue), (GCF, Smoothness).

(µ + �)-EAC (1) (µ + �)-EAD (2) (µ + �)-EAT (3)
min mean std stat min mean std stat min mean std stat

( f1, f2 ) 0.2014 0.3234 0.0595 2(�),3(�) 0.1272 0.2038 0.1157 1(+) 0.1119 0.1530 0.0269 1(+)

( f3, f4 ) 0.1964 0.2945 0.0497 2(�),3(�) 0.1574 0.2280 0.0592 1(+),3(�) 0.1051 0.1417 0.0179 1(+),2(+)

( f5, f6 ) 0.1997 0.2769 0.0344 2(�),3(�) 0.1363 0.2025 0.0538 1(+) 0.1457 0.1800 0.0234 1(+)

( f1, f2, f3 ) 0.3389 0.4327 0.0613 2(�),3(�) 0.1513 0.3335 0.1062 1(+) 0.2253 0.2814 0.0422 1(+)

( f1, f4, f3 ) 0.2754 0.3395 0.0483 2(�),3(�) 0.2100 0.3118 0.1309 1(+) 0.2224 0.2600 0.0123 1(+)

( f5, f4, f2 ) 0.4775 0.6488 0.0841 2(�),3(�) 0.2021 0.3007 0.1467 1(+) 0.1983 0.2229 0.0125 1(+)

Table 1: Statistics of discrepancy values for images. f1, f2, f3, f4, f5, f6 denote features SD-hue, Saturation, Symmetry, Hue, GCF
and Smoothness, respectively.

with two Intel Xeon E5�2600 v4 series 16 core processors, each
with 64GB of RAM.

Firstly, we consider the discrepancy-based diversity optimization
for two features. We select features in order to combine di�erent
aesthetic and general features based on our initial experimental
investigations and previous investigations in [21]. Furthermore, we
set f min and f max as follows. The f min values used for SD-hue ,
Hue , Saturation, Smoothness , GCF , S�mmetr� are 0.42, 0.25, 0.42,
0.42, 0.906, 0.0245, and 0.715, respectively. The corresponding f max

values are 0.7, 0.4, 0.5, 0.5, 0.918, 0.0275, and 0.74, respectively.
After considering the combination of two features, we investigate

sets of three features. Here, we select di�erent features combining
aesthetic and general features together used in the previous experi-
ment. In order to obtain a clear comparison between experiments,
we apply the same range of feature values as before.

Furthermore, we run the (µ + �)-EAC diversity algorithm
from [21] using the self-adjusting random walk mutation operator

in order to compare the two approaches for diversity optimization.
We use the same settings for the (µ+�)-EAC as for our discrepancy-
based diversity algorithm, the (µ +�)-EAD . Finally, we consider the
(µ + �)-EAT , which uses discrepancy-based diversity optimization
plus tie-breaking according to weighted feature contributions when
more than one individual exists whose removal would result in the
same minimal discrepancy value.

We run each algorithm for 2000 generations with a population
size of µ = 20 and � = 1. In order to evaluate our results using
statistical tests, each algorithm is run 30 times with the same setting
applied to each considered pair and triple of features.

3.3 Experimental Results
We perform a series of experiments to evaluate the performance
of our discrepancy-based diversity evolutionary algorithm. Our
experiments establish that global constraints like mean-squared
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Figure 5: Feature vectors for �nal population of (µ + �)-EAC (top) and (µ + �)-EAD (bottom) for TSP based on two fea-
ture from left to right: (angle_mean, mst_dists_mean), (centroid_mean_distance_to_centroid, mst_dists_mean), (nnds_mean,
mst_dists_mean)

.

three-feature combinations which are good combinations for clas-
sifying problem hardness suggested in [11].

All three algorithms are implemented in R and run in R environ-
ment [24]. We use the functions in tspmeta package to compute
the feature values [19]. All of the experiments are executed on a
machine with 48-core AMD 2.80GHz CPU and 128GByte RAM.

Each algorithm is run for 20 000 generations and the �nal dis-
crepancy is reported. In order to obtain statistics, each feature
combination is tested with each algorithm for 30 times. These 30
runs are independent to each other.

4.2 Experimental results and analysis
Figure 5 shows the �nal population of TSP instances from the run
that gets the minimum discrepancy value out of the 30 runs after
applying Algorithm (µ + �)-EAD and (µ + �)-EAC in the feature
space. The average initial discrepancy values for each feature com-
bination in Table 2 are 0.5786, 0.6090, 0.7227, 0.7997, 0.8142 and
0.7699, respectively.

The bottom row of Figure 5 shows the feature vectors for the
�nal population of the (µ+�)-EAD . Compared to their counterparts
in the top row, the discrepancy minimization approach generates a
more diverse set for the feature combination of angle_mean and
mst_dist_mean. For the feature combination shown in the middle
and on the right, it is not so obvious which algorithm generates a
more diverse population than the other in the feature space. Each
approach obtains a population that explores more over one fea-
ture value. For example, the (µ + �)-EAD generates a population
more diverse with respect to the feature of mst_dists_mean, while
the (µ + �)-EAC focuses more on exploring the feature space of

centroid_mean_distance_to_centroid. Looking at the discrepancy
values, it can be observed that the �nal population obtained by the
(µ + �)-EAD has a signi�cantly smaller discrepancy than the one
obtained by the (µ + �)-EAC for all 3 pairs of features.

Table 2 shows the statistics about the discrepancy values of the
�nal populations after running each of the three algorithms on
three 2-feature combinations and three 3-feature combinations.

The �rst two large columns contains the statistical results from
(µ + �)-EAC and (µ + �)-EAD . The (µ + �)-EAD signi�cantly out-
performs the (µ + �)-EAC in all feature combinations. The average
discrepancy value is reduced by more than 30% in all six cases.

During the discrepancy minimization process, there exist many
individuals which have the same least contribution to the discrep-
ancy value in each iteration. Breaking ties according to the weighted
feature contribution can help to improve the discrepancy of the
population. The (µ + �)-EAT provides breaking ties with respect to
the contribution to the weighting population diversity. The third
column in Table 2 shows the respective statistics for the (µ + �)-
EAT . For the statistics, it shows that the (µ + �)-EAT is able to
improve the discrepancy values of the �nal population. In �ve out
of six examined feature combinations, the (µ + �)-EAT achieves
smaller discrepancy values than the (µ + �)-EAD . For the �rst two
two-feature combinations, (µ + �)-EAT outperforms (µ + �)-EAD
signi�cantly.

