


http://cs.adelaide.edu.au/~markus/ The slides will be made available today.



Markus Wagner <u>markus.wagner@adelaide.edu.au</u>

Approximation-Guided Many-Objective Optimization and the Travelling Thief Problem



Anhui University and IEEE CIS Chapter Hefei





# **Optimisation and Logistics**

#### Algorithmic Game Theory



Coordinator: Dr Mingyu Guo

#### **Renewable Energy**



Coordinator: Dr Markus Wagner

#### Foundations of Heuristics



Coordinator: Prof Frank Neumann

Staff Profile: 6 faculty members 2 postdocs 8 PhD students



Coordinator: Dr Bradley Alexander Supply Chain Management



Coordinator: Dr Sergey Polyakovskiy

#### Search-based Software Engineering

# **Optimisation and Logistics**

#### Supply Chain Management (Australian Research Council funded)

• Large scale industrial optimisation problems with many interacting components.

#### Dynamic Constraints (ARC funded)

Algorithms for problems with dynamically changing constraints.

#### Dynamic Adaptive Software Configurations (ARC funded)\*

Self-adapt system configurations to changing conditions.

Lots of other knowledge, either in-house or via international collaborations, e.g. more theory, system modelling, speed-up of simulations (algorithmically or using machine learning)...

# Some of the activities of Optimisation and Logistics 2016-2018

- ACM Genetic and Evolutionary Computation Conference 2016 (General Chair: Frank Neumann)
- NII Shonan Meeting on "Computational Intelligence for Software Engineering, Shonan Village Centre, Japan. Organizers: Hong Mei (Peking), Frank Neumann (UoA), Xin Yao (Birmingham)
- Dagstuhl Seminar on "Automatic Algorithm Selection and Configuration", Schloss Dagstuhl, Germany

Organizers: Heike Trautmann (Muenster), Holger Hoos (Vancouver), Frank Neumann (UoA).

 NII Shonan Meeting on "Data-Driven Search-Based Software Engineering", Shonan Village Centre, Japan.

> Organizers: Markus Wagner (UoA), Leandro Minku (Leicester), Ahmed E. Hassan (Queens U), John Clark (York)

 Australasian Conference on Artificial Life and Computational Intelligence 2018

(General Chair: Markus Wagner)

 International Workshop on Benchmarking of Computational Intelligence Algorithms, BOCIA, http://iao.hfuu.edu.cn/bocia18 (Co-Chair: Markus Wagner)

## Markus Wagner

2003-2009

2006-2007

2010-2013

2013

Summary:

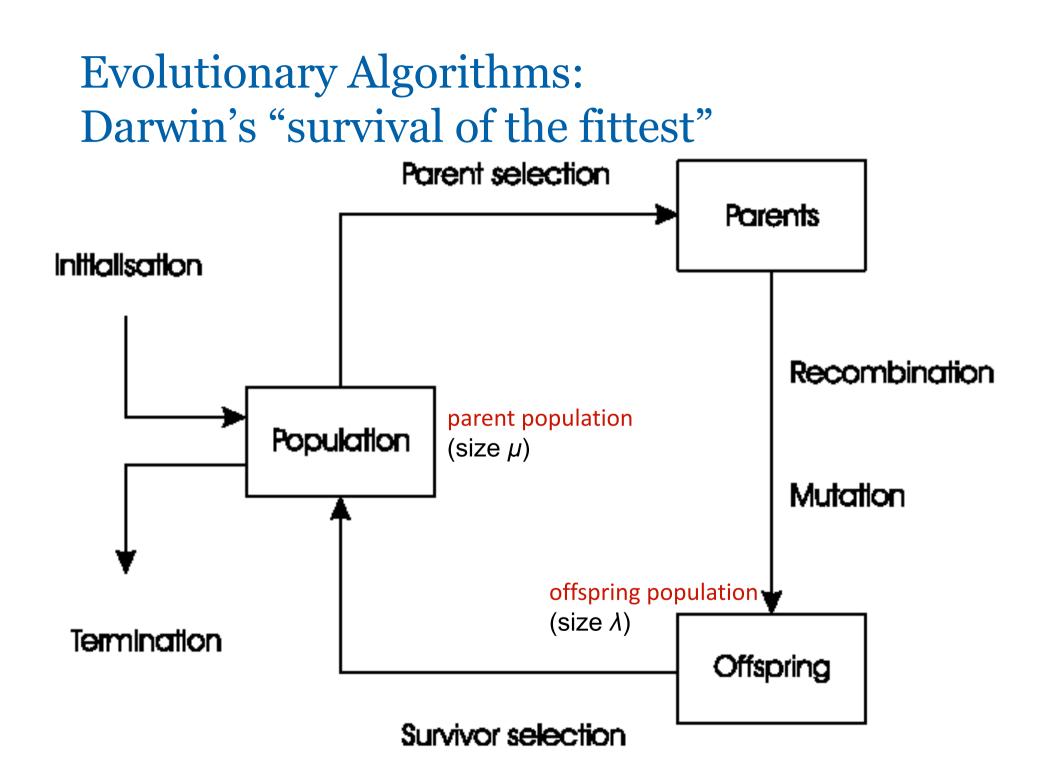
IEEE CIS:

80+ papers/co-authors/reviews/events/... 1 best paper/poster/presentation/keynote/medal/... **2nd time in Hefei ©** Chair University Curricula 2016/2017 Chair Educational Material Subcommittee 2014/2015 Founding Chair of Task Force "CI in the Energy Domain"

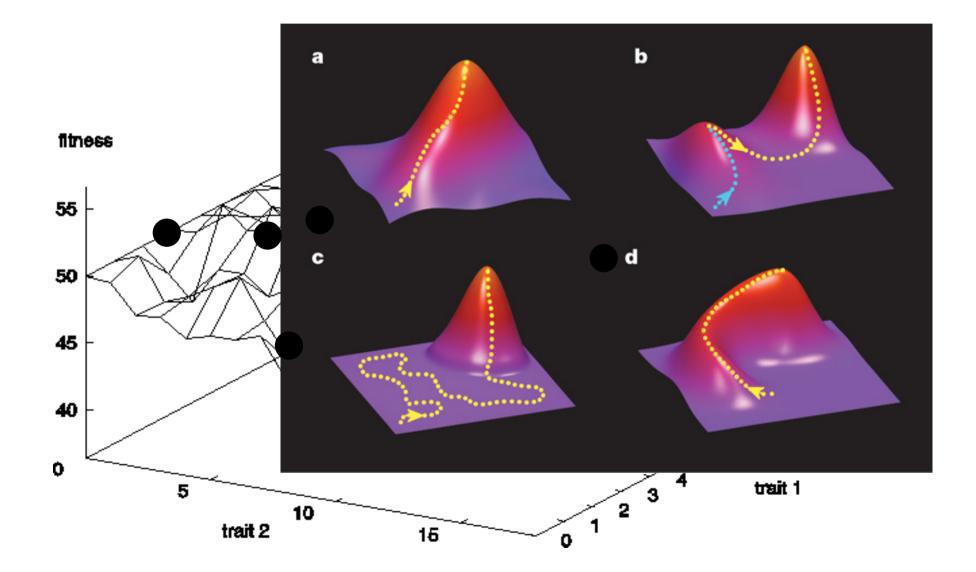
max planck institut informatik



Senior Lecturer

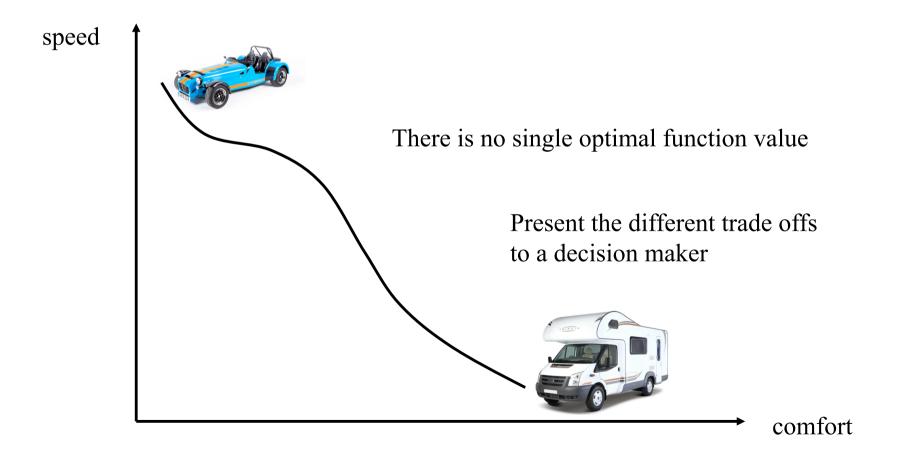




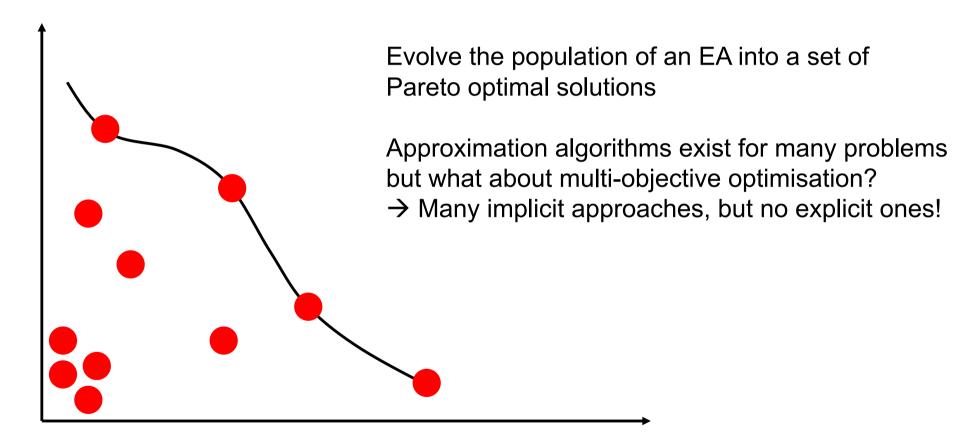

#### Approximation-Guided Evolutionary Multi-Objective Optimization

Joint work with Frank Neumann (U Adelaide), Karl Bringmann (ETH Zurich), Tobias Friedrich (Hasso Plattner Institute)




#### Example with two decision variables




## **Multi-Objective Optimisation**

Many problems have more than one goal function Example: Buying a new car



#### **Evolutionary Multi-Objective Optimisation**

Try to compute/approximate the Pareto front by EAs



## Preliminaries

We consider minimization problems

- ➢ objective functions  $f_i: S → \mathbb{R}, 1 \le i \le d$  map the search space S into the real numbers

#### Dominance relation

For two objective vectors  $x=(x_1, ..., x_d)$  and  $y=(y_1, ..., y_d)$ , with  $x, y \in \mathbb{R}^d$ , we define

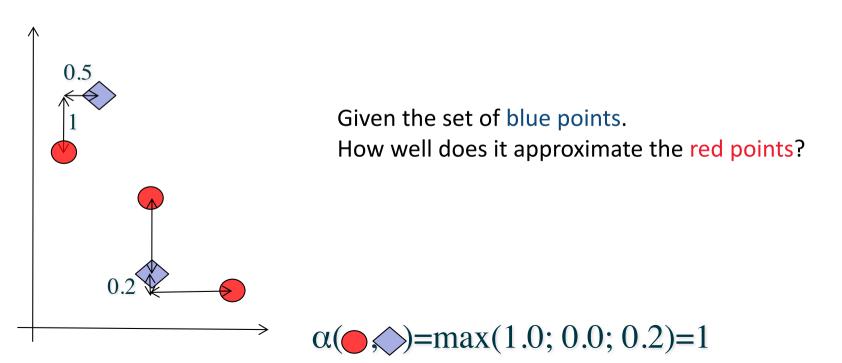
 $x \leq y$  iff  $x_i \leq y_i$  for all  $1 \leq i \leq d$ , (x weakly dominates y)  $x \leq y$  iff  $x \leq y$  and  $x \neq y$ . (x strongly dominates y)

Relations translate to search points (elements of S) Set of all non-dominated objective vectors is called the Pareto front.

#### Our overall idea for Approximation-Guided Evolution (AGE)

- We keep an unbounded archive A of non-dominated points seen so far.
- The archive is an approximation of the "true" Pareto front.
- The goal is to have a population P that approximates the archive as best as possible.
- We use additive approximation to measure approximation quality.
- Multiplicative approximations can be used in a similar way.

## Additive Approximation


**Definition.** For finite sets  $S,T \subseteq \mathbb{R}^d$ , the additive approximation of T w.r.t. S is defined as

 $\alpha(S,T) := \max_{s \in S} \min_{t \in T} \max_{1 \le i \le d} (s_i - t_i)$ 

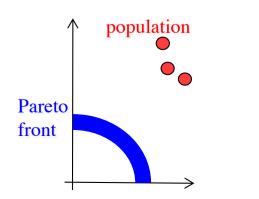
## Additive Approximation

**Definition.** For finite sets  $S,T \subseteq \mathbb{R}^d$ , the additive approximation of T w.r.t. S is defined as

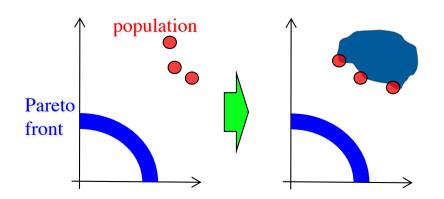
 $\alpha(S,T) := \max_{s \in S} \min_{t \in T} \max_{1 \le i \le d} (s_i - t_i)$ 



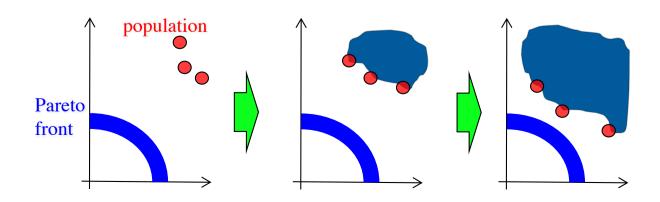
## Additive Approximation


Goal. Minimize the approximation of the population *P* (our output) w.r.t. to the archive *A* (all points seen so far).

