Evolutionary Computation plus Dynamic Programming for the Bi-Objective Travelling Thief Problem

Junhua Wu, Sergey Polyakovskiy, Markus Wagner, Frank Neumann

Frank.Neumann@Adelaide.edu.au

Or google “travelling thief Adelaide”

Tuesday, July 17, 10:40-12:20, Conference Room D (3F)
The Travelling Thief Problem (TTP)

Composed of the merging of the Traveling Salesman Problem and the Knapsack Problem
The Travelling Thief Problem (TTP)

Composed of the merging of the Traveling Salesman Problem and the Knapsack Problem
The Travelling Thief Problem (TTP)

Composed of the merging of the Traveling Salesman Problem and the Knapsack Problem
The Travelling Thief Problem (TTP)

Composed of the merging of the Traveling Salesman Problem and the Knapsack Problem
THE TRAVELING THIEF PROBLEM (TTP)

Goal: Visit each city exactly once, maximising the total profit P such that the total weight does not exceed the knapsack capacity W, where P is defined as:

$$P = \sum_{i=1}^{m} p_i x_i - R \sum_{i=1}^{n} t_{i,i+1}$$

where $x_i = \{1|0\}$ depending on whether the item i is picked $\{1\}$ or not $\{0\}$, and $t_{i,j}$ is defined as:

$$t_{i,j} = \frac{d(\Pi_i, \Pi_j)}{v_{max} - W_{\Pi_i} \left(\frac{v_{max} - v_{min}}{W}\right)}$$

where Π_i is the city at tour position i in tour Π, and W_{Π_i} is the current weight of the knapsack at city Π_i.
The Bi-Objective TTP

a natural extension:
maximise the reward for a given weight of collected items, or determine the least weight subject to bounds imposed on the reward

• Objective one: profit P as defined before
• Objective two: total accumulated weight
Packing-While-Travelling (PWT)

• ...

Definition 3.1. Let τ_π be a corresponding objective vector for \bar{P}_π. Then τ_π represents the related Pareto front designated as a DP front for the given tour π.

\[\rho_1 \rightarrow (z_1, w_1), \rho_1 \rightarrow (z_2, w_2), \rho_1 \rightarrow (z_3, w_3), \rho_1 \rightarrow (z_4, w_4), \rho_1 \rightarrow (z_5, w_5) \]
(the “natural” approach would be the following)
Solving the Bi-Obj. TTP

- Many single-objective TTP heuristics take a good TSP tour as a starting point. What does this mean here?

- TSP solvers; CONCORDE (CON), ACO, LKH and LKH2
Algorithm 1 Hybrid IBEA Approach

Input: population size μ; limit on the number of generations α;

Initialisation:
set the iteration counter $c = 0$;
populate $\bar{\Pi}$ with μ new tours produced by the TSP solver;

while ($c \leq \alpha$) do
set $c = c + 1$;

Indicator:
run the DP for every tour $\pi \in \bar{\Pi}$ to compute its DP front τ_{π};
apply indicator function $I(\tau_{\pi})$ to calculate the indicator value for every individual tour $\pi \in \bar{\Pi}$;

Survivor Selection:
repeatedly remove the individual with the smallest indicator value from the population $\bar{\Pi}$ until the population size is μ (ties are broken randomly);

Parent Selection:
apply parent selection procedure to $\bar{\Pi}$ according to the indicator values to choose a set Λ of λ parent individuals;

Mating:
apply crossover and mutation operators to the parents of Λ to obtain a child population Λ';
set the new population as $\bar{\Pi} = \bar{\Pi} \cup \Lambda'$;

end while
Indicators

Def 3.2: Given q different DP fronts, let ϕ denote a set of possible unique solution points derived by $\tau_1.. \tau_q$. Then ω is a Pareto front formed by the points of ϕ and ω is named as the surface of ϕ.

Given a tour τ_π, and its corresponding solution set T_π:

- Surface Contribution: number of objective vectors contributed by T_π
- Hypervolume: volume covered by T_π w.r.t $(0,C)$

- Loss of Contribution:
 \[
 LSC(\tau_\pi) = 1 - \frac{SC(\Phi \setminus T_\pi)}{SC(\Phi)}
 \]
 \[
 LHV(\tau_\pi) = 1 - \frac{HV(\Phi \setminus T_\pi)}{HV(\Phi)}
 \]
Parent Selection Mechanisms

• Rank-Based Selection (RBS), Fitness-Proportionate Selection (FPS), Tournament Selection (TS), Arbitrary Selection (AS), Uniformly-at-Random Selection (UAR)

Crossover and Mutation Operators

• TSP-only: multi-point crossover, 2-opt mutation, jump
Experimental Study

• 2 indicators X 8 parent selection strategies
• TTP instances from the classes eil51, eil76, eil101; three knapsack types

Assessment

• 30 repetitions, Welch’s t-test with UAR as a baseline (like the Student's t-test, but more reliable when the two samples have unequal variances and unequal sample sizes)
Make this a pseudo animation with “appear”

Note: bars are sums of log-scaled p-values
Comparison of bi-obj. approaches with single-objective MA2B

<table>
<thead>
<tr>
<th></th>
<th>MA2B</th>
<th>FPS LHV</th>
<th>FPS LSC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max</td>
<td>SD</td>
</tr>
<tr>
<td>eil51_n50</td>
<td>Uncorrelated</td>
<td>2805.000</td>
<td>2855</td>
</tr>
<tr>
<td></td>
<td>SimilarWeights</td>
<td>1416.348</td>
<td>1460</td>
</tr>
<tr>
<td></td>
<td>Bounded</td>
<td>4057.652</td>
<td>4105</td>
</tr>
<tr>
<td>eil76_n75</td>
<td>Uncorrelated</td>
<td>5275.067</td>
<td>5423</td>
</tr>
<tr>
<td></td>
<td>SimilarWeights</td>
<td>1398.867</td>
<td>1502</td>
</tr>
<tr>
<td></td>
<td>Bounded</td>
<td>3849.067</td>
<td>4109</td>
</tr>
<tr>
<td>eil101_n100</td>
<td>Uncorrelated</td>
<td>3339.600</td>
<td>3789</td>
</tr>
<tr>
<td></td>
<td>SimilarWeights</td>
<td>2215.500</td>
<td>2483</td>
</tr>
<tr>
<td></td>
<td>Bounded</td>
<td>4949.000</td>
<td>5137</td>
</tr>
</tbody>
</table>
Summary

• Bi-Objective TTP: profit vs. weight
• Dynamic programming provides provably optimal trade-off fronts for a given tour
• Indicator-based EA with a population of tours: with ”loss of surface contribution” and “loss of hypervolume”
• Best bi-objective approaches beat single-objective state-of-the-art