5 CONCLUSIONS
Constructing point sets of low discrepancy has a prominent role in
mathematics and a set of low discrepancy can be seen as being one
that is covering the considered space [0, 1]d in a good way as they

Okay, so there is some diversity… but can we do better?
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(µ + �)-EAC (µ + �)-EAD (µ + �)-EAT
min mean std stat min mean std stat min mean std stat

(f1,f4) 0.4836 0.5535 0.0362 2(�),3(�) 0.2229 0.2942 0.0512 1(+),3(�) 0.2013 0.2354 0.0252 1(+),2(+)

(f2, f4) 0.4657 0.5192 0.0256 2(�),3(�) 0.3229 0.3708 0.0414 1(+),3(�) 0.2816 0.3363 0.0435 1(+),2(+)

(f3, f4) 0.5743 0.6296 0.0219 2(�),3(�) 0.3590 0.4422 0.0534 1(+) 0.3831 0.4113 0.0175 1(+)

(f1, f3, f4) 0.7765 0.7997 0.0204 2(�),3(�) 0.4303 0.4585 0.0183 1(+) 0.4372 0.4604 0.0422 1(+)

(f2, f3, f4) 0.7641 0.7962 0.0198 2(�),3(�) 0.4197 0.4563 0.0215 1(+) 0.3730 0.4514 0.0327 1(+)

(f1, f2, f3) 0.7593 0.7836 0.0111 2(�),3(�) 0.3900 0.4095 0.0160 1(+) 0.3547 0.3988 0.0217 1(+)

Table 2: Statistics of discrepancy values for TSP. f1, f2, f3, f4 denote the feature angle_mean, centroid_mean_dist_centroid,
nnds_mean, mst_dists_mean respectively.

aim for a good balance of points in every hyper-box with respect to
their volume.We have introduced a discrepancy-based evolutionary
diversity optimization approach that constructs sets of solutions
meeting a given quality criteria and having a low discrepancy with
respect to the considered features. Our experimental results for
evolving diverse sets of images and TSP instances show that this ap-
proach constructs sets of solutions with a much lower discrepancy
that the previously used weighted contribution approach according
to the given features. Our discrepancy-based diversity optimization
process for images makes use of a new random walk mutation op-
erator which reduces the number of required generations to obtain
a good diverse set of images by 3 orders of magnitude The best
results across all our experimental investigations are obtained by
the (µ + �)-EAT , which uses discrepancy-based diversity optimiza-
tion in conjunction with a tie-breaking rule based on the weighted
contribution diversity measure.
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Indicator-based Multi-Objective Optimization

• Let I be a search point
– f: X → Rd a function that assigns to each search point I an 

objective vector
– q: X → Re be a function measures constraint violations

• An indicator Ind: 2X → R measures the quality of a given 
set of search points
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Question
Which algorithm performed best?
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Indicator-Based Diversity Optimisation
• Let I be a search point

– f: X → Rd a function that assigns to each search point a feature 
vector 

– q: X → R be a function assigning a quality score to each I ∈ X
e.g.: require q(I) ≥ α for all ”good” solutions (constraint)

• Define Ind: 2X → R which measures the diversity of a 
given set of search points.

Goal:
Compute set P={I1, ..., Iµ} of µ solutions maximizing 
(minimizing) Ind among all sets of µ solutions under the 
condition that q(I) ≥ α holds for all I ∈ P, where α is a given 
quality threshold. 
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Multi-Objective Indicators

Popular indicators in multi-objective optimization: 
• Hypervolume (HYP)

• Inverted generational distance (IGD) (with respect to 
reference set R)

• Additive epsilon approximation (EPS) (with respect to 
reference set R)
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2

and also obtain sets of solutions of a better discrepancy when
comparing them to the discrepancy-based approach given
in [5].

The outline of the paper is as follows. First, we describe
our approach in Section II. Then, in Sections III and IV, we
describe our diversity optimization for two problems: diverse
sets of images and diverse sets of TSP instances. Finally, we
draw some conclusions.

II. INDICATOR-BASED DIVERSITY OPTIMIZATION

Let I 2 X be a search point in a given search space X ,
f : X ! Rd a function that assigns to each search point a
feature vector and q : X ! R be a function assigning a quality
score to each x 2 X [16]. Diversity is defined in terms of
a function D : 2X ! R which measures the diversity of a
given set of search points. Considering evolutionary diversity
optimization, the goal is to find a set P = {I1, . . . , Iµ} of µ
solutions maximizing D among all sets of µ solutions under
the condition that q(I) � ↵ holds for all I 2 P , where ↵ is a
given quality threshold. Here µ is the size of the set that we
are aiming for, which determines the parent population size in
our evolutionary diversity optimization approach.

As already outlined, diversity has been optimized in a few
different ways over the years. Of particular interest to us is the
optimization of diversity in a given set of problem instances.
We will use this domain as an application area to demonstrate
that the general goal of diversity optimization with respect to
multiple features is achievable.

If diversity is sought with respect to a single feature, then
the generation of instances can focus on covering the range of
values in some fashion. If two or more features are of interest,
then covering this space evenly is not straightforward, as a
metric is needed to assess the coverage.

Recently, [5] have used the mathematical concept of “dis-
crepancy” to measure the irregularities of distributions and
used this measure for evolutionary diversity optimization. The
used star-discrepancy uses axis-parallel boxes: ideally, the
number of points inside the box is proportional to the size of
the box. The computation of this metric is time consuming
(n1+d/2 [17]) and the resulting distributions are counter-
intuitive.

Here, we propose to use a very well-established concept,
i.e., the use of indicators from multi-objective optimization.
In multi-objective optimization, a function g : X ! Rd

containing d objectives is given and all objectives should
be optimized at the same time. As the given objectives are
usually conflicting, one is interested in the trade-offs with
respect to the given objective functions. Indicators in the
area of multi-objective optimization have been used for many
years to compare sets of solutions in the objective space,
either for the purposes of comparing algorithm performance,
or for use within an algorithm to drive a diversified search.
Similarly to the diversity measure D in evolutionary diversity
optimization, an indicator I : 2X ! R measures the quality of
a set of solutions according to some indicator function I. The
immediate problem with applying multi-objective optimization
indicators is that that diversity does not have a notion of
dominance. In the context of multi-objective optimization,
the optimal solutions are also referred to as non-dominated
solutions. A solution x is called non-dominated (or Pareto
optimal) if there is no other solution that is at least as good as

x with respect to every objective and better in at least one ob-
jective. As multi-objective approaches aim to compute a set of
non-dominated solutions, they reject dominated solutions over
time. In evolutionary diversity optimization, every solution
meeting the quality criteria is eligible and only the diversity
among such solutions matters. Hence, we have to adapt the
multi-objective indicators in a way that makes all solutions
meeting the quality criterion non-dominated. We do this by
ensuring that all solutions are incomparable when applying
these indicators. For a more comprehensive introduction to
dominance we refer the interested reader to [18], which is
present in a large number of multi-objective optimization
indicators.