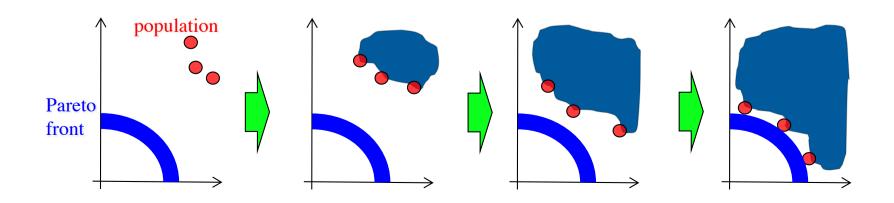
**Problem.**  $\alpha(A, P)$  is not sensitive to local changes of *P*: measures only improvements of points which are currently worst approximated.


Solution. Consider the set  $B = \{\alpha(\{a\}, P) \mid a \in A\}$ . Sort *B* decreasingly and minimize  $S_{\alpha}(A, P) := (\alpha_1, ..., \alpha_{|A|})$  lexicographically.

- Any set of feasible solutions constitutes an approximation of the Pareto front, and
- we optimize the approximation w.r.t. all solutions seen to far.


- Any set of feasible solutions constitutes an approximation of the Pareto front, and
- we optimize the approximation w.r.t. all solutions seen to far.



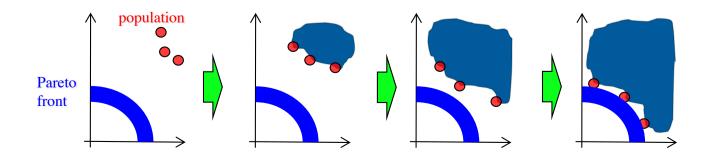

- Any set of feasible solutions constitutes an approximation of the Pareto front, and
- we optimize the approximation w.r.t. all solutions seen to far.



- Any set of feasible solutions constitutes an approximation of the Pareto front, and
- we optimize the approximation w.r.t. all solutions seen to far.



- Any set of feasible solutions constitutes an approximation of the Pareto front, and
- we optimize the approximation w.r.t. all solutions seen to far.




# Simple Algorithm

Based on  $S_{\alpha}$ , it is easy to come up with an algorithm!

Population of size  $\mu$ .

- 1. Generate  $\lambda$  offspring.
- **2. Iteratively remove individual p from**  $(\mu \cup \lambda)$ , for which  $S_{\alpha}(A, P \setminus \{p\})$  is minimal. *drop point with smallest contribution*
- 3. (Add all non-dominated points to the archive.)

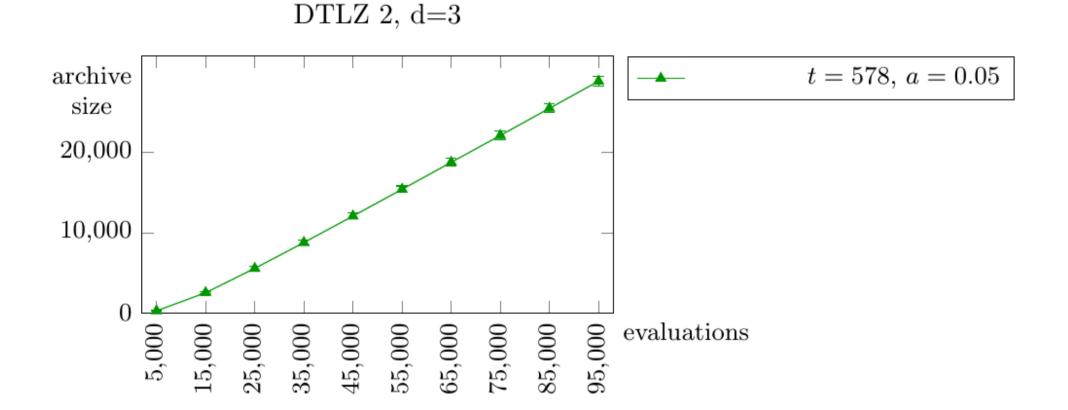


## Runtime

We work with a population size of  $\mu$  and generate in each generation  $\lambda$  offspring.

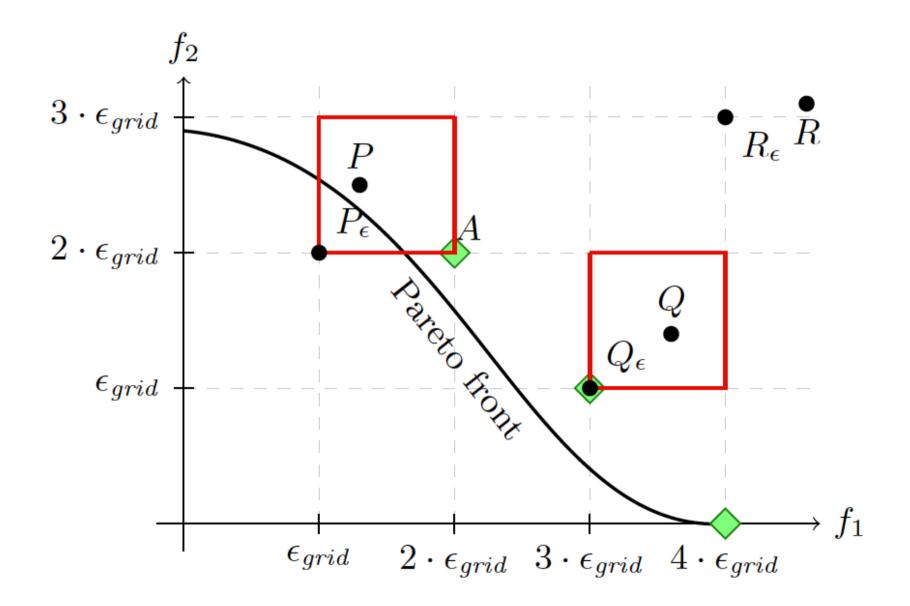
Having generated N solutions, we get the following runtime bounds.

Simple algorithm $O(N(\mu+\lambda)|A|(d(\mu+\lambda) + \log |A|)))$ Works well when  $\mu+\lambda$  is small, but e.g. for  $\mu+\lambda=100$  becomes slow<br/>due to  $(\mu+\lambda)^2$  factor.


**Fast algorithm**  $O(N(\mu+\lambda)|A|d)$ 

Idea: clever selection of the  $\mu$  individuals for the next generation, looking at the worst approximation for which a population point p is responsible.

(for technical details: see IJCAI paper)


Problem: Runtime grows linearly with the archive size

# Development of the Unbounded Archive Size



100.000 evaluations, averages of 100 independent runs

E-Dominance Approach [based on Laumanns et al. '02]



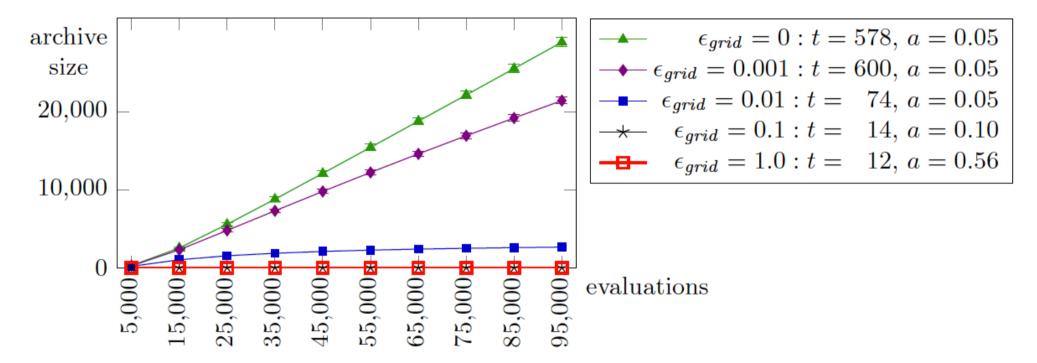
Assign to each objective vector x its box-vector depending of ε<sub>grid</sub>.

Subroutine 7: Function *floor* 

**input** : *d*-dimensional objective vector x, archive parameter  $\varepsilon_{grid}$ **output**: Corresponding vector v on the  $\varepsilon$ -grid

1 for 
$$i = 1$$
 to  $d$  do  $v[i] \leftarrow \left\lfloor \frac{x[i]}{\varepsilon_{grid}} \right\rfloor$ ;

Archive size is bounded by


$$\left|A_{\varepsilon_{grid}}^{(t)}\right| \leqslant \prod_{j=1}^{d-1} \left\lfloor \frac{K}{\varepsilon_{grid}} \right\rfloor$$

where

$$K = \max_{i=1}^{d} \left( \max_{s \in S} f_i(s) \right)$$

#### **Development of the Archive Size**

DTLZ 2, d=3



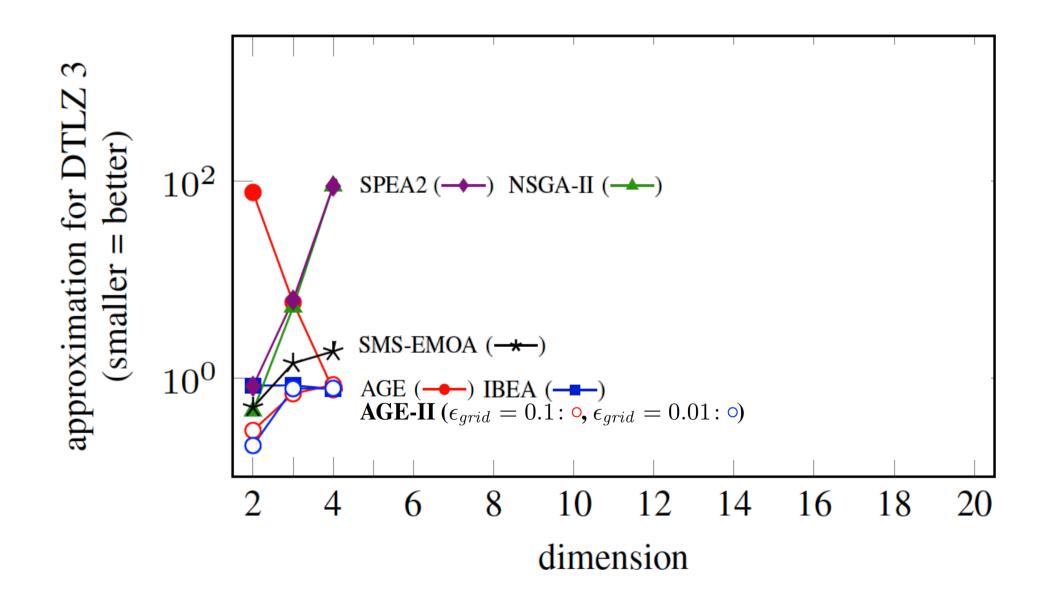
 $\mu = \lambda = 100.$ N=100.000 evaluations, averages of 100 independent runs

#### Experiments

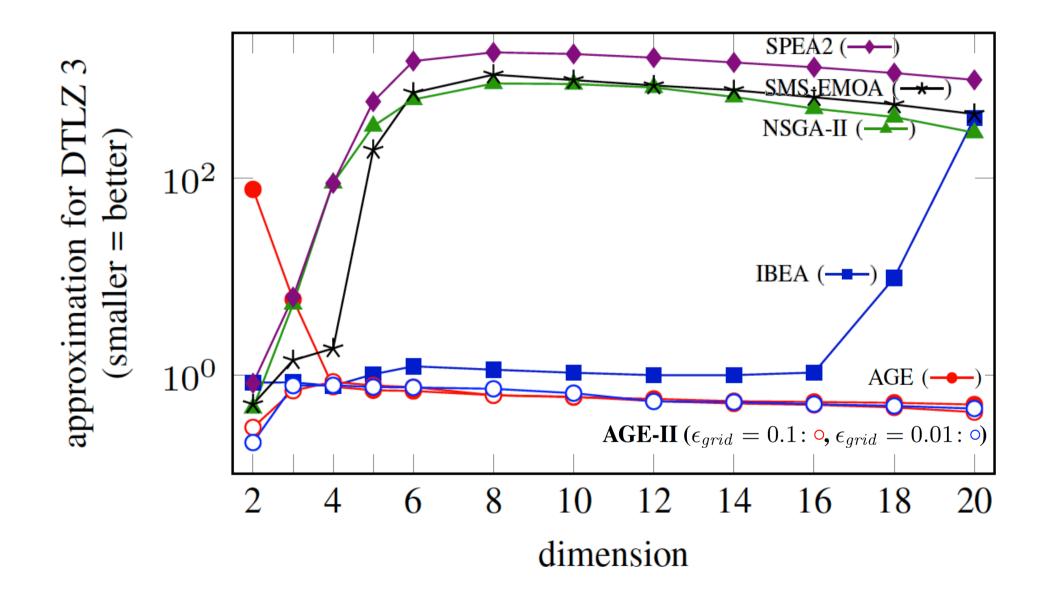
• NSGA-II, IBEA, SPEA2, SMS-EMOA with approx hyp: SMS-EMOA, MO-CMA-ES AGE with  $\varepsilon_{grid}=0$ ,  $\varepsilon_{grid}=0.1$ ,  $\varepsilon_{grid}=0.01$ 

Note: MOEA/D was new back then!