In the following, we will first present existing multi-
objective optimization indicators and our transformations to
deal with the dominance issue. Then, we introduce the generic
(µ + �)-EAD and the concrete variants that will form the
basis for our subsequent experimental studies on diversity
optimization.

A. Multi-objective optimization indicators for diversity opti-
mization

In this article, we use three quality indicators evaluating
the quality of a given set of objective vectors S. For a given
set of search points P (called the population) and a function
g : X ! Rd, we define S = {g(x) | x 2 P} as the set of
objective vectors of P .

• Hypervolume (HYP): HYP is the volume covered by the
set of objective vectors S with respect to a given reference
point r. The hypervolume indicator measures the volume
of the dominated space of all solutions contained in a set
S ✓ Rd. This space is measured with respect to a given
reference point r = (r1, r2, . . . , rd). The hypervolume
HY P (S, r) of a given set of objective vectors S with
respect to r is then defined as

HY P (S, r) = V OL
�
[(s1,...,sd)2S [r1, s1]⇥ · · · [rd, sd]

�

with V OL(·) being the Lebesgue measure.
• Inverted generational distance (IGD): IGD measures S

with respect to a given reference set R. It calculates the
average distance of objective vectors in R to their closest
points in S. We have

IGD(R,S) =
1

|R|
X

r2R

min
s2S

d(r, s),

where d(r, s) is the Euclidean distance between r and s
in the objective space.

• Additive epsilon approximation (EPS): EPS measures the
approximation quality of the worst approximated point
in R that S achieves. For finite sets S,R ⇢ Rd, the
additive approximation of S with respect to R (assuming
all objectives are to be minimized) is defined as

↵(R,S) := max
r2R

min
s2S

max
1id

(si � ri).

To get a sensitive indicator that can be used to guide the
search, we consider instead the set {↵({r}, S) | r 2 R}
of all approximations of the points in R. We sort this set
decreasingly and call the resulting sequence S↵(R,S) :=
(↵1, . . . ,↵|R|) (see [19]).
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and also obtain sets of solutions of a better discrepancy when
comparing them to the discrepancy-based approach given
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The outline of the paper is as follows. First, we describe
our approach in Section II. Then, in Sections III and IV, we
describe our diversity optimization for two problems: diverse
sets of images and diverse sets of TSP instances. Finally, we
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usually conflicting, one is interested in the trade-offs with
respect to the given objective functions. Indicators in the
area of multi-objective optimization have been used for many
years to compare sets of solutions in the objective space,
either for the purposes of comparing algorithm performance,
or for use within an algorithm to drive a diversified search.
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optimization, an indicator I : 2X ! R measures the quality of
a set of solutions according to some indicator function I. The
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be optimized at the same time. As the given objectives are
usually conflicting, one is interested in the trade-offs with
respect to the given objective functions. Indicators in the
area of multi-objective optimization have been used for many
years to compare sets of solutions in the objective space,
either for the purposes of comparing algorithm performance,
or for use within an algorithm to drive a diversified search.
Similarly to the diversity measure D in evolutionary diversity
optimization, an indicator I : 2X ! R measures the quality of
a set of solutions according to some indicator function I. The
immediate problem with applying multi-objective optimization
indicators is that that diversity does not have a notion of
dominance. In the context of multi-objective optimization,
the optimal solutions are also referred to as non-dominated
solutions. A solution x is called non-dominated (or Pareto
optimal) if there is no other solution that is at least as good as

x with respect to every objective and better in at least one ob-
jective. As multi-objective approaches aim to compute a set of
non-dominated solutions, they reject dominated solutions over
time. In evolutionary diversity optimization, every solution
meeting the quality criteria is eligible and only the diversity
among such solutions matters. Hence, we have to adapt the
multi-objective indicators in a way that makes all solutions
meeting the quality criterion non-dominated. We do this by
ensuring that all solutions are incomparable when applying
these indicators. For a more comprehensive introduction to
dominance we refer the interested reader to [18], which is
present in a large number of multi-objective optimization
indicators.

In the following, we will first present existing multi-
objective optimization indicators and our transformations to
deal with the dominance issue. Then, we introduce the generic
(µ + �)-EAD and the concrete variants that will form the
basis for our subsequent experimental studies on diversity
optimization.

A. Multi-objective optimization indicators for diversity opti-
mization

In this article, we use three quality indicators evaluating
the quality of a given set of objective vectors S. For a given
set of search points P (called the population) and a function
g : X ! Rd, we define S = {g(x) | x 2 P} as the set of
objective vectors of P .

• Hypervolume (HYP): HYP is the volume covered by the
set of objective vectors S with respect to a given reference
point r. The hypervolume indicator measures the volume
of the dominated space of all solutions contained in a set
S ✓ Rd. This space is measured with respect to a given
reference point r = (r1, r2, . . . , rd). The hypervolume
HY P (S, r) of a given set of objective vectors S with
respect to r is then defined as

HY P (S, r) = V OL
�
[(s1,...,sd)2S [r1, s1]⇥ · · · [rd, sd]

�

with V OL(·) being the Lebesgue measure.
• Inverted generational distance (IGD): IGD measures S

with respect to a given reference set R. It calculates the
average distance of objective vectors in R to their closest
points in S. We have

IGD(R,S) =
1

|R|
X

r2R

min
s2S

d(r, s),

where d(r, s) is the Euclidean distance between r and s
in the objective space.

• Additive epsilon approximation (EPS): EPS measures the
approximation quality of the worst approximated point
in R that S achieves. For finite sets S,R ⇢ Rd, the
additive approximation of S with respect to R (assuming
all objectives are to be minimized) is defined as

↵(R,S) := max
r2R

min
s2S

max
1id

(si � ri).

To get a sensitive indicator that can be used to guide the
search, we consider instead the set {↵({r}, S) | r 2 R}
of all approximations of the points in R. We sort this set
decreasingly and call the resulting sequence S↵(R,S) :=
(↵1, . . . ,↵|R|) (see [19]).



How to use Multi-Objective Indicators
• Diversity Optimisation aims to compute a diverse set of 

solutions for a given single-objective problem
• Multi-Objective indicators guide the search towards a 

diverse set of Pareto optimal solutions. 
(read: some vectors are better than others, but we do not 
want this in diversity optimisation)

Use of multi-objective indicators:
• Transform feature vectors of search points to make them 

incomparable.
• Apply multi-objective indicators after transformation has 

occurred.

University of Adelaide 22



Transformations (1/2)

For 2 features (transform into 3D) as follows:
• Place the unit square with its original x/y-coordinates in 

the three- dimensional space using z = 0. 
• We rotate it around the x and y axis by 45 degrees each 

time. 
• Translate it such that the centre point of the transformed 

unit square is at (sqrt(2)/4) 

University of Adelaide 23Figure 1: Reference set in 3D using 112 objective vectors. The normal vector
that goes through the centre of the square goes through the origin. We use 1012

feature vectors in our experiments.

where d(r, s) is the Euclidean distance between r and s in the objective
space.

• Additive epsilon approximation (EPS): EPS measures the approximation
quality of the worst approximated point in R that S achieves. For fi-
nite sets S,R ⇢ Rd, the additive approximation of S with respect to R
(assuming all objectives are to be minimized) is defined as

↵(R,S) := max
r2R

min
s2S

max
1id

(si � ri).

To get a sensitive indicator that can be used to guide the search, we
consider instead the set {↵({r}, S) | r 2 R} of all approximations of the
points in R. We sort this set decreasingly and call the resulting sequence
S↵(R,S) := (↵1, . . . ,↵|R|) (see [26]).

While other indicators could also be used for driving diversity optimization,
we do not intend to highlight di↵erences of the indicators (which has been
subject to many papers), but instead we will focus on demonstrating that they
can in-fact be used as a tool out-of-the-box to explore the space of combinations
of instance features.

These three indicators cannot be applied immediately, as there is no refer-
ence set (which some indicators require) and one has to deal with the issue of
dominance as there is no preference of one feature value over the other. For
example, let us consider two scaled features and visualize the combinations as
points in a two-dimensional unit square. In this case, we would like to cover
the entire square evenly, without preferring one region over the other, and in
particular we cannot say that one area is preferred over another – a naive multi-
objective optimization setup for this two-dimensional problem might focus, for
example, only on the area near the origin.

We propose two approaches to deal with this challenge: (1) transformation
of the two-dimensional problem into a three-dimensional problem, (2) doubling
the number of dimensions.

5



Figure 2: Visualisation of the 2d-dimensional space.

Algorithm 1: (µ+ �)-EAD

1 Initialize the population P with µ instances of quality at least ↵.
2 Let C ✓ P where |C| = �.
3 For each I 2 C, produce an o↵spring I 0 of I by mutation. If q(I 0) > ↵,

add I 0 to P .
4 While |P | > µ, remove an individual with the smallest loss to the

diversity indicator D.
5 Repeat step 2 to 4 until termination criterion is reached.

2.2 Evolutionary algorithm for optimizing diversity

The algorithm used to optimize the feature-based population diversity follows
the setting in [11] with modifications. Algorithm 1 shows the evolutionary algo-
rithm used for optimizing diversity. Let I 2 P be an individual in a population
P . A problem specific feature vector f(I) = (f1(I), . . . , fd(I)) is used to de-
scribe a potential solution. The indicators are calculated based on the feature
vector.

Since the indicators introduced are defined in the space of [0, 1]d, the feature
values are scaled before the calculation of indicators. Let fmax

i and fmin

i be the
maximum and minimum value of a certain feature fi obtained from some initial
experiments. The feature values are normalized based on the formula

f 0
i(I) = (fi(I)� fmin

i )/(fmax

i � fmin

i ).

Feature values outside the range [fmin

i , fmax

i ] are set to 0 or 1, to allow the
algorithm to work with non-anticipated features values.

Based on this, we investigate the following diversity-optimizing algorithms
in this study:

• EAHYP-2D and EAEPS use the idea of transforming the two-dimensional
problem into a three-dimensional one.

• EAHYP uses the idea of doubling the dimensions.

7

Transformations (2/2)
For d features:
• Double the number of dimensions to make vectors 

incomparable:
– For feature value pi, use pi and -pi

– Instead of p = (p1, p2, …, pd) work with 
p′ = (p1, p2,...,pd,−p1,−p2,... ,−pd)

• Effect: if the original vector v1 dominates v2, 
then v2 dominates v1 in the added dimensions 
à v1 and v2 are now incomparable

University of Adelaide 24

Which reference point in the (2*d)-dimensional space? 
(1d,0d) would be based on the ranges’ extreme values, and 
(2d,1d) would put an increased focus on extreme points.



Algorithm

In plain English: it’s a population-based EA that 
(1) mutates lambda individuals in each generation, and 
(2) considers diversity to select the survivors.

University of Adelaide 25
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Fig. 4. Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair of features from left to right:
(f1, f2), (f3, f4), (f5, f6).

B. Experimental results and analysis

We present a series of experiments for two- and three-
feature combinations in order to evaluate our evolutionary
diversity algorithms based on the use of indicators from
multi-objective optimization described in Section II.

1) Two-feature combinations: Our results are summarized
in Table II and Table III. The columns represent the algorithms
with the corresponding mean value and standard deviation.
The rows represent the indicators HYP-2D, HYP, IGD, EPS
and discrepancy (DIS). For each indicator, we obtained results

for all sets of features.
Additionally, we use the Kruskal-Wallis test for statistical

validation with 95% confidence and subsequently apply the
Bonferroni post-hoc statistical procedure. For a detailed de-
scription of the statistical tests we refer the reader to [27].
Our experimental analysis characterizes the behavior of the
four examined indicator-based evolutionary algorithms and
discrepancy-based evolutionary algorithm. In the statistical
tests shown in Table II and Table III, A(+) is equivalent to
the statement that the algorithm in this column outperformed
algorithm A, and A(�) is equivalent to the statement that
A outperformed the algorithm given in the column. If the
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Fig. 4. Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair of features from left to right:
(f1, f2), (f3, f4), (f5, f6).

B. Experimental results and analysis

We present a series of experiments for two- and three-
feature combinations in order to evaluate our evolutionary
diversity algorithms based on the use of indicators from
multi-objective optimization described in Section II.

1) Two-feature combinations: Our results are summarized
in Table II and Table III. The columns represent the algorithms
with the corresponding mean value and standard deviation.
The rows represent the indicators HYP-2D, HYP, IGD, EPS
and discrepancy (DIS). For each indicator, we obtained results

for all sets of features.
Additionally, we use the Kruskal-Wallis test for statistical

validation with 95% confidence and subsequently apply the
Bonferroni post-hoc statistical procedure. For a detailed de-
scription of the statistical tests we refer the reader to [27].
Our experimental analysis characterizes the behavior of the
four examined indicator-based evolutionary algorithms and
discrepancy-based evolutionary algorithm. In the statistical
tests shown in Table II and Table III, A(+) is equivalent to
the statement that the algorithm in this column outperformed
algorithm A, and A(�) is equivalent to the statement that
A outperformed the algorithm given in the column. If the
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Fig. 4. Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair of features from left to right:
(f1, f2), (f3, f4), (f5, f6).