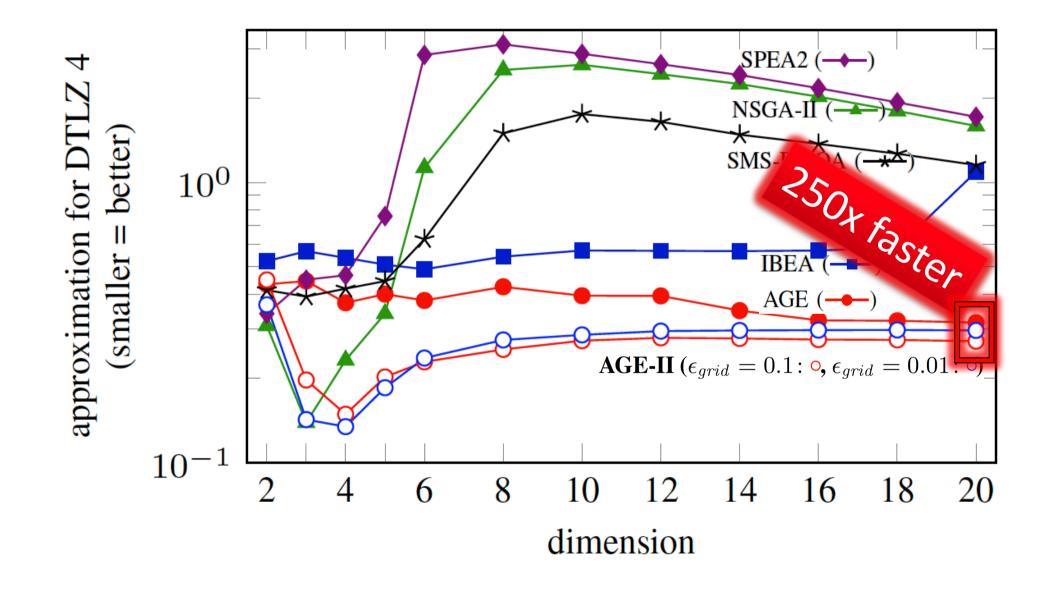
 ZDT 1/2/3/4/6 WFG 1-9 (each with d=2 and d=3) LZ 1-9 DTLZ 1/2/3/4 (each with d=2,...,20)
 → 80 functions


Limits: 4h (and varying numbers of evaluations)

• μ=100, SBX, PM, implemented in jMetal


(code is available online:

<u>http://cs.adelaide.edu.au/~markus/publications.html</u> -> GECCO 2013)


#### Results



#### Results



#### Results



## Summary

- Approximated Guided Evolution (AGE) for multiobjective optimization which works with a formal notion of additive/multiplicative approximation.
- AGE outperforms state-of-the-art approaches, in terms of additive approximation and covered hypervolume (for DTLZ 1 and 3), given a fixed time budget (4h).
- This holds, in particular, for problems with many objectives, which most other algorithms have difficulties dealing with.

# EMO Applications (in Adelaide)

- Team Cycling: race time vs energy consumption
- Android Apps: energy consumption vs deviation from test oracle
- Wind energy: power output vs area vs cable
- Wave energy: power output vs area vs cable
- Travelling thief: profit vs weight collected

...and others...

Note: typically, our code is online.



#### **Travelling Thief Problem**

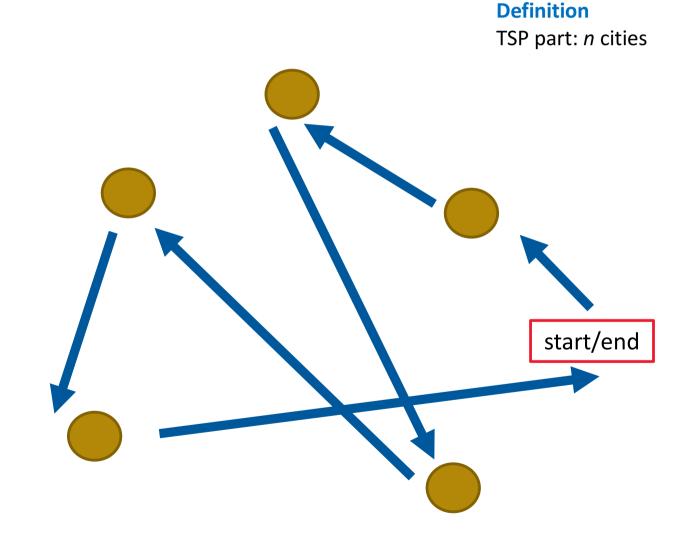
http://cs.adelaide.edu.au/~optlog/research/

With code, instances, results, papers, ... (two competitions)

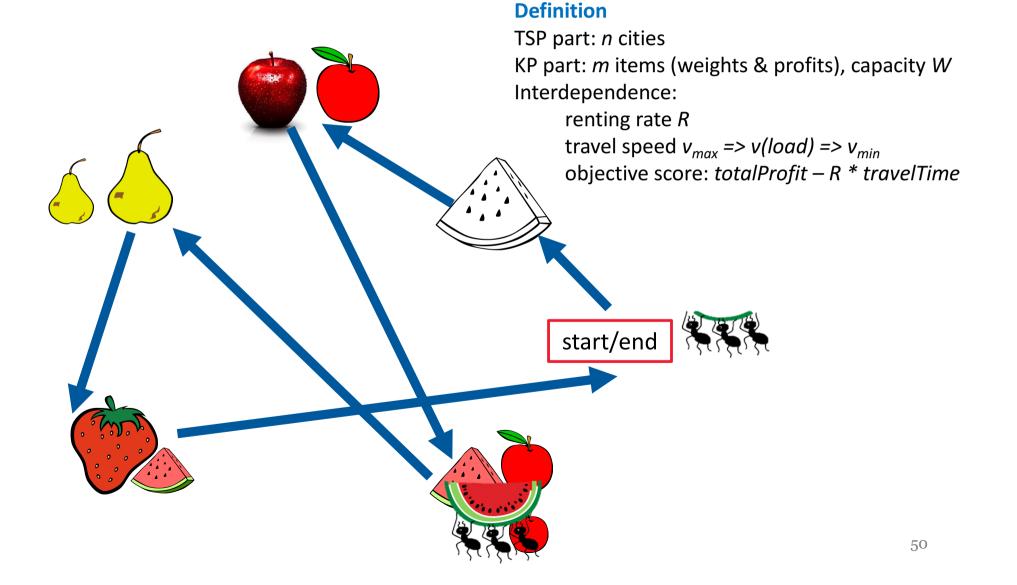


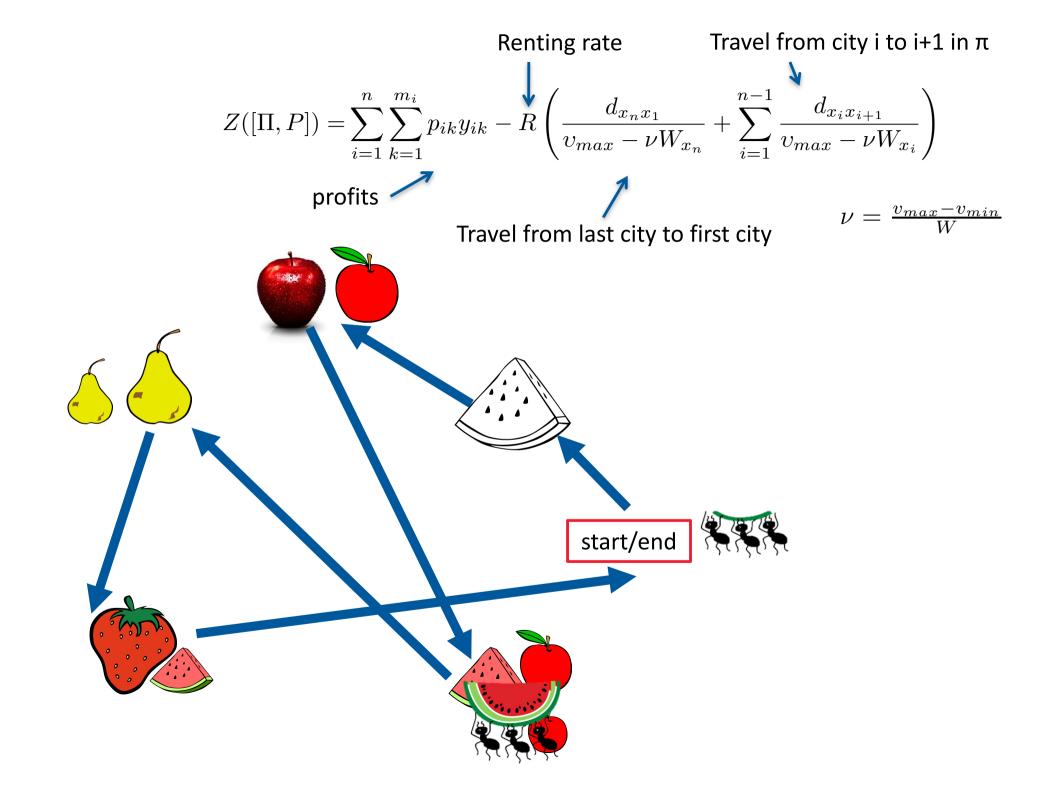










## A case study of algorithm selection for the travelling thief problem


Joint work with: Marius Lindauer, Mustafa Mısır, Samadhi Nallaperuma, Frank Hutter

# Travelling Thief Problem (2013, read-world characteristic: interdependent problems)



# Travelling Thief Problem (2013, read-world characteristic: interdependent problems)





#### TTP Situation (2016)

- Many algorithms have been introduced:
  - Initially generic hill-climbers, successively more and more understanding was encoded
  - Deterministic construction heuristics, restart strategies, holistic approaches
  - MIP & dynamic programming for special case
  - Increasing computational cost
- "Best algorithm" depends on instance (given the computation budget of 10 minutes).
- There are exact approaches based on Dynamic Programming now, I might get to them later...

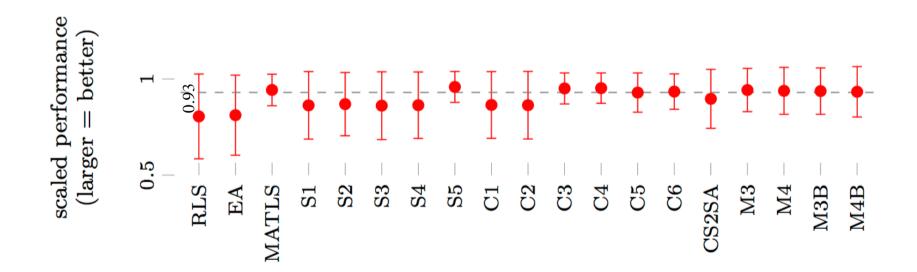
#### **Our Contributions**

- Comprehensive dataset for algorithm performance comparison (21 algorithms on 9720 instances)
- 2. Comprehensive dataset for instance analysis (55 features of 9720 instances)
- 3. Algorithm portfolios based on 1. and 2.
- 4. Analysis of 3.

### 1. Algorithm Performance

- History
  - Bonyadi et al. (2013): 4 cities, 6 items, exhaustive enumeration
  - Polyakovskiy et al. (2014):
    - 9720 instances established with up to almost 100k cities and 1m items
    - First heuristics:
      - 1. Strong focus on very good TSP tours (using LKH).
      - 2. Packing plan creation using hill-climbers or a deterministic construction heuristic.
  - Since then: more construction heuristics, co-evolutionary approaches, holistic attempts, fast implementations of search operators (for quick objective score update), special case algorithms, ...

### 1. Algorithm Performance

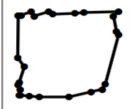

- 9720 Instances vary widely
  - 51-85,900 cities (based on TSPlib)
  - three different KP types (shown to have different difficulties for KP solvers)
  - 1-10 items per city, different KP sizes
  - Renting rate R set so that there is at least on TTP solution with objScore=0=opt(KP)-R\*opt(TSP)
- Researchers use not all of them (except Polyakovskiy et al., 2014), for example:
  - Mei et al. (2014): 30 instances with 11k-34k cities
  - Faulkner et al. (2015): 72 instances with 195 to 86k cities
  - Wagner (2016): 108 instances with 51 to 1000 cities
- $\rightarrow$  complete picture not possible

### 1. Algorithm Performance

worst average performance

best ever performance

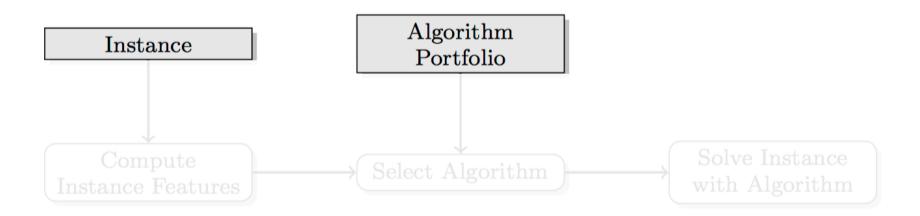
- Benchmarking:
  - 9720 instances, once, 10 minutes, rescaled to [0,1],
    -1 for crash/time-out
  - Averages over all:




Construction heuristics SH/DH left out due to poor performance. Dataset available online: <u>http://tinyurl.com/ttpadelaide</u>

#### 2. Instance Characteristics

- 47 TSP features (Mersmann et al. 2012/2013, Nallaperuma et al. 2013/2014, ...)
  - 11 distance features (min/max/mean/fractions/...)
  - 1 mode feature (distribution of edge cost)
  - 6 cluster features (GDBSCAN, number of clusters, mean distances to cluster centroids)
  - 6 nearest neighbour features (min/max/mean/...)
  - 5 angle features (min/... between node an NN)
  - 11 MST features (min/max/mean depth, ...)
  - 2 convex hull features
- 4 KP features
  - Capacity, knapsack type, total number of items, number of items per city
- TSP: number of cities
- 3 **TTP** features
  - Renting ratio, minimum travel speed, maximum travel speed

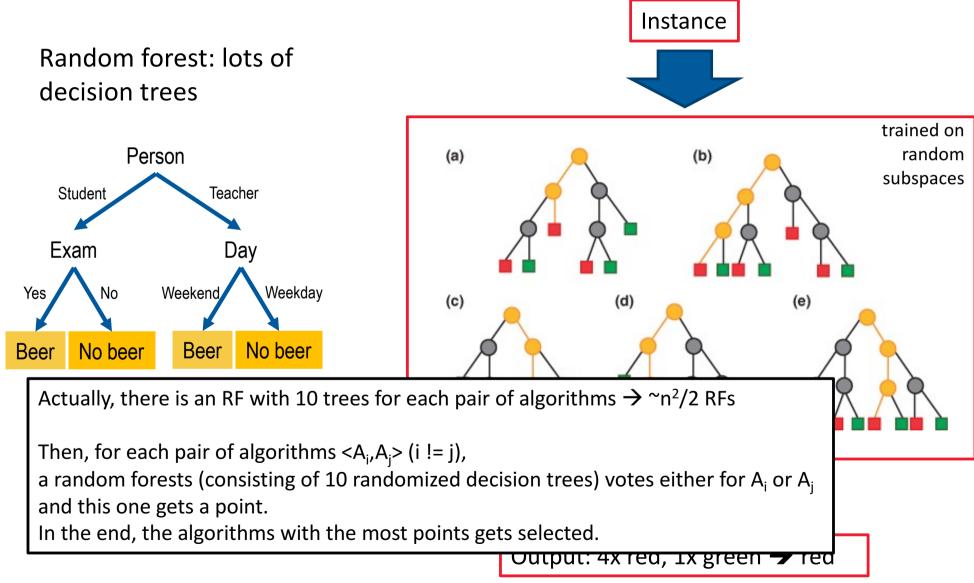

Note: not too many are "really" TTP-specific.