B. Experimental results and analysis

We present a series of experiments for two- and three-
feature combinations in order to evaluate our evolutionary
diversity algorithms based on the use of indicators from
multi-objective optimization described in Section II.

1) Two-feature combinations: Our results are summarized
in Table II and Table III. The columns represent the algorithms
with the corresponding mean value and standard deviation.
The rows represent the indicators HYP-2D, HYP, IGD, EPS
and discrepancy (DIS). For each indicator, we obtained results

for all sets of features.
Additionally, we use the Kruskal-Wallis test for statistical

validation with 95% confidence and subsequently apply the
Bonferroni post-hoc statistical procedure. For a detailed de-
scription of the statistical tests we refer the reader to [27].
Our experimental analysis characterizes the behavior of the
four examined indicator-based evolutionary algorithms and
discrepancy-based evolutionary algorithm. In the statistical
tests shown in Table II and Table III, A(+) is equivalent to
the statement that the algorithm in this column outperformed
algorithm A, and A(�) is equivalent to the statement that
A outperformed the algorithm given in the column. If the

EA
H

Y
P 

EA
H

Y
P-

2D



Multi-Objective Indicators (Images)

University of Adelaide 30

5

EA
H

Y
P-

2D

0.4 0.45 0.5 0.55 0.6 0.65 0.7
SDHue

0.44

0.46

0.48

0.5

Sa
tu

ra
tio

n

discrepancy 0.1767      hyp 0.3423

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Symmetry

0.42

0.44

0.46

0.48

0.5

0.52

H
ue

discrepancy 0.2302      hyp 0.3417

0.0245 0.025 0.0255 0.026 0.0265 0.027
GCD

0.908

0.91

0.912

0.914

0.916

0.918

Sm
oo

th
ne

ss

discrepancy 0.2182      hyp 0.3451

EA
H

Y
P

0.4 0.45 0.5 0.55 0.6 0.65 0.7
SDHue

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Sa
tu

ra
tio

n

discrepancy 0.2568      hyp 0.6912

0.71 0.715 0.72 0.725 0.73 0.735 0.74 0.745
Symmetry

0.25

0.3

0.35

0.4

0.45

H
ue

discrepancy 0.2721      hyp 0.6809

0.024 0.0245 0.025 0.0255 0.026
GCD

0.908

0.91

0.912

0.914

0.916

0.918

Sm
oo

th
ne

ss

discrepancy 0.2622      hyp 0.6628

EA
IG

D

0.4 0.45 0.5 0.55 0.6 0.65 0.7
SDHue

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

Sa
tu

ra
tio

n

discrepancy 0.2262        igd 0.009

0.715 0.72 0.725 0.73 0.735 0.74
Symmetry

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

H
ue

discrepancy 0.2286        igd 0.0010

0.0245 0.025 0.0255 0.026 0.0265 0.027 0.0275
GCF

0.906

0.908

0.91

0.912

0.914

0.916

0.918

Sm
oo

th
ne

ss

discrepancy 0.2299        igd 0.0011

EA
EP

S

0.48 0.5 0.52 0.54 0.56 0.58 0.6
SDHue

0.42

0.43

0.44

0.45

0.46

0.47

Sa
tu

ra
tio

n

discrepancy 0.6802        eps 0.4011

0.718 0.72 0.722 0.724 0.726
Symmetry

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335

H
ue

discrepancy 0.6015        eps 0.4154

0.025 0.0255 0.026 0.0265 0.027 0.0275
GCF

0.91

0.911

0.912

0.913

0.914

0.915

0.916

0.917

0.918

Sm
oo

th
ne

ss

discrepancy 0.6318        eps 0.3956

Fig. 4. Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair of features from left to right:
(f1, f2), (f3, f4), (f5, f6).

B. Experimental results and analysis

We present a series of experiments for two- and three-
feature combinations in order to evaluate our evolutionary
diversity algorithms based on the use of indicators from
multi-objective optimization described in Section II.

1) Two-feature combinations: Our results are summarized
in Table II and Table III. The columns represent the algorithms
with the corresponding mean value and standard deviation.
The rows represent the indicators HYP-2D, HYP, IGD, EPS
and discrepancy (DIS). For each indicator, we obtained results

for all sets of features.
Additionally, we use the Kruskal-Wallis test for statistical

validation with 95% confidence and subsequently apply the
Bonferroni post-hoc statistical procedure. For a detailed de-
scription of the statistical tests we refer the reader to [27].
Our experimental analysis characterizes the behavior of the
four examined indicator-based evolutionary algorithms and
discrepancy-based evolutionary algorithm. In the statistical
tests shown in Table II and Table III, A(+) is equivalent to
the statement that the algorithm in this column outperformed
algorithm A, and A(�) is equivalent to the statement that
A outperformed the algorithm given in the column. If the

EA
IG

D
EA

H
Y

P 
EA

H
Y

P-
2D



Multi-Objective Indicators (Images)