### 3. Algorithm Selection

- As seen previously: no single algorithm dominates all others on all instances.
- Exploit this using algorithm selection (idea from the 1970s).




 Major success story SATzilla (2008): empirical performance model predicts performance of an algorithm and selects the one with best prediction + schedule to solve easy instances without instance feature overhead

#### 3. Algorithm Selection

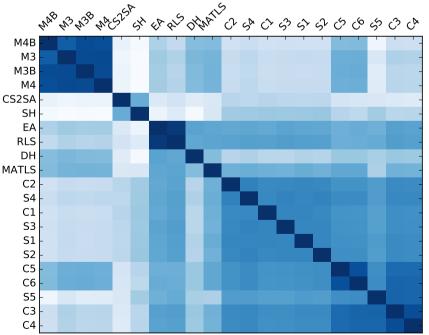
- We are using AutoFolio (Lindauer et al. 2015):
  - FlexFolio (Hoos et al. 2014): several different algorithm selection methods
  - SMAC (Hutter et al. 2011): search for best selection approach + parameter tuning
- Example: AutoFolio determines whether classification or regression performs better, and in case of classification the parameters of a random forest (many decision trees) are tuned.

#### [Random Forest]



## 3. Algorithm Selection

#### Results


| Simulated System   | Approach                      | Performance  |
|--------------------|-------------------------------|--------------|
| Single Best $(S5)$ | <b>Baseline</b>               | <b>0.959</b> |
| Oracle             | Theoretical Optimum           | 1.0          |
| SATzilla'09-like   | Regression (Lasso-Regression) | 0.966        |
| SATzilla'11-like   | Pairwise Classification (RF)  | 0.993        |
| ISAC-like          | Clustering $(k$ -means)       | 0.989        |
| 3S-like            | Classification $(k$ -NN)      | 0.992        |

#### Comparing different algorithm selection approaches on TTP

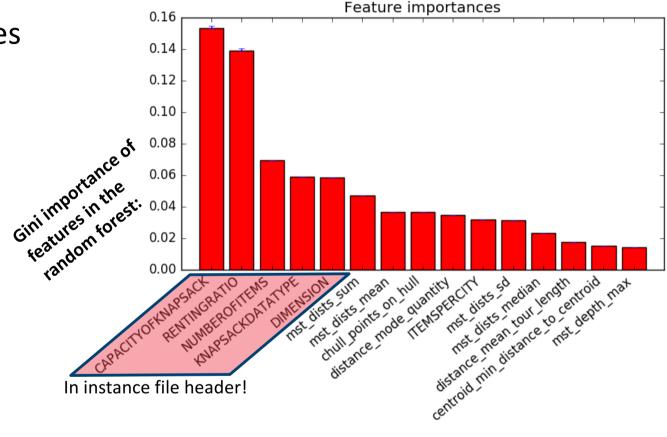
Near-1 performance <u>might</u> be due to the large number of instances (almost 10k).

AutoFolio (1d, 4 cores) vs Satzilla'11-like: negligible improvement (chose RF, tuned parameters).

- Complementarity important for good portfolios
  - Single best vs oracle: difference of only 0.041
  - Remember that 19 of 21 algorithms had >0.8 avg.
- Correlations across instances (Spearman's rank coefficients), and clustered
  - Algorithms form clusters reflecting their historical development
  - Analysis of similarity only (not performance)



| S5 19038.091    |          |                       |
|-----------------|----------|-----------------------|
| C4 18975.841    |          |                       |
| C3 18959.998    |          |                       |
| C6 18802.206    |          |                       |
| C5 18751.375    | 1027.216 |                       |
| MATLS 18593.291 |          |                       |
| S2 18168.753    | 982.51   |                       |
| C1 18126.154    | 981.636  |                       |
| S4 18114.349    |          |                       |
| C2 18114.051    |          |                       |
| S1 18106.878    |          |                       |
| S3 18090.325    |          |                       |
| EA 17610.045    |          |                       |
| RLS 17547.679   |          |                       |
| M3 17480.118    |          |                       |
| M4 17444.665    |          |                       |
| M4B 16248.037   |          |                       |
| M3B 16227.732   |          |                       |
| Dh 14226.355    |          |                       |
| SH 10356.043    |          | Problem: penalises    |
| CS2SA 6517.236  |          | correlated algorithms |


Standalone performance

#### Shapley value Marginal contribution

Problem: too much credit for similar algorithms, fails to consider synergies

(sum across all instances, +9720 offset for negative performance) (contribution to any subset of the algorithm portfolio) (performance increase of portfolio when algorithm is added)

Feature calculation times need to be considered (e.g. almost 10 minutes for pla7397\* instances)



How about portfolios that use only Top 1-5 features? → (S5 only: **0.959**, best portfolio before: **0.993**) Top 1-5: **0.977**, 0.980, 0.986, 0.988, **0.992** 

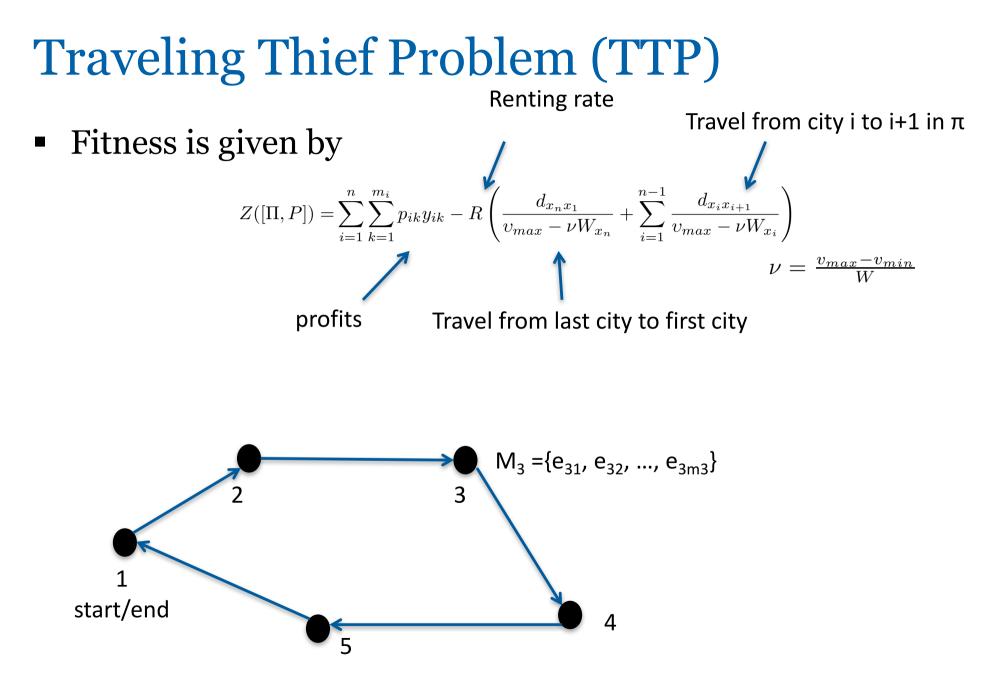
- What else did we learn?
  - Challenging: lots of dimensions to navigate, 10k instances, 21 algorithms, noise in the underlying algorithm performance data
  - For example, using only KP capacity:
    - The smallest 1/3<sup>rd</sup> of the instances is dominated by the most complex algorithms, amongst those the ones that produce solutions with the longest tours.
    - The largest  $1/3^{rd}$  is dominated by CS2SA (a fast implementation of search operators) and S5 (resampling solutions).
    - Algorithm selection in the central 1/3rd seems to be difficult. (why?)

→ Certain algorithms dominate, but they are not very complementary as only few feature values are necessary to achieve near-optimal portfolio performance.

#### Summary

- New datasets established:
  - 21 algorithms on 9720 instances
  - Raw data available as CSV and in the ASlib format <u>http://cs.adelaide.edu.au/~optlog/research/ttp.php</u>, ASlib URL to be added
- Portfolios:
  - Few algorithms needed
  - Few features needed (can be determined quickly)
- Future directions:
  - Representative subset (which criteria?)
  - More analyses
  - (more algorithms...)

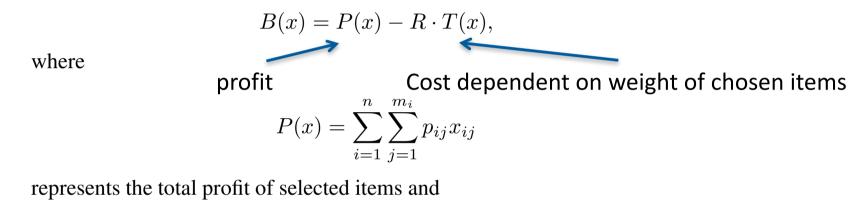
http://cs.adelaide.edu.au/~markus/

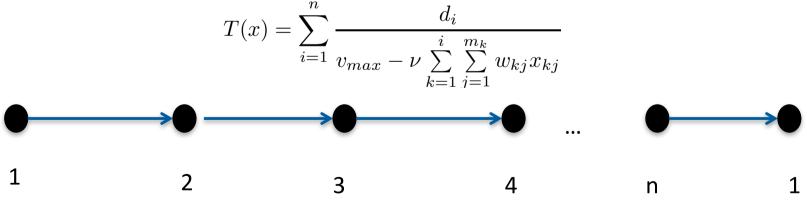

The slides will be made available today.



#### Markus Wagner <u>markus.wagner@adelaide.edu.au</u>

### "Packing While Travelling"


- Simplification of the TTP
- Tour is fixed, and we only deal with the packing component
- Sergey/Frank: DP/FPTAS
- This gave rise to the first non-trivial complete TTP approach (SEAL 2017), for relatively small instances

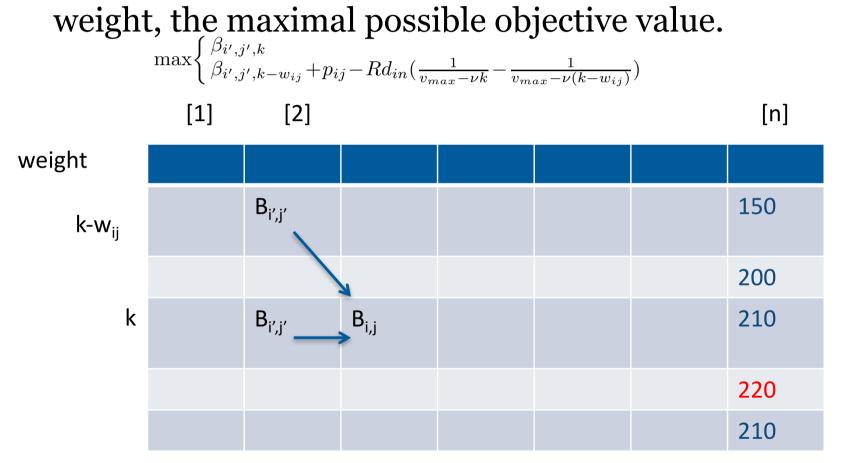



Frank Neumann

#### **Packing While Traveling**

Assume that the tour is fixed . Then we only have to deal with the packing component.






#### Dynamic Programming for PWT

- Sort the items as they appear on the path, breaking ties for items at the same city arbitrarily.
- Use dynamic programming (similar to classical 0/1 knapsack) and process the items in sorted order. Store for the first i items and each possible weight the maximal possible benefit (delete dominated entries).
- Size of the table in polynomial in m and the maximum possible weight => algorithm with pseudopolynomial runtime.

#### DP for PWT

Store for the first i cities on the path and every possible weight, the maximal possible objective value.



To decide: keep the previous plan OR add the item?

#### Experimental Results (Exact)

|                     |             |          | t Approa | ches    |
|---------------------|-------------|----------|----------|---------|
| Instance m          | OPT         | eMIP     | BIB      | DP      |
| mstance m           |             |          |          |         |
|                     |             | RT(s)    | RT(s)    | RT(s)   |
|                     | -           |          |          |         |
| uncorr $_01$ 100    | 1651.697    | 1.217    | 5.694    | 0.027   |
| uncorr $_06$ 100    | 10155.4942  | 12.605   | 3.698    | 0.065   |
| $uncorr_{10} 100$   | 10297.7134  | 3.525    | 0.795    | 0.036   |
| uncorr-s-w_01 100   | 2152.6188   | 0.328    | 7.566    | 0.001   |
| uncorr-s-w_06 $100$ | 4333.8512   | 12.59    | 2.215    | 0.012   |
| uncorr-s-w_10 $100$ | 9048.4908   | 37.144   | 1.107    | 0.022   |
| b-s-corr_01 100     | 4441.9852   | 1.42     | 125.954  | 0.014   |
| b-s-corr_06 100     | 10260.9767  | 4.509    | 22.541   | 0.101   |
| b-s-corr_10 100     | 13630.6153  | 11.013   | 27.081   | 0.187   |
| uncorr $_01$ 500    | 17608.5781  | 19.594   | 27.581   | 0.247   |
| uncorr $_06$ 500    | 56294.5239  | 384.213  | 13.354   | 2.829   |
| uncorr $10$ 500     | 66141.484   | 211.302  | 2.325    | 4.01    |
| uncorr-s-w_01 500   | 13418.8406  | 4.337    | 34.866   | 0.09    |
| uncorr-s-w_06 500   | 34280.473   | 346.43   | 7.285    | 1.04    |
| uncorr-s-w_10 500   | 50836.6588  | 519.902  | 3.338    | 2.022   |
| b-s-corr_01 500     | 21306.9158  | 40.482   | 624.204  | 1.534   |
| b-s-corr_06 500     | 69370.2367  | 236.387  | 97.313   | 14.616  |
| b-s-corr $10$ 500   | 82033.9452  | 376.569  | 218.728  | 22.011  |
| $uncorr_01\ 1000$   | 36170.9109  | 218.306  | 114.567  | 1.872   |
| $uncorr_06\ 1000$   | 93949.1981  | 1261.949 | 36.847   | 20.944  |
| $uncorr_{10} 1000$  | 122963.6617 | 620.896  | 4.821    | 30.116  |
| uncorr-s-w_01 1000  | 27800.9614  | 241.957  | 399.158  | 0.802   |
| uncorr-s-w_06 1000  | 61764.4599  | 1152.624 | 12.792   | 9.872   |
| uncorr-s-w_10 1000  | 103572.4074 | 2146.408 | 7.644    | 15.047  |
| b-s-corr_01 1000    | 46886.1094  | 378.551  | 6129.531 | 11.783  |
| b-s-corr_06 1000    | 125830.6887 | 643.533  | 919.201  | 94.523  |
| b-s-corr10 1000     | 161990.5015 | 862.572  | 1646.52  | 151.601 |

#### NP-hardness (Non-negative benefit)

• PWT solutions can attain positive and negative values.

**Theorem 2.** Given a PWT instance, the problem to decide whether there is a solution x with  $B(x) \ge 0$  is NP-complete.

• This rules out meaningful multiplicative approximations.

#### FPTAS for PWT

• Let 
$$B(\emptyset) = -R \cdot \sum_{i=1}^{n} d_i / v_{\max}$$

the baseline travel cost when the vehicle travels empty.

• Consider the objective function  $B'(x) = B(x) - B(\emptyset)$ 

which gives the amount gained over the baseline travel cost.

• Let 
$$OPT = \max_{x \in \{0,1\}^m} B'(x).$$

• We design a fully polynomial time approximation scheme for B'. Solution x of quality  $B'(x) \ge (1 - \epsilon)OPT$ . Runtime polynomial in n and 1/ $\epsilon$ .

#### **FPTAS** for PWT

- Assume each item e<sub>ii</sub>, on its own makes a positive contribution.
- Considering the single items e<sub>ii</sub>, we have.

 $\sum \sum (P(e_{ij}) - R \cdot T(e_{ij})) x_{ij}^* - B(\emptyset) \ge B(x^*) - B(\emptyset) = OPT$  $i=1 \ i=1$ 

- Pick item with the largest value B' value and set  $L = max_{e_{ij} \in M}B'(e_{ij}) > 0$
- $L \ge OPT/m$  and  $L \le OPT$ . • We have
- Set  $r = \epsilon L/m$ , round B'(x) to  $\lfloor (B'(x)/r \rfloor$  and run DP.
- Number of rows in DP table is upper bounded by  $(OPT/r) + 1 \le OPT/(\epsilon L/m) + 1 \le m^2/\epsilon + 1$
- Error in each step is at most  $r = \epsilon L/m \le \epsilon OPT/m$

At most m steps. So, we get  $B'(x) \ge (1 - \epsilon)OPT.$  **Algorithm 1** FPTAS for B'(x)

- Set  $L = \max_{e_{ij} \in M} B'(e_{ij}), r = \epsilon L/m$ , and  $d_{in} = \sum_{l=i}^{n} d_l, 1 \le i \le n$ .
- Compute order  $\leq$  on the items  $e_{ij}$  by sorting them in lexicographic order with respect to their indices (i, j).
- For the first item  $e_{ij}$  according to  $\leq$ , set  $\beta(i, j, 0) = B'(\emptyset)$  and  $\beta(i, j, w_{ij}) = B'(e_{ij})$ .
- Consider the remaining items of M in the order of  $\leq$  and do for each item  $e_{ij}$  and its predecessor  $e_{i'j'}$ :
  - In increasing order of k do for each  $\beta(i',j',k)$  with  $\beta(i',j',k)\neq -\infty$ 
    - \* If there is no  $\beta(i, j, k')$  with  $(\lfloor \beta(i, j, k')/r \rfloor \geq \lfloor \beta(i', j', k)/r \rfloor$  and k' < k, set  $\beta(i, j, k) = max\{\beta(i, j, k), \beta(i', j', k)\}.$
    - \* If there is no  $\beta(i, j, k')$  with  $(\lfloor \beta(i, j, k')/r \rfloor \geq \lfloor \beta(i', j', k + w_{ij})/r \rfloor$ and  $k' < k + w_{ij})$ , set  $\beta(i, j, k + w_{ij}) = max\{\beta(i, j, k + w_{ij}), \beta(i', j', k) + p_{ij} + Rd_{in}(\frac{1}{v_{\max} - \nu k} - \frac{1}{v_{max} - \nu (k + w_{ij})})\}.$

**Theorem 3.** Algorithm 1 is a fully polynomial time approximation scheme (FPTAS) for the objective B'. It obtains for any  $\epsilon$ ,  $0 < \epsilon \leq 1$ , a solution x with  $B'(x) \geq (1 - \epsilon) \cdot OPT$  in time  $O(m^3/\epsilon)$ .

### **Experiments FPTAS**

|                     | DP              |         |       |          |         |           |        |          | FPT     | AS       |              |         |              |         |                |         |
|---------------------|-----------------|---------|-------|----------|---------|-----------|--------|----------|---------|----------|--------------|---------|--------------|---------|----------------|---------|
| Instance m          |                 |         |       | .0001    |         | 0.001     |        | 0.01     |         | 0.1      | $\epsilon =$ |         | $\epsilon =$ |         | $\epsilon = 0$ | 0.75    |
|                     | OPT             | RT(s)   | AR(%) | RT(s)    | AR(%)   | RT(s)     | AR(%)  | RT(s)    | AR(%)   | RT(s)    | AR(%)        | RT(s)   | AR(%)        | RT(s)   | AR(%)          | RT(s)   |
|                     |                 |         |       | i        | nstance | family ei | 1101_1 | arge-ran | ge      |          |              |         |              |         |                |         |
| uncorr_01 100       | 69802802.2801   | 0.03    | 100   | 0.002    | 100     | 0.002     | 100    | 0.002    | 100     | 0.002    |              | 0.002   | 100          | 0.002   | 100            | 0.029   |
| uncorr_06 100       | 204813765.6933  | 0.053   | 100   | 0.019    | 100     | 0.02      | 100    | 0.019    | 100     | 0.019    |              | 0.019   |              | 0.019   | 100            | 0.049   |
| $uncorr_{10} 100$   | 172176182.1249  | 0.041   | 100   | 0.028    | 100     | 0.028     | 100    | 0.028    | 100     | 0.028    |              | 0.027   | 100          |         | 99.9628        | 0.037   |
| uncorr-s-w_01 100   | 36420530.5753   | 0.006   | 100   | 0.003    | 100     | 0.003     | 100    | 0.003    | 100     | 0.003    |              | 0.003   | 100          | 0.002   | 100            | 0.004   |
| uncorr-s-w_06 $100$ | 148058928.2952  | 0.098   | 100   | 0.072    | 100     | 0.502     | 100    | 0.072    | 100     | 0.069    |              | 0.065   | 100          | 0.059   | 100            | 0.07    |
| uncorr-s-w_10 100   |                 | 0.136   | 100   | 0.101    | 100     | 0.104     | 100    |          | 99.9978 |          | 99.9978      |         | 99.9978      |         | 99.9978        | 0.089   |
| m-s-corr_01 100     | 19549602.2671   | 0.003   | 100   | 0.002    | 100     | 0.002     | 100    | 0.002    | 100     | 0.002    |              | 0.002   |              | 0.001   | 100            | 0.002   |
| m-s-corr_06 100     | 137203175.1921  | 0.147   | 100   | 0.115    |         | 0.118     | 100    | 0.113    | 100     | 0.089    |              | 0.063   |              | 0.04    | 100            | 0.043   |
| m-s-corr_10 100     |                 | 0.424   | 100   | 0.326    | 100     | 0.329     | 100    | 0.312    | 100     | 0.2      |              | 0.179   |              | 0.086   | 100            | 0.073   |
| $uncorr_01$ 500     |                 | 0.47    | 100   | 0.451    | 100     | 0.454     | 100    | 0.619    | 100     | 0.508    | 100          | 0.445   |              | 0.43    | 100            | 0.517   |
| $uncorr_{06} 500$   | 958013934.6172  | 3.539   | 100   | 3.749    |         | 7.431     | 100    | 3.947    | 100     |          | 99.9996      |         | 99.9996      |         | 99.9993        | 3.021   |
| $uncorr_{10} 500$   |                 | 4.87    | 100   | 5.393    | 100     | 5.716     | 100    | 5.483    | 100     | 5.135    |              |         | 99.9992      |         | 99.9992        | 4.295   |
| uncorr-s-w_01 500   | 182418888.9364  | 1.157   | 100   | 1.157    | 100     | 1.199     | 100    | -        | 99.9995 |          | 99.9995      |         | 99.9995      |         | 99.9904        | 0.929   |
| uncorr-s-w_06 500   | 780432253.0187  | 22.39   | 100   | 25.04    | 100     | 26.276    | 100    | 24.024   | 100     |          | 99.9997      |         | 99.9997      |         | 99.9997        | 18.411  |
| uncorr-s-w_10 500   |                 | 30.959  | 100   | 34.458   | 100     | 39.004    | 100    | 34.308   | 100     |          | 99.9996      | 28.792  |              | 26.392  |                | 25.971  |
| $m-s-corr_01$ 500   | 96463941.1275   | 2.335   | 100   | 2.478    | 100     | 2.782     | 100    | 2.695    | 100     | 1.509    |              | 0.963   | 100          | 0.546   | 100            | 0.408   |
| m-s-corr_06 500     | 666701000.1488  | 108.705 | 100   | 126.833  | 100     | 139.63    | 100    | 122.75   | 100     | 62.479   |              | 33.547  | 100          | 17.959  | 100            | 10.642  |
| m-s-corr_10 500     |                 | 262.999 | 100   | 299.862  | 100     | 317.352   | 100    | 274.284  | 100     | 145.087  | 100          |         | 99.9994      |         | 99.9994        | 25.924  |
| uncorr_01 1000      |                 | 4.222   | 100   | 4.397    | 100     | 4.347     | 100    | 4.309    | 100     | 4.341    | 100          | 4.377   | 100          | 4.28    | 100            | 4.24    |
|                     | 1933319297.4248 | 46.043  | 100   | 51.383   | 100     | 53.087    | 100    | 48.861   | 100     |          | 99.9999      |         | 99.9997      |         | 99.9996        | 51.488  |
|                     | 1693797490.1704 | 64.485  | 100   | 76.744   | 100     | 78.847    | 100    | 74.128   | 100     | 82.754   |              | 77.057  | 100          | 72.283  | 100            | 72.567  |
| uncorr-s-w_01 1000  |                 | 14.254  | 100   | 15.072   | 100     | 15.67     | 100    | 14.523   | 100     | 14.11    | 100          |         |              | 12.088  | 100            | -       |
| uncorr-s-w_06 1000  |                 | 286.843 | 100   | 318.096  | 100     | 330.508   | 100    | 337.289  | 100     |          |              |         | 99.9998      |         |                |         |
| uncorr-s-w_10 1000  |                 | 393.793 | 100   | 438.775  |         | 455.83    | 100    | 464.527  | 100     | 441.955  |              |         | 99.9994      |         |                |         |
| m-s-corr_01 1000    |                 | 46.858  | 100   | 58.031   | 100     | 59.987    | 100    | 58.101   | 100     | 31.703   |              | 18.771  |              | 10.728  | 100            | 6.831   |
| m-s-corr_06 1000    |                 |         |       | 2512.281 |         | 2606.412  |        | 1921.573 | 100     |          |              | 364.452 |              | 208.969 | 100            | 150.06  |
| 10 1000             | 2163713055.3759 | 6761.49 | 100 ( | 6668.535 | 100     | 6441.906  | 100    | 4526.653 | 100     | 1334.882 | 100          | 703.258 | 100          | 397.527 | 100            | 282.211 |

#### DP for TTP

- Let  $[\Pi, f(\cdot)]$  be the best solution obtained when using permutation  $\pi$
- We can obtain an optimal solution for TTP by considering all permutations,  $Z^* = \arg \max_{\forall \Pi, w \in \cdot} Z([\Pi, f(w)])$

Idea:

- Adapt dynamic programming for TSP to TTP by making use of DP for PWT.
- Let S be a subset of nodes and 1 be the first city of the tour.
- The DP for TSP stores for each S and endpoint k, the shortest path from city 1 to city k visiting all cities in S exactly once at [S,k].
- For TTP store at [S,k,w] the largest benefit when ending at city k with weight w (and visiting all cities in S exactly once)

#### DP for TTP

- Let  $\dot{S} = N \setminus \{1\}$  all cities except the first one.
- Let  $\overline{W}_{x_n}$  and  $\overline{P}_{x_n}$  be the total weight and profit of items picked at city  $x_n$ . We have

$$Z([\dot{S}, 1, f_{x_n}(W_{x_n})]^*) = Z([\dot{S} \setminus \{x_n\}, x_n, f_{x_{n-1}}(W_{x_n} - \overline{W}_{x_n})]) + \overline{P}_{x_n} - R\left(\frac{d_{x_n x_1}}{v_{max} - \nu W_{x_n}}\right).$$

• In general, we can compute  $[S, i, f_j(W_j)]$  from

 $[S \setminus \{j\}, j, f_{j-1}(W_j - \overline{W}_j)]$ , where  $i \in \dot{S} \setminus S$  and  $j \in S$ .