31

5

EA
H

Y
P-

2D

0.4 0.45 0.5 0.55 0.6 0.65 0.7
SDHue

0.44

0.46

0.48

0.5

Sa
tu

ra
tio

n

discrepancy 0.1767      hyp 0.3423

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
Symmetry

0.42

0.44

0.46

0.48

0.5

0.52

H
ue

discrepancy 0.2302      hyp 0.3417

0.0245 0.025 0.0255 0.026 0.0265 0.027
GCD

0.908

0.91

0.912

0.914

0.916

0.918

Sm
oo

th
ne

ss

discrepancy 0.2182      hyp 0.3451

EA
H

Y
P

0.4 0.45 0.5 0.55 0.6 0.65 0.7
SDHue

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Sa
tu

ra
tio

n

discrepancy 0.2568      hyp 0.6912

0.71 0.715 0.72 0.725 0.73 0.735 0.74 0.745
Symmetry

0.25

0.3

0.35

0.4

0.45

H
ue

discrepancy 0.2721      hyp 0.6809

0.024 0.0245 0.025 0.0255 0.026
GCD

0.908

0.91

0.912

0.914

0.916

0.918

Sm
oo

th
ne

ss

discrepancy 0.2622      hyp 0.6628

EA
IG

D

0.4 0.45 0.5 0.55 0.6 0.65 0.7
SDHue

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

Sa
tu

ra
tio

n

discrepancy 0.2262        igd 0.009

0.715 0.72 0.725 0.73 0.735 0.74
Symmetry

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

H
ue

discrepancy 0.2286        igd 0.0010

0.0245 0.025 0.0255 0.026 0.0265 0.027 0.0275
GCF

0.906

0.908

0.91

0.912

0.914

0.916

0.918

Sm
oo

th
ne

ss

discrepancy 0.2299        igd 0.0011

EA
EP

S

0.48 0.5 0.52 0.54 0.56 0.58 0.6
SDHue

0.42

0.43

0.44

0.45

0.46

0.47

Sa
tu

ra
tio

n

discrepancy 0.6802        eps 0.4011

0.718 0.72 0.722 0.724 0.726
Symmetry

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0.335

H
ue

discrepancy 0.6015        eps 0.4154

0.025 0.0255 0.026 0.0265 0.027 0.0275
GCF

0.91

0.911

0.912

0.913

0.914

0.915

0.916

0.917

0.918

Sm
oo

th
ne

ss

discrepancy 0.6318        eps 0.3956

Fig. 4. Feature vectors for final population of EAHYP-2D (top), EAHYP, EAIGD and EAEPS (bottom) for images based on pair of features from left to right:
(f1, f2), (f3, f4), (f5, f6).

B. Experimental results and analysis

We present a series of experiments for two- and three-
feature combinations in order to evaluate our evolutionary
diversity algorithms based on the use of indicators from
multi-objective optimization described in Section II.

1) Two-feature combinations: Our results are summarized
in Table II and Table III. The columns represent the algorithms
with the corresponding mean value and standard deviation.
The rows represent the indicators HYP-2D, HYP, IGD, EPS
and discrepancy (DIS). For each indicator, we obtained results

for all sets of features.
Additionally, we use the Kruskal-Wallis test for statistical

validation with 95% confidence and subsequently apply the
Bonferroni post-hoc statistical procedure. For a detailed de-
scription of the statistical tests we refer the reader to [27].
Our experimental analysis characterizes the behavior of the
four examined indicator-based evolutionary algorithms and
discrepancy-based evolutionary algorithm. In the statistical
tests shown in Table II and Table III, A(+) is equivalent to
the statement that the algorithm in this column outperformed
algorithm A, and A(�) is equivalent to the statement that
A outperformed the algorithm given in the column. If the
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TABLE II
INVESTIGATIONS FOR IMAGES WITH 2 FEATURES. COMPARISON IN TERMS OF MEAN, STANDARD DEVIATION AND STATISTICAL TEST FOR CONSIDERED

INDICATORS.

EAHYP-2D (1) EAHYP (2) EAIGD (3) EAEPS (4) EADIS (5)
mean st stat mean st stat mean st stat mean st stat mean st stat

H
Y

P-
2D f1,f2 0.347 0.004 4(+),5(+) 0.382 0.007 3(+),4(+),5(+) 0.335 0.003 2(�),5(+) 0.198 0.019 1(�),2(�) 0.112 0.030 1(�),2(�),3(�)

f3,f4 0.344 0.004 2(+),4(+),5(+) 0.268 0.014 1(�),3(�),4(+),5(+) 0.339 0.004 2(+),4(+),5(+) 0.221 0.015 1(�),2(�),3(�) 0.105 0.025 1(�),2(�),3(�)

f5,f6 0.350 0.007 2(+),3(+),4(+),5(+) 0.342 0.004 1(�),4(+),5(+) 0.332 0.004 1(�),4(+),5(+) 0.220 0.045 1(�),2(�),3(�) 0.134 0.016 1(�),2(�),3(�)

H
Y

P f1,f2 0.525 0.012 3(+),4(+),5(+) 0.693 0.013 3(+),4(+),5(+) 0.374 0.006 1(�),2(�),4(+) 0.344 0.003 1(�),2(�),3(�) 0.363 0.014 1(�),2(�)

f3,f4 0.500 0.007 3(+),4(+),5(+) 0.681 0.010 3(+),4(+),5(+) 0.268 0.072 1(�),2(�),4(+),5(+) 0.280 0.010 1(�),2(�),3(�) 0.267 0.014 1(�),2(�),3(�)

f5,f6 0.518 0.012 2(�),4(+),5(+) 0.663 0.010 1(+),3(+),4(+),5(+) 0.335 0.004 2(�),4(+) 0.317 0.006 1(�),2(�),3(�) 0.327 0.008 1(�),2(�)

IG
D

f1,f2 0.001 0.335 2(+),4(+),5(+) 0.003 0.000 1(�),3(�) 0.001 0.000 2(+),4(+),5(+) 0.003 0.000 1(�),3(�),5(+) 0.005 0.001 1(�),3(�),4(�)

f3,f4 0.001 0.339 2(+),4(+),5(+) 0.004 0.000 1(�),3(�),5(+) 0.001 0.000 2(+),4(+),5(+) 0.003 0.000 1(�),3(�),5(+) 0.005 0.001 1(�),2(�),3(�),4(�)

f5,f6 0.002 0.332 2(+),5(+) 0.007 0.000 1(�),3(�),4(�),5(�) 0.001 0.000 2(+),4(+),5(+) 0.003 0.001 2(+),3(�) 0.004 0.001 1(�),2(+),3(�)

EP
S f1,f2 0.190 0.198 2(+),4(+),5(+) 0.498 0.011 1(�), 3(�) 0.194 0.032 2(+),4(+),5(+) 0.402 0.039 1(�),3(�),5(+) 0.600 0.106 1(�),3(�),4(�)

f3,f4 0.198 0.221 2(+),4(+),5(+) 0.569 0.016 1(�),3(�) 0.208 0.035 2(+),4(+),5(+) 0.418 0.036 1(�),3(�),5(+) 0.615 0.069 1(�),3(�),4(�)

f5,f6 0.125 0.220 2(+),4(+),5(+) 0.946 0.001 1(�),3(�),4(�) 0.225 0.064 2(+),4(+),5(+) 0.397 0.110 1(�),2(+),3(�) 0.587 0.063 1(�),3(�)

D
IS

f1,f2 0.171 0.018 2(+),4(+),5(+) 0.257 0.010 1(�),4(+) 0.201 0.031 4(+),5(+) 0.686 0.064 1(�),2(�),3(�),5(�) 0.204 0.116 1(�),3(�),4(+)

f3,f4 0.234 0.031 4(+) 0.273 0.041 3(�),4(+),5(�) 0.198 0.017 2(+),4(+) 0.606 0.054 1(�),2(�),3(�),5(�) 0.228 0.059 2(+),4(+)

f5,f6 0.221 0.026 4(+) 0.263 0.070 3(�),4(+),5(�) 0.205 0.055 2(+),4(+) 0.633 0.158 1(�),2(�),3(�),5(�) 0.203 0.054 2(+),4(+)
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Fig. 5. Feature vectors for final population of EADIS [5] for images based
on (f1, f2).

algorithm A does not appear, this means that no significant
difference was determined.

Figure 4 illustrates feature plots of (randomly selected)
final populations of EAHYP-2D (top), EAHYP, EAIGD and EAEPS
(bottom) for three pairs of feature combinations. In the first
column, we see the feature vectors for the final population
of the four algorithms for image based on pairs of features
(f1,f2). It can be observed that the discrepancy value for
EAHYP-2D is 0.1767. This is significantly smaller than the one
for EAEPS at 0.6802. Note that smaller discrepancy values
are considered to be better. The middle column shows the
combination of the feature pair (f3,f4). The discrepancy value
for feature pair (f3,f4) for EAIGD is 0.2286 whereas it is
0.6015 for EAEPS. The last column shows the final populations
of the diversity optimization when considering feature pair
(f5,f6). The discrepancy value for feature pair (f5,f6) is the
smallest among all algorithms for EAHYP-2D at 0.2182 and the
highest for EAEPS at 0.6318.

In summary, we observe that EAHYP-2D, EAHYP and EAIGD
achieve a good and even coverage of the feature space, espe-
cially in comparison with the discrepancy-based diversification
(see Figure 5 for an example from [5]). Interestingly, EAEPS
appears to experience difficulties, and it achieves the worst
coverage in the search space in all scenarios.

Moreover, in Table II, we observe that the EAHYP algorithm
has the best performance among all algorithms. It has the
highest hypervolume values for all features combinations, and
this is also statistically significant. Also, due to the statistical
tests we can say that EAHYP-2D outperforms EAEPS and EADIS
with respect to the inverted generational distance and additive
epsilon approximation indicator measurements values for all

sets of features. We observe that EAHYP-2D considering IGD
and EPS values has no significant differences to EAIGD. In
terms of discrepancy, the EAHYP-2D has a following charac-
teristic: for set of features (f1,f2) the EAHYP-2D outperforms
EAHYP, EAEPS and EADIS, however, it only outperforms the
EAEPS for the set of features (f3,f4) and (f5,f6).

Furthermore, EAIGD outperforms the EAHYP, EAEPS and the
EADIS with respect to IGD, EPS and DIS indicators measure-
ments in most of the cases and achieves the lowest values for
IGD measurements among all others algorithms for all sets of
features. The best performance achieves EAIGD for discrep-
ancy measurements for the combinations of features (f3,f4)
and (f5,f6) with values 0.198 and 0.205. The hypervolume-
based approaches EAHYP-2D and EAHYP outperform EAIGD for
all sets of features.

Among all others algorithms EAEPS shows the worst per-
formance. Especially, according to all indicators measurements
and all sets of features, the EAEPS is dominated by EAHYP and
EAIGD, and this difference is statistically significant.

Finally, the EADIS is dominated by EAHYP-2D and EAHYP,
EAIGD and EAEPS with respect to the HYP-2D, HYP, IGD
and EPS indicator values. Also, most results are significantly
different with respect to the HYP, IGD, EPS indicators.
EADIS achieves the best performance with respect to the
DIS indicator for the combinations of features (f3,f4) and
(f5,f6). The EADIS outperforms the EAHYP and EAEPS in this
case. For the combinations (f1,f2) with respect to the DIS
indicator, the EADIS is dominated by EAHYP-2D and EAIGD.

2) Three-feature combinations: The triplets of features are
described in Table I and the results are summarized in Ta-
ble III. As before, the columns represent the algorithms with
the corresponding mean value and standard deviation, and the
rows represent the indicators.

Figure 6 shows feature plots of (randomly selected) final
populations of EAHYP (top), EAIGD and EADIS (bottom) for
all sets of features. We can observe that the HYP value for
EAHYP is 0.5249, which is significantly higher than the ones
for EAIGD at 0.2092 and EADIS at 0.2193. The IGD value for
EAIGD is the lowest (and best) at 0.0065. The EADIS achieves
the lowest (and best) discrepancy value 0.3352. The situation
is similar for the other two triplets. The HYP values for EAHYP
0.4993 and 0.5177 are significantly higher than the ones for
EAIGD at 0.2139 and 0.1784, and accordantly for EADIS at

30 independent runs per setup Kruskal-Wallis-Test: like a multi-set Mann-Whitney-U-Test 

2-feature combinations

3-feature combinations
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TABLE V
INVESTIGATIONS FOR TSP INSTANCES WITH 2 FEATURES. COMPARISON IN TERMS OF MEAN, STANDARD DEVIATION AND STATISTICAL TEST FOR

CONSIDERED INDICATORS.

EAHYP-2D (1) EAHYP (2) EAIGD (3) EAEPS (4) EADIS (5)
mean st stat mean st stat mean st stat mean st stat mean st stat

H
Y

P-
2D f1,f4 0.338 2E-3 2(+),4(+),5(+) 0.309 4E-3 1(�),4(+) 0.331 3E-3 4(+),5(+) 0.190 1E-3 1(�),2(�),3(�) 0.256 1E-2 1(�),3(�)

f2,f4 0.317 3E-3 2(+),4(+),5(+) 0.303 5E-3 1(�),3(�),4(+) 0.316 3E-3 2(+),4(+),5(+) 0.178 1E-7 1(�),2(�),3(�) 0.252 1E-2 1(�),3(�)

f3,f4 0.303 2E-2 2(+),4(+),5(+) 0.296 5E-3 1(�),3(�),4(+),5(+) 0.304 2E-2 2(+),4(+),5(+) 0.190 2E-3 1(�),2(�),3(�) 0.238 2E-2 1(�),2(�),3(�)

H
Y

P f1,f4 0.645 5E-3 4(+),5(+) 0.638 7E-3 4(+),5(+) 0.639 6E-3 4(+),5(+) 0.424 2E-3 1(�),2(�),3(�) 0.529 3E-2 1(�),2(�),3(�)

f2,f4 0.609 7E-3 2(�),4(+),5(+) 0.632 1E-2 1(+),4(+),5(+) 0.621 6E-3 4(+),5(+) 0.398 1E-6 1(�),2(�),3(�) 0.505 2E-2 1(�),2(�),3(�)

f3,f4 0.584 3E-2 2(�),4(+) 0.621 9E-3 1(+),3(+),4(+),5(+) 0.595 4E-2 2(�),4(+),5(+) 0.410 2E-3 1(�),2(�),3(�) 0.485 3E-2 2(�),3(�)