 Compute entries for each of the 2<sup>n</sup> subsets and n-1 endpoints. 0.01

#### Experiments TTP (Exact)

|                           |    |    | Rı       | unning time (s | sec.)     |
|---------------------------|----|----|----------|----------------|-----------|
| Instance                  | n  | m  | DP       | BnB            | CP        |
| eil51_n05_m4_uncorr_01    | 5  | 4  | 0.018    | 0.023          | 0.222     |
| eil51_n06_m5_uncorr_01    | 6  | 5  | 0.07     | 0.079          | 0.24      |
| eil51_n07_m6_uncorr_01    | 7  | 6  | 0.143    | 0.195          | 0.497     |
| $eil51_n08_m7_uncorr_01$  | 8  | 7  | 0.343    | 0.505          | 4.594     |
| eil51_n09_m8_uncorr_01    | 9  | 8  | 0.633    | 1.492          | 63.838    |
| eil51_n10_m9_uncorr_01    | 10 | 9  | 0.933    | 5.188          | 776.55    |
| $eil51_n11_m10_uncorr_01$ | 11 | 10 | 2.414    | 23.106         | 12861.181 |
| $eil51_n12_m11_uncorr_01$ | 12 | 11 | 3.938    | 204.786        | -         |
| eil51_n13_m12_uncorr_01   | 13 | 12 | 14.217   | 2007.074       | -         |
| eil51_n14_m13_uncorr_01   | 14 | 13 | 13.408   | 36944.146      | -         |
| $eil51_n15_m14_uncorr_01$ | 15 | 14 | 89.461   | -              | -         |
| $eil51_n16_m15_uncorr_01$ | 16 | 15 | 59.526   | -              | -         |
| eil51_n17_m16_uncorr_01   | 17 | 16 | 134.905  | -              | -         |
| eil51_n18_m17_uncorr_01   | 18 | 17 | 366.082  | -              | -         |
| eil51_n19_m18_uncorr_01   | 19 | 18 | 830.18   | -              | -         |
| eil51_n20_m19_uncorr_01   | 20 | 19 | 2456.873 | -              | -         |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} \label{eq:strongly-corr.01} & 619.227 & 0.02 & 291 & 12.71 & 35.5 & 120e-6 & 41.3 & 0.0 \\ eli51.n05.m4.uncorr.similar-weights.01 & 299.281 & 0.02 & 0.0 & 3.22 & 0.0 & 2.0e-6 & 0.0 & 2.20e \\ eli51.n05.m20.uncorr.similar-weights.01 & 299.281 & 0.02 & 0.0 & 0.321 & 7.8 & 2.40e-6 & 7.8 & 1.20e-6 \\ eli51.n05.m20.uncorr.01 & 2144.76 & 0.07 & 0.0 & 0.351 & 0.0 & 2.30e-6 & 0.0 & 0.0 \\ eli51.n10.m9.uncorr.01 & 2144.76 & 0.07 & 0.0 & 0.0 & 3.51 & 0.0 & 2.30e-6 & 0.0 & 0.0 \\ eli51.n10.m9.uncorr.01 & 1125.715 & 0.93 & 0.0 & 0.607 & 0.0 & 0.0 & 0.0 & 0.0 \\ eli51.n10.m9.uncorr.01 & 1125.715 & 0.93 & 0.0 & 0.678 & 0.0 & 0.0 & 0.0 \\ eli51.n10.m9.uncorr.01 & 1125.715 & 0.86 & 0.0 & 0.0 & 5.87 & 0.0 & 0.0 & 0.0 \\ eli51.n10.m45.untcorl.estrongly-corr.01 & 73.230 & 0.0 & 0.678 & 0.0 & 2.30e-6 & 0.0 & 2.30e-6 \\ eli51.n10.m45.uncorr.01 & 009.533 & 8.87 & 0.0 & 0.678 & 0.0 & 2.30e-6 & 0.0 & 2.30e-6 \\ eli51.n12.m11.uncorr.91 & 1717.699 & 3.94 & 0.0 & 0.721 & 0.0 & 2.30e-6 & 0.0 & 2.30e-6 \\ eli51.n12.m11.uncorr.91 & 74.107 & 3.36 & 0.0 & 0.71 & 0.0 & 2.30e-6 & 0.0 & 2.30e-6 \\ eli51.n12.m55.uncorr.01 & 838.8012 & 35.79 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ eli51.n15.m14.uncir.91 & 74.149 & 3.88 & 0.0 & 0.781 & 14.13.0e-6 & 13.31.30e-6 \\ eli51.n15.m14.uncorr.01 & 2392.996 & 83.46 & 0.0 & 0.78 & 14.13.40e-6 & 13.31.30e-6 \\ eli51.n15.m70.uncorr.01 & 232.296 & 83.46 & 0.0 & 0.78 & 14.13.40e-6 & 1.3.13.0e-6 \\ eli51.n15.m70.uncorr.01 & 232.296 & 83.46 & 0.0 & 0.78 & 14.13.40e-6 & 1.3.13.0e-6 \\ eli51.n15.m70.uncorr.01 & 247.493 & 38.57 & 0.0 & 0.0 & 7.1 & 1.666 & 1.9 & 0.0 \\ eli51.n15.m70.uncorr.01 & 232.296 & 83.46 & 0.0 & 0.78 & 14.16.23e-6 & 1.0.2 & 0.0 \\ eli51.n15.m70.uncorr.01 & 242.488 & 623.4 & 0.0 & 0.7 & 7.18.9 & 1.666 & 1.8.9 & 1.66-6 \\ eli51.n16.m15.untiple-strongly-corr.01 & 54.78 & 55.5 & 1.00 & 0.0 & 7.1 & 1.66 & 6.13.66 & 0.0 \\ eli51.n16.m15.untorr.10 & 2400.88 & 55.5 & 1.00 & 0.0 & 7.1 & 1.66 & 6.13.66 & 0.0 \\ eli51.n17.m16.uncorr.01 & 240.88 & 55.5 & 1.00 & 0.0 & 9.7 & 0.0 & 0.0 & 0.0 \\ eli51.n17.m16.uncorr.01 & 240.88 & 55.$ |
| eiB1.n05.m4.uncor.01 $466.929$ $0.02$ $0.0$ $0.3 22$ $0.2 2.0-6$ $0.2 .20-6$ $0.2 .20-6$ eiB1.n05.m20.uncorr.01 $299.281$ $0.02$ $0.0$ $0.3 21$ $7.8 2.40-6$ $7.8 1.20-6$ eiB1.n05.m20.uncorr.01 $2144.796$ $0.07$ $0.0$ $0.3 35$ $7.4$ $0.0$ $6.6 2.30-6$ eiB1.n05.m20.uncorr.01 $273.877$ $1.21$ $0.0$ $0.0$ $5.51$ $0.0$ $2.30-6$ $0.0$ eiB1.n10.m9.uncorr.01 $125.715$ $0.93$ $0.0$ $0.6$ $6.07$ $0.0$ $0.0$ $0.0$ eiB1.n10.m9.uncorr.01 $173.827$ $1.21$ $0.0$ $0.6$ $6.0$ $0.0$ $0.0$ eiB1.n10.m45.uncorr.01 $609.814$ $6.39$ $0.0$ $0.6$ $6.6$ $2.30-6$ $0.0$ $0.0$ eiB1.n12.m11.uncorr.01 $177.870$ $17.99$ $0.0$ $0.0$ $6.78$ $0.0$ $2.30-6$ $0.0$ $2.30-6$ eiB1.n12.m11.uncorr.01 $177.870$ $17.99$ $0.0$ $0.0$ $0.73$ $0.0$ $0.0$ $0.0$ $0.0$ eiB1.n12.m15.uncorr.01 $838.012$ $37.9$ $0.0$ $0.0$ $9.76$ $0.0$ $0.0$ $0.0$ eiB1.n12.m14.uncorr.01 $177.870$ $17.99$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ eiB1.n12.m14.uncorr.01 $232.966$ $83.672$ $37.87$ $1.21$ $0.0$ $0.77$ $1.89$ $0.0$ $0.0$ eiB1.n12.m14.uncorr.01 $232.9266$ $0.0$ $0.771$ $0.0$ $0.0$ </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| eils1.n05_m4_uncorr.similar-weights.01       299.281       0.02       0.0       0.21       7.8       2.8       0.00         eils1.n05_m20_uncorr.01       2144.796       0.07       0.0       0.3       5.7       4       0.0       6.6       2.30e-6       0.0         eils1.n10_m9_uncorr.similar-weights.01       753.578       7.21       0.0       0.0       6.00       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| eils1.n05.m20.multiple-strongly-corr.01773.5730.0813.40.01.4414.30.012.80.0eils1.n05.m20.uncorr.similar-weights.01269.0150.040.00.03.551.00.06.62.30e-6eils1.n10.m9.untiple-strongly-corr.011125.7150.930.00.06.01.30e-60.00.0eils1.n10.m9.uncorr.similar-weights.01753.2300.860.00.05.870.00.00.00.0eils1.n10.m45.uncorr.similar-weights.016009.4316.390.00.68.62.30e-60.00.0eils1.n10.m45.uncorr.similar-weights.01309.5538.870.00.06.62.30e-60.02.30e-6eils1.n12.m11.uncorr.01171.7693.940.00.07.210.01.20e-60.02.30e-6eils1.n12.m55.mucr.01127.18017.990.00.09.90.00.00.00.0eils1.n12.m55.mucr.01127.18017.990.00.09.00.00.00.0eils1.n12.m55.mucor.01127.14938.820.00.07.711.411.30e-61.313.31.30e-6eils1.n12.m51.uncorr.01230.29689.460.00.07.711.840.00.00.00.0eils1.n12.m14.uncorr.01230.29689.460.00.07.711.841.62.8e-61.62.30e-6eils1.n15.m14.uncorr.01240.88959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| eil51_n10_m9_unucorr.similar-weights.01       269.015       0.04       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| eil51_n10_m9_uncor_01       573.897       1.21       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| eil51_n10_m45_uncorr.similar-weights_01       753.230       0.86       0.0       0.0       5.87       0.0       0.0       0.0       0.0         eil51_n10_m45_uncorr.o1       1091.127       14.89       0.0       0.0       8.6       6.6       2.30e-6       0.0       0.0         eil51_n10_m45_uncorr.similar-weights_01       3009.553       8.87       0.0       0.0       6.78       0.0       2.30e-6       4.6       2.20e-6       4.6       2.30e-6       0.0       1.20e-6       0.0       1.20e-6       0.0       1.20e-6       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| eil51_n10_m45_uncorr_01       1091.127       14.89       0.0       0.0       7.99       0.0       0.0       0.0         eil51_n10_m45_uncorr_01       6009.431       6.39       0.0       0.0       6.6       2.30e-6       0.0       2.30e-6         eil51_n12_m11_uncorr_01       1717.699       3.94       0.0       0.0       6.78       0.0       2.30e-6       0.0       2.30e-6         eil51_n12_m11_uncorr_01       1717.699       3.94       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| eil51_n10_m45_uncor6009.4316.390.00.08.66.62.30e-60.00.0eil51_n12_m11_multiple-strongly-corr.01648.5464.580.00.06.084.62.20e-60.02.30e-6eil51_n12_m11_uncorr.011717.6993.940.00.07.210.01.20e-60.02.30e-6eil51_n12_m55_multiple-strongly-corr.011251.7801774.1073.360.00.7.210.01.20e-60.00.0eil51_n12_m55_uncorr.similar-weights_013734.89538.3612.30.09.760.00.00.00.0eil51_n15_m14_uncorr.012392.99689.460.00.07.8714.11.30e-61.311.30e-6eil51_n15_m14_uncorr.012392.99689.460.00.07.880.00.07.880.00.00.00.0eil51_n15_m70_uncorr.01992.373740.220.00.07.8714.11.30e-61.60e-60.11.60e-6eil51_n16_m15_undror.01992.373740.220.00.07.781.60e-61.90.00.0eil51_n16_m15_uncorr.012490.88950.51.00.77.841.61.3ee-61.6e-6eil51_n16_m15_uncorr.102490.88950.51.00.08.80.01.5e-61.3e-6eil51_n16_m15_uncorr.102490.88950.51.00.78.41.62.3e-61.5e-6eil51_n16_m15_uncorr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| eil51_n10_m45_uncorr.similar.weights_01       3009.553       8.87       0.0       0.0       6.78       0.0       2.30e-6       0.0       2.30e-6         eil51_n12_m11_uncorr.01       1717.699       3.94       0.0       0.0       7.21       0.1       2.30e-6       0.0       2.30e-6         eil51_n12_m11_uncorr.similar.weights_01       774.107       3.36       0.0       0.0       7.21       0.1       2.30e-6       0.0       2.30e-6         eil51_n12_m55_uncorr.01       1251.780       117.99       0.0       0.0       9.19       0.0       0.0       0.0       0.0         eil51_n12_m55_uncorr.5imilar.weights_01       3734.895       3.836       12.3       0.0       8.34       12.3       0.0       8.34       1.3       3.0e-6         eil51_n15_m14_uncorr.01       292.996       89.42       0.0       0.0       7.87       1.41       1.30e-6       1.3       1.30e-6         eil51_n15_m14_uncorr.01       292.372       398.42       0.0       0.0       7.8       1.6       1.8       0.0       0.0       1.6       1.3e-6       0.1       1.6e-6         eil51_n15_m14_uncorr.01       992.137       740.22       0.0       0.0       7.1       1.8       1.6e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| eil51_n12_m11_multiple-strongly-corr_01648.5464.580.00.06.084.62.20e-64.62.20e-6eil51_n12_m11_uncorr_011771.07693.940.00.07.210.01.20e-60.01.20e-6eil51_n12_m55_multiple-strongly-corr_011251.780117.990.00.09.760.00.00.00.0eil51_n12_m55_uncorr_018838.01235.790.00.09.760.00.00.00.0eil51_n15_m14_multiple-strongly-corr_01547.41939.820.00.07.283.80.03.80.0eil51_n15_m14_uncorr.012392.99689.460.00.07.283.80.01.60e-60.01.60e-6eil51_n15_m70_uncorr_01920.3723984.292.11.11.11.10.02.70e-60.02.70e-6eil51_n15_m70_uncorr_01920.3723984.292.11.11.210.00.00.00.0eil51_n16_m15_uncorr_01794.745105.50.00.777.120e-61.90.0eil51_n16_m15_uncorr_102490.88955.51.00.77.11.891.6e-61.61.3e-6eil51_n16_m15_uncorr_103942.012490.4893.000.08.03.0e-60.03.0e-6eil51_n17_m16_uncorr_5imilar-weights_01540.8973640.00.08.75.81.5e-61.62.3e-6eil51_n17_m16_uncorr_5imilar-weights_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| eil51_n12_m11_uncorr_01       1717.699       3.94       0.0       0.0       7.21       0.0       1.20e-6       0.0       1.20e-6         eil51_n12_m15_multiple-strongly-corr_01       1251.780       17.9       0.0       0.0       9.703       0.0       2.30e-6       0.0       2.30e-6         eil51_n12_m55_uncorr_01       1251.780       17.99       0.0       0.0       9.76       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| eil51_n12_m11_uncorr-similar-weights_01774.1073.360.00.07.030.02.30e-60.02.30e-6eil51_n12_m55_uncorr_011251.780117.990.00.09.760.00.00.00.0eil51_n12_m55_uncorr-similar-weights_013734.89538.3612.30.08.3412.30.08.3412.30.03.80.0eil51_n15_m14_uncorr.012392.99689.460.00.07.8714.11.30e-61.60e-6eil51_n15_m70_untliple-strongly-corr.01920.372398.4290.11.11.11.02.70e-61.02.70e-6eil51_n15_m70_uncorr.01920.372398.4290.00.07.80.00.00.00.00.0eil51_n16_m15_uncorr.01920.377740.220.00.07.718.91.6e-61.891.6e-6eil51_n16_m15_uncorr.01794.74510.550.00.07.718.91.6e-61.891.6e-6eil51_n16_m15_uncorr.102490.88955.51.00.08.50.03.0e-60.03.0e-6eil51_n16_m15_uncorr.10540.89736.40.00.08.41.21.6e-61.5e-60.01.5e-6eil51_n17_m16_uncorr.102342.664134.90.00.08.30.00.00.00.00.00.0eil51_n17_m16_uncorr.102342.664134.317.77.98.41.62.5e-60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| eil51_n12_m55_multiple-strongly-corr_011251.780117.990.00.09.000.00.00.00.00.0eil51_n12_m55_uncorr.018838.01235.790.00.09.760.00.00.00.0eil51_n15_m14_multiple-strongly-corr_01547.41939.820.00.07.8714.11.30e-6eil51_n15_m14_uncorr.012392.99689.460.00.07.8714.11.30e-61.60eeil51_n15_m70_multiple-strongly-corr_01920.3722984.292.11.11.210.02.70e-60.02.70e-6eil51_n15_m70_uncorr_01920.3722984.290.00.07.71.20e-61.90.0eil51_n16_m15_multiple-strongly-corr_01920.377740.220.00.07.71.891.6e-61.891.6e-6eil51_n16_m15_multiple-strongly-corr_014498.848623.40.00.07.71.891.6e-61.891.6e-6eil51_n16_m15_uncorr_102490.88959.51.00.08.75.81.6e0.03.0e-6eil51_n16_m15_uncorr_102490.88959.51.00.08.75.81.5e-61.60.0eil51_n16_m15_uncorr_102342.662119.40.00.08.75.81.5e-61.60.0eil51_n17_m16_uncorr_102342.664134.90.00.08.75.81.5e-60.01.5e-6eil51_n17_m16_uncorr_102342.662178.