IG
D

f1,f4 0.001 2E-5 4(+),5(+) 0.001 6E-5 3(�),4(+) 0.001 4E-5 2(+),4(+),5(+) 0.003 2E-5 1(�),2(�),3(�) 0.002 2E-4 1(�),3(�)

f2,f4 0.001 3E-5 2(+),4(+),5(+) 0.002 6E-5 1(�),3(�),4(+) 0.001 3E-5 2(+),4(+),5(+) 0.003 2E-10 1(�),2(�),3(�) 0.002 2E-4 1(�),3(�)

f3,f4 0.002 3E-4 4(+),5(+) 0.002 6E-5 3(�),4(+),5(+) 0.002 3E-4 2(+),4(+),5(+) 0.003 3E-5 1(�),2(�),3(�) 0.003 3E-4 1(�),2(�),3(�)

EP
S f1,f4 0.196 2E-2 2(+),4(+),5(+) 0.249 2E-2 1(�),3(�),4(+) 0.189 2E-2 2(+),4(+),5(+) 0.423 1E-3 1(�),2(�),3(�) 0.345 4E-2 1(�),3(�)

f2,f4 0.226 8E-3 2(+),4(+),5(+) 0.256 2E-2 1(�),3(�),4(+),5(+) 0.228 1E-2 2(+),4(+),5(+) 0.499 2E-16 1(�),2(�),3(�) 0.360 5E-2 1(�),2(�),3(�)

f3,f4 0.260 4E-2 4(+),5(+) 0.278 2E-2 4(+),5(+) 0.265 4E-2 4(+),5(+) 0.477 3E-3 1(�),2(�),3(�) 0.368 5E-2 1(�),2(�),3(�)

D
IS

f1,f4 0.222 2E-2 2(+),4(+),5(+) 0.353 2E-2 1(�),3(�),4(+) 0.249 2E-2 2(+),4(+) 0.589 4E-3 1(�),2(�),3(�),5(�) 0.292 5E-2 1(�),4(+)

f2,f4 0.230 2E-2 2(+),4(+),5(+) 0.274 2E-2 1(�),4(+),5(+) 0.252 1E-3 4(+),5(+) 0.609 1E-16 1(�),2(�),3(�),5(�) 0.336 4E-2 1(�),2(�),3(�),4(+)

f3,f4 0.418 6E-2 4(+) 0.416 3E-2 4(+) 0.401 7E-2 4(+),5(+) 0.719 6E-3 1(�),2(�),3(�),5(�) 0.448 9E-2 3(�),4(+)

TABLE VI
INVESTIGATIONS FOR TSP INSTANCES WITH 3 FEATURES. COMPARISON IN TERMS OF MEAN, STANDARD DEVIATION AND STATISTICAL TEST FOR

CONSIDERED INDICATORS.

EAHYP (1) EAIGD (2) EADIS (3)
mean st stat mean st stat mean st stat

H
Y

P f1,f2,f3 0.4511 1E-2 2(+),3(+) 0.4261 7E-3 1(�),3(+) 0.3385 6E-3 1(�),2(�)

f1,f3,f4 0.4579 8E-3 2(+),3(+) 0.4260 6E-3 1(�),3(+) 0.3430 6E-3 1(�),2(�)

f2,f3,f4 0.4478 8E-3 2(+),3(+) 0.4262 6E-3 1(�),3(+) 0.3430 6E-3 1(�),2(�)

IG
D

f1,f2,f3 0.0083 3E-4 2(�),3(+) 0.0075 2E-4 1(+),3(+) 0.0110 1E-4 1(�),2(�)

f1,f3,f4 0.0082 2E-4 2(�),3(+) 0.0077 1E-4 2(+),3(+) 0.0107 1E-4 1(�),2(�)

f2,f3,f4 0.0086 2E-4 2(�),3(+) 0.0080 2E-2 2(+),3(+) 0.0112 8E-5 1(�),2(�)

D
IS

f1,f2,f3 0.4115 3E-2 2(+),3(+) 0.4839 3E-2 1(�),3(�) 0.4399 2E-2 1(�),2(+)

f1,f3,f4 0.5220 4E-2 3(�) 0.5474 3E-2 3(�) 0.4757 2E-2 1(+),2(+)

f2,f3,f4 0.4669 3E-2 2(+) 0.5111 3E-2 1(�),3(�) 0.4667 2E-2 2(+)

populations after running the three algorithms on the three
three-feature combinations. Both of the IGD values and HYP
values of the final populations from EAIGD and EAHYP are
better than those from EADIS. Although both algorithms do
not perform very well in minimizing discrepancy for most
three-feature combinations, EAHYP is able to achieve a smaller
average discrepancy value than EADIS in feature combination
(f1,f3,f4) and a comparable average value in feature combi-
nation (f2,f3,f4). The minimum discrepancy values obtained
by EAHYP for the three different feature combinations are all
smaller than the corresponding values from EADIS.

V. CONCLUSIONS

We have proposed a new approach for evolutionary diversity
optimization. It bridges the areas of evolutionary diversity
optimization and evolutionary multi-objective optimization
and shows how techniques developed in evolutionary multi-
objective optimization can be used to come up with diverse
sets of solutions of high quality for a given single-objective
problem. Our investigations demonstrated that well-established
multi-objective performance indicators can be used to achieve
a good diversity of sets of solutions according to a given
set of features. The advantages of our approaches are (i)
their simplicity and (ii) the quality of diversity achieved as
measured by the respective indicators. The best performing
approaches use HYP or IGD as indicators. We have shown
that they achieve excellent results in terms of all indicators

and often even outperform the discrepancy-based approach [5]
when measuring quality in terms of discrepancy, which is
surprising as they are not tailored towards this measure.

In this work, we concentrated on using popular multi-
objective indicators in existing diversity optimization ap-
proaches. For future work, it would be interesting to use popu-
lar evolutionary multi-objective approaches such as MOEA/D,
IBEA or NSGA-II/III for evolutionary diversity optimization.
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In summary: 
• EAHYP and EAIGD perform best 
• Beats our GECCO’18 results 

(discrepancy theory)



Some of the next questions to answer:
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• What type of features are good to characterize problem 
instances of a given problem (e.g. TSP) for a particular 
algorithm.

• What is a good diversity measure?
• What is the runtime behavior of EAs maximizing search-

space/feature diversity?
• How do we compute diverse sets of high-quality solutions 

for important combinatorial optimization problems?
• How do we change state of the art solvers to compute 

diverse sets of solutions (instead of a single one)

• We provide code: https://tinyurl.com/geccoDiversity
(Java code, Matlab wrapper provided)

• Email: markus.wagner@adelaide.edu.au

https://tinyurl.com/geccoDiversity
http://adelaide.edu.au