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| eil51_n12_m55_uncor_018838.01235.790.00.09.760.00.00.00.0eil51_n12_m55_uncorr-similar-weights.013734.89538.3612.30.08.3412.30.00.20.0eil51_n15_m14_uncorr.012392.90689.460.00.07.8714.11.30e-61.331.30e-6eil51_n15_m14_uncorr-similar-weights.01637.41916.350.00.06.860.01.60e-60.01.60e-6eil51_n15_m70_uncorr.01920.3723984.292.11.11.21.10.02.70e-60.02.70e-6eil51_n15_m70_uncorr.01922.137740.220.00.00.00.00.00.00.0eil51_n16_m15_multiple-strongly-corr.011469.623867.780.00.00.00.00.00.0eil51_n16_m15_uncorr.102490.88959.51.00.09.07.11.6ee1.8e-61.8e-6eil51_n16_m15_uncorr.3imilar-weights.103601.077211.50.00.08.41.62.3e-60.03.0e-60.03.0e-6eil51_n17_m16_multiple-strongly-corr.012490.88954.51.00.08.40.00.08.40.00.00.00.0eil51_n17_m16_multiple-strongly-corr.013426.098219.40.00.08.81.5e-61.3e-60.00.00.00.00.00.00.00.00.00.00.00.00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| eil51_n12_m55_uncorr.similar-weights_01       3734.895       38.36       12.3       0.0       8.34       12.3       0.0       0.2       0.0         eil51_n15_m14_uncorr.01       2392.996       89.46       0.0       0.7       7.28       3.8       0.0       1.3.3       1.30e-6         eil51_n15_m14_uncorr.01       2392.996       89.46       0.0       0.0       7.28       3.8       0.0       1.60e-6       0.0       1.60e-6         eil51_n15_m70_uncorr.01       992.137       740.22       0.0       0.0       9.67       7       1.20e-6       1.9       0.0         eil51_n15_m70_uncorr.01       992.137       740.22       0.0       0.0       7.88       1.60e       1.89       1.66e         eil51_n16_m15_multiple-strongly-corr.01       749.745       105.5       0.0       0.0       7.1       1.89       1.6ee       1.89       1.6ee         eil51_n16_m15_uncorr.10       2490.889       59.5       1.0       0.7       8.4       1.6       2.3ee       0.0       1.6e       1.8ee       6       1.6ee       6       1.3ee       6       0.0       0.0       8.5       0.0       0.0       8.5       0.0       0.0       8.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| eil51_n15_m14_multiple-strongly-orr_01       547.419       39.82       0.0       0.0       7.87       14.1       1.30e-6       1.3.3       1.30e-6         eil51_n15_m14_uncorr_01       2302.996       89.46       0.0       0.0       7.87       8.8       0.0       3.8       0.0         eil51_n15_m70_undtiple-strongly-corr_01       9202.137       740.22       0.0       0.0       6.76       7       1.20e-6       1.9       0.0         eil51_n15_m70_uncorr_01       9922.137       740.22       0.0       0.0       7.7       8.9       0.0       0.0       0.0         eil51_n16_m15_multiple-strongly-corr_01       794.745       105.5       0.0       0.7       7.8       1.6       1.89       1.6e-6         eil51_n16_m15_uncorr_01       2490.889       59.5       1.0       0.0       9.1       1.6       1.36-6       1.36-6         eil51_n16_m15_uncorr_10       3601.077       211.5       0.0       0.0       9.1       1.6       1.6       2.3e-6         eil51_n16_m15_uncorr_similar-weights_01       540.897       36.4       0.0       0.0       8.4       1.6       2.3e-6       1.6       0.0       0.0       8.4       0.0       1.5e-6       1.5e-6       1.5e-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| eil51_n15_m14_uncorr_01       2392.996       89.46       0.0       0.0       7.28       3.8       0.0       3.8       0.0         eil51_n15_m14_uncorr-similar-weights_01       637.419       16.35       0.0       0.0       6.86       0.0       1.60e-6       0.0       1.60e-6         eil51_n15_m70_uncorr_01       9922.137       740.22       0.0       9.67       71.20e-6       1.9       0.0         eil51_n15_m70_uncorr-similar-weights_01       4659.623       867.78       0.0       0.0       7.7       18.9       1.6e-6       1.89       1.6e-6         eil51_n16_m15_multiple-strongly-corr_10       794.745       105.5       0.0       0.0       7.7       18.9       1.6e-6       1.3e-6         eil51_n16_m15_uncorr_10       2490.889       59.5       1.0       0.7       8.4       1.6       2.3e-6       1.6e-6         eil51_n16_m15_uncorr_10       3601.077       211.5       0.0       0.0       8.5       0.0       3.0e-6       0.0       3.0e-6 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| eil51_n15_m70_multiple-strongly-corr_01920.3723984.292.11.11.11.2.110.02.70e-60.02.70e-6eil51_n15_m70_uncorr_019922.137740.220.00.09.6771.20e-61.90.0eil51_n15_m70_uncorr-similar-weights_014659.623867.780.00.07.718.91.6e-61.81.6e-6eil51_n16_m15_multiple-strongly-corr_01794.745105.50.00.07.718.91.6e-61.81.6e-6eil51_n16_m15_uncorr_012490.88959.51.00.78.41.62.3e-61.62.3e-6eil51_n16_m15_uncorr_103601.077211.50.00.09.07.11.6e-67.11.6e-6eil51_n16_m15_uncorr-similar-weights_01540.89736.40.00.08.50.03.0e-60.03.0e-6eil51_n17_m6_multiple-strongly-corr_01685.565248.60.00.08.40.21.5e-60.01.5e-6eil51_n17_m16_uncorr_012342.664134.90.00.08.30.00.00.00.0eil51_n17_m16_uncorr_102342.664134.90.00.08.10.00.00.00.0eil51_n17_m16_uncorr_102342.664787.70.00.08.10.00.00.00.0eil51_n17_m16_uncorr_102342.664134.90.00.08.10.00.00.00.0eil51_n18_m17_un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| eil51_n15_m70_multiple-strongly-corr_01920.3723984.292.11.11.2.110.02.70e-60.02.70e-6eil51_n15_m70_uncorr_019922.137740.220.00.09.6771.20e-61.90.0eil51_n15_m70_uncorr-similar-weights_014659.623867.780.00.07.718.916.6e1.8.91.6.6eeil51_n16_m15_uncorr_012490.888623.40.00.07.718.91.6e1.8.91.6.6eeil51_n16_m15_uncorr_012490.88959.51.00.77.41.6e7.11.6e-6eil51_n16_m15_uncorr_103601.077211.50.00.09.07.11.6e-61.3e-6eil51_n16_m15_uncorr-similar-weights_013948.211245.40.00.08.75.81.5e-61.62.3e-6eil51_n17_m16_multiple-strongly-corr_01685.565248.60.00.08.40.21.5e-60.01.5e-6eil51_n17_m16_uncorr_012342.664134.90.00.08.40.00.00.00.00.0eil51_n17_m16_uncorr_102342.664134.90.00.08.40.00.00.00.00.0eil51_n17_m16_uncorr.102342.664134.90.00.08.40.00.00.00.00.0eil51_n17_m16_uncorr.102342.664134.90.00.08.10.00.00.00.00.0eil51_n17_m16_unc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| eil51_n15_m70_uncorr-similar-weights_014659.623867.780.00.07.980.00.00.00.0eil51_n16_m15_multiple-strongly-corr_10794.745105.50.00.07.718.91.6e-618.91.6e-6eil51_n16_m15_multiple-strongly-corr_102490.88959.51.00.78.41.62.3e-61.62.3e-6eil51_n16_m15_uncorr_103601.077211.50.00.08.75.81.6e-61.6e2.3e-6eil51_n16_m15_uncorr-similar-weights_103948.211245.40.00.08.75.81.5e-61.3eeil51_n17_m16_multiple-strongly-corr_10685.565248.60.00.08.30.00.00.01.5e-6eil51_n17_m16_uncorr_012342.664134.90.00.08.30.00.00.00.0eil51_n17_m16_uncorr_102275.279554.50.00.08.30.00.00.00.0eil51_n17_m16_uncorr_102235.961787.70.00.08.10.00.00.00.0eil51_n18_m17_multiple-strongly-corr_10834.031715.77.90.810.29.20.01.2e-6eil51_n18_m17_uncorr_102235.961786.70.00.09.70.20.01.3e-6eil51_n18_m17_uncorr_102242.6031462.70.00.09.70.20.01.3e-6eil51_n18_m17_uncorr_103222.6031462.70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| eil51_n16_m15_multiple-strongly-corr_01794.745105.50.00.07.718.91.6e-618.91.6e-6eil51_n16_m15_multiple-strongly-corr_104498.848623.40.00.09.112.90.016.61.3e-6eil51_n16_m15_uncorr_012490.88959.51.00.78.41.62.3e-61.6e-6eil51_n16_m15_uncorr_103601.077211.50.00.09.07.11.6e-67.11.6e-6eil51_n16_m15_uncorr-similar-weights_103948.2112454.40.00.08.50.03.0e-60.03.0e-6eil51_n17_m16_multiple-strongly-corr_10685.565248.60.00.08.40.21.5e-60.01.5e-6eil51_n17_m16_uncorr-similar-weights_103826.0982190.40.00.08.30.00.00.00.0eil51_n17_m16_uncorr_102275.279554.50.00.08.10.00.00.00.00.0eil51_n18_m17_multiple-strongly-corr_10834.031715.77.90.810.29.20.01.2e-6eil51_n18_m17_uncorr_102644.491366.10.00.09.70.20.01.3e-6eil51_n18_m17_uncorr_10222.6031462.70.00.09.70.20.01.3e-6eil51_n18_m17_uncorr_103222.6031462.70.00.09.90.02.9e-60.31.8e-6eil51_n18_m17_uncorr_5imilar-weights_10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| eil51_n16_m15_multiple-strongly-corr_104498.848623.40.00.09.112.90.016.61.3e-6eil51_n16_m15_uncorr_012490.88959.51.00.78.41.62.3e-61.62.3e-6eil51_n16_m15_uncorr_103601.077211.50.00.09.07.11.6e-67.11.6e-6eil51_n16_m15_uncorr-similar-weights_103948.211245.40.00.08.50.03.0e-60.0eil51_n17_m16_multiple-strongly-corr_01685.565248.60.00.08.40.21.5e-60.01.5e-6eil51_n17_m16_uncorr-similar-weights_102342.664134.90.00.08.30.00.00.00.0eil51_n17_m16_uncorr_102275.279554.50.00.08.10.00.00.00.00.0eil51_n17_m16_uncorr-similar-weights_102935.961787.70.00.09.70.00.00.00.0eil51_n18_m17_multiple-strongly-corr_10834.031715.77.90.810.29.20.01.3e-60.0eil51_n18_m17_uncorr_102242.6031462.70.00.09.70.20.01.3e-60.0eil51_n18_m17_uncorr_102224.0031462.70.00.01.3e-60.01.3e-60.01.3e-6eil51_n18_m17_uncorr_10532.906148.30.00.09.90.02.9e-60.31.8e-6eil51_n19_m18_m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| eil51_n16_m15_uncorr_012490.88959.51.00.78.41.62.3e-61.62.3e-6eil51_n16_m15_uncorr_103601.077211.50.00.09.07.11.6e-67.11.6e-6eil51_n16_m15_uncorr-similar-weights_01540.89736.40.00.08.50.03.0e-60.0eil51_n16_m15_uncorr-similar-weights_103948.211245.40.00.08.75.81.5e-61.60.0eil51_n17_m16_multiple-strongly-corr_10685.655248.60.00.08.40.21.5e-60.01.5e-6eil51_n17_m16_uncorr_012342.664134.90.00.08.30.00.00.00.0eil51_n17_m16_uncorr_102275.279554.50.00.08.10.00.00.0eil51_n17_m16_uncorr_102275.279554.50.00.08.10.00.00.0eil51_n17_m16_uncorr-similar-weights_01556.85170.80.00.08.10.00.00.0eil51_n18_m17_uncorr.012342.663146.77.90.810.29.20.012.91.7e-6eil51_n18_m17_uncorr.0122475.279654.50.00.09.70.20.01.8e-60.0eil51_n18_m17_uncorr.103222.6031462.70.00.01.3e-60.01.3e-60.01.3e-6eil51_n18_m17_uncorr.5imilar-weights_10532.906148.30.00.09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| eil51_n16_m15_uncorr_103601.077211.50.00.09.07.11.6e-67.11.6e-6eil51_n16_m15_uncorr-similar-weights_01540.89736.40.00.08.50.03.0e-60.03.0e-6eil51_n16_m15_uncorr-similar-weights_103948.211245.40.00.08.75.81.5e-613.60.0eil51_n17_m16_multiple-strongly-corr_01685.565248.60.00.08.40.21.5e-60.01.5e-6eil51_n17_m16_uncorr_012342.664134.90.00.08.30.00.00.00.0eil51_n17_m16_uncorr_102275.279554.50.00.08.10.00.00.00.0eil51_n17_m16_uncorr_102275.279554.50.00.08.10.00.00.00.0eil51_n17_m16_uncorr_102935.961787.70.00.08.10.00.00.00.0eil51_n18_m17_multiple-strongly-corr_01834.031715.77.90.810.29.20.01.8e-6eil51_n18_m17_uncorr_012644.491366.10.00.09.70.20.01.8e-60.0eil51_n18_m17_uncorr_103222.6031462.70.00.09.30.01.3e-60.01.3e-6eil51_n18_m17_uncorr_similar-weights_10532.906148.30.00.09.02.9e-60.31.8e-6eil51_n19_m18_multiple-strongly-corr_01910.291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| eil51_n16_m15_uncorr-similar-weights_01540.89736.40.00.08.50.03.0e-60.03.0e-6eil51_n16_m15_uncorr-similar-weights_103948.211245.40.00.08.75.81.5e-613.60.0eil51_n17_m16_multiple-strongly-corr_10685.565248.60.00.08.40.21.5e-60.01.5e-6eil51_n17_m16_multiple-strongly-corr_102342.664134.90.00.08.30.00.00.00.0eil51_n17_m16_uncorr_102275.279554.50.00.08.10.00.00.00.0eil51_n17_m16_uncorr_similar-weights_10256.85170.80.00.08.10.00.00.0eil51_n18_m17_multiple-strongly-corr_01834.031715.77.90.810.29.20.012.91.7e-6eil51_n18_m17_uncorr_012644.491366.10.00.09.70.20.01.80.0eil51_n18_m17_uncorr_10322.6031462.70.00.01.3e-60.01.3e-6eil51_n18_m17_uncorr_10322.6031462.70.00.01.3e-60.01.3e-6eil51_n18_m17_uncorr_10322.6031462.70.00.09.02.9e-60.31.8e-6eil51_n18_m17_uncorr_10532.906148.30.00.09.30.01.3e-60.01.3e-6eil51_n19_m18_multiple-strongly-corr_0191.0291771.60.00.0 </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| eil51_n16_m15_uncorr-similar-weights_103948.211 $245.4$ $0.0$ $0.0$ $8.7$ $5.8$ $1.5e-6$ $13.6$ $0.0$ eil51_n17_m16_multiple-strongly-corr_01 $685.565$ $248.6$ $0.0$ $0.0$ $8.4$ $0.2$ $1.5e-6$ $0.0$ $1.5e-6$ eil51_n17_m16_multiple-strongly-corr_10 $3826.098$ $2190.4$ $0.0$ $0.0$ $8.3$ $0.0$ $1.5e-6$ $0.0$ $1.5e-6$ eil51_n17_m16_uncorr_01 $2342.664$ $134.9$ $0.0$ $0.0$ $8.3$ $0.0$ $0.0$ $0.0$ $0.0$ eil51_n17_m16_uncorr_10 $2275.279$ $554.5$ $0.0$ $0.0$ $8.1$ $0.0$ $0.0$ $0.0$ $0.0$ eil51_n17_m16_uncorr-similar-weights_10 $2935.961$ $787.7$ $0.0$ $0.0$ $0.0$ $0.0$ $0.0$ eil51_n18_m17_multiple-strongly-corr_01 $834.031$ $715.7$ $7.9$ $0.8$ $10.2$ $9.2$ $0.0$ $1.29$ eil51_n18_m17_uncorr_01 $2644.491$ $366.1$ $0.0$ $0.0$ $1.3e-6$ $0.4$ $1.5e-6$ eil51_n18_m17_uncorr_10 $3222.603$ $1462.7$ $0.0$ $0.0$ $1.3e-6$ $0.2$ $0.0$ eil51_n18_m17_uncorr.10 $3222.603$ $1462.7$ $0.0$ $0.0$ $1.3e-6$ $0.2$ $0.0$ eil51_n18_m17_uncorr.10 $532.906$ $148.3$ $0.0$ $0.0$ $1.3e-6$ $0.2$ $0.0$ eil51_n19_m18_multiple-strongly-corr_01 $532.906$ $148.3$ $0.0$ $0.0$ $0.2$ $2.9e-6$ $0.3$ $1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| eil51_n17_m16_multiple-strongly-corr_01685.565248.60.00.08.40.21.5e-60.01.5e-6eil51_n17_m16_multiple-strongly-corr_103826.0982190.40.00.09.80.01.5e-60.01.5e-6eil51_n17_m16_uncorr_012342.664134.90.00.08.30.00.00.00.0eil51_n17_m16_uncorr_1102275.279554.50.00.08.10.00.00.0eil51_n17_m16_uncorr-similar-weights_102935.961787.70.00.08.10.00.00.0eil51_n18_m17_multiple-strongly-corr_01834.031715.77.90.810.29.20.01.2e-6eil51_n18_m17_uncorr_012644.491366.10.00.09.70.20.01.8e-60.0eil51_n18_m17_uncorr_103222.6031462.70.00.08.50.01.3e-60.20.0eil51_n18_m17_uncorr.103222.6031462.70.00.08.50.01.3e-60.20.0eil51_n18_m17_uncorr.10532.906148.30.00.08.50.01.3e-60.20.0eil51_n18_m17_uncorr.5milar-weights_10420.4381929.30.00.09.90.02.9e-60.31.8e-6eil51_n19_m18_multiple-strongly-corr_01eil51_n19_m18_multiple-strongly-corr_01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| eil51_n17_m16_uncorr_01       2342.664       134.9       0.0       0.0       8.3       0.0       0.0       0.0       0.0         eil51_n17_m16_uncorr_10       2275.279       554.5       0.0       0.0       9.6       0.0       0.0       0.0       0.0         eil51_n17_m16_uncorr-similar-weights_01       556.851       70.8       0.0       0.0       8.1       0.0       0.0       0.0       0.0       0.0         eil51_n17_m16_uncorr-similar-weights_01       2935.961       787.7       0.0       0.0       9.2       0.0       12.9       1.7e-6         eil51_n18_m17_multiple-strongly-corr_01       834.031       715.7       7.9       0.8       10.2       9.2       0.0       12.9       1.7e-6         eil51_n18_m17_multiple-strongly-corr_10       553.1373       6252.4       0.0       0.0       9.7       0.2       0.0       1.8       0.0         eil51_n18_m17_uncorr_01       2644.491       366.1       0.0       0.0       9.7       0.2       0.0       1.8       0.0         eil51_n18_m17_uncorr_10       3222.603       1462.7       0.0       0.0       1.3e-6       0.0       1.3e-6       0.0       1.3e-6       0.0       1.3e-6       0.0       1.3e-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| eil51_n17_m16_uncorr_10       2275.279       554.5       0.0       0.0       9.6       0.0       0.0       0.0       0.0         eil51_n17_m16_uncorr-similar-weights_01       556.851       70.8       0.0       0.0       8.1       0.0       0.0       0.0       0.0       0.0         eil51_n17_m16_uncorr-similar-weights_01       2935.961       787.7       0.0       0.0       9.7       0.0       0.0       0.0       0.0         eil51_n18_m17_multiple-strongly-corr_01       834.031       715.7       7.9       0.8       10.2       9.2       0.0       12.9       1.7e-6         eil51_n18_m17_multiple-strongly-corr_01       2644.491       3661       0.0       0.0       9.7       0.2       0.0       1.8       0.0         eil51_n18_m17_uncorr_10       222.603       1462.7       0.0       0.0       1.3e-6       0.4       1.3e-6         eil51_n18_m17_uncorr_similar-weights_10       422.0438       1929.3       0.0       0.0       9.0       2.9e-6       0.3       1.3e-6         eil51_n18_m17_uncorr-similar-weights_10       420.438       1929.3       0.0       0.0       9.9       0.0       2.9e-6       0.3       1.8e-6         eil51_n18_m17_uncorr_similar-weights_10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| eil51_n17_m16_uncorr-similar-weights_01       556.851       70.8       0.0       0.0       8.1       0.0       0.0       0.0       0.0         eil51_n17_m16_uncorr-similar-weights_10       2935.961       787.7       0.0       0.0       9.7       0.0       0.0       0.0       0.0         eil51_n18_m17_multiple-strongly-corr_01       834.031       715.7       7.9       0.8       10.2       9.2       0.0       12.9       1.7e-6         eil51_n18_m17_multiple-strongly-corr_10       5531.373       6252.4       0.0       0.0       10.5       0.4       1.5e-6       0.4       1.5e-6         eil51_n18_m17_uncorr_01       2644.491       3661       0.0       0.0       9.7       0.2       0.0       1.8       0.0         eil51_n18_m17_uncorr.10       3222.603       1462.7       0.0       0.0       1.3e-6       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| eil51_n18_m17_uncorr_01       2644.491       366.1       0.0       0.0       9.7       0.2       0.0       1.8       0.0         eil51_n18_m17_uncorr_10       3222.603       1462.7       0.0       0.0       1.3       0.0       1.3e-6       0.2       0.0         eil51_n18_m17_uncorr-similar-weights_01       532.906       148.3       0.0       0.0       8.5       0.0       1.3e-6       0.0       1.3e-6         eil51_n18_m17_uncorr-similar-weights_10       4420.438       1929.3       0.0       0.0       9.9       0.0       2.9e-6       0.3       1.8e-6         eil51_n19_m18_multiple-strongly-corr_01       910.229       1771.6       0.0       0.0       9.3       20.1       1.6e-6       20.1       1.6e-6         eil51_n19_m18_uncorr_01       2604.844       830.2       0.0       0.0       9.7       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| eil51_n18_m17_uncorr_10       3222.603       1462.7       0.0       0.0       10.3       0.0       1.3e-6       0.2       0.0         eil51_n18_m17_uncorr-similar-weights_01       532.906       148.3       0.0       0.0       8.5       0.0       1.3e-6       0.0       1.3e-6         eil51_n18_m17_uncorr-similar-weights_10       4420.438       1929.3       0.0       0.0       9.9       0.0       2.9e-6       0.3       1.8e-6         eil51_n19_m18_multiple-strongly-corr_01       910.229       1771.6       0.0       0.0       9.3       20.1       1.6e-6       20.1       1.6e-6         eil51_n19_m18_uncorr_01       2604.844       830.2       0.0       0.0       9.7       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| eil51_n18_m17_uncorr-similar-weights_01       532.906       148.3       0.0       0.0       8.5       0.0       1.3e-6       0.0       1.3e-6         eil51_n18_m17_uncorr-similar-weights_10       4420.438       1929.3       0.0       0.0       9.9       0.0       2.9e-6       0.3       1.8e-6         eil51_n19_m18_multiple-strongly-corr_01       910.229       1771.6       0.0       0.0       9.3       20.1       1.6e-6       20.1       1.6e-6         eil51_n19_m18_multiple-strongly-corr_10       2604.844       830.2       0.0       0.0       9.7       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| eil51_n18_m17_uncorr-similar-weights_10       4420.438       1929.3       0.0       0.0       9.9       0.0       2.9e-6       0.3       1.8e-6         eil51_n19_m18_multiple-strongly-corr_01       910.229       1771.6       0.0       0.0       9.3       20.1       1.6e-6       20.1       1.6e-6         eil51_n19_m18_multiple-strongly-corr_10       -       -       -       10.4       -       -       -         eil51_n19_m18_uncorr_01       2604.844       830.2       0.0       0.0       9.7       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{c} {\rm eil51\_n19\_m18\_multiple\_strongly\_corr\_01} \\ {\rm eil51\_n19\_m18\_multiple\_strongly\_corr\_10} \\ {\rm eil51\_n19\_m18\_uncorr\_01} \end{array} \begin{array}{c} {\rm 910.229} & {\rm 1771.6} \\ {\rm 0.0} & {\rm 0.0} & {\rm 9.3} \\ {\rm 0.0} & {\rm 0.0} & {\rm 9.3} \\ {\rm 0.0} & {\rm 0.0} & {\rm 9.7} \\ {\rm 0.0} & {\rm 0.0} & {\rm 0.0} \\ {\rm 0.0} & {\rm 0.0} \\ {\rm 0.0} & {\rm 0.0} \end{array} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| eil51_n19_m18_multiple-strongly-corr_10       -       -       10.4       -       -       -         eil51_n19_m18_uncorr_01       2604.844       830.2       0.0       0.0       9.7       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| eil51_n19_m18_uncorr_01 2604.844 830.2 0.0 0.0 9.7 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| eil51_n19_m18_uncorr_10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| eil51_n19_m18_uncorr-similar-weights_01 472.186 412.3 0.0 0.0 9.2 0.0 1.5e-6 0.0 1.5e-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| eil51_n19_m18_uncorr-similar-weights_10 5573.695 5878.8 0.0 0.0 10.5 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| eil51_n20_m19_multiple-strongly-corr_01 518.189 4533.7 0.6 0.6 11.1 14.1 1.4e-6 12.3 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| eil51_n20_m19_multiple-strongly-corr_10 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| eil51_n20_m19_uncorr_01       2092.673       2456.9       0.0       0.0       8.7       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| eil51_n20_m19_uncorr_10       3044.391 12776.0       0.0       0.0       9.8       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| eil51_n20_m19_uncorr-similar-weights_01 451.052 1007.7 0.0 0.0 7.9 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| eil51_n20_m19_uncorr-similar-weights_10 4169.799 15075.7 0.0 0.0 9.4 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### Evaluation Heuristics on small benchmarks

Frank Neumann

#### Conclusions

- TTP is a multi-component problem combining TSP and KP.
- Many heuristic algorithms have been developed for TTP.
- We have shown exact approaches for PWT and TTP based on dynamic programming.
- Design gives insights into the interaction of the subproblems in TTP.
- Approaches allow to evaluate the quality achieved by state of the art heuristics.