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Supply Chain Management (Australian Research Council funded)
§ Large scale industrial optimisation problems with many 

interacting components.

Dynamic Constraints (ARC funded)
§ Algorithms for problems with dynamically changing constraints.

Dynamic Adaptive Software Configurations (ARC funded)*
§ Self-adapt system configurations to changing conditions. 

Lots of other knowledge, either in-house or via international 
collaborations, e.g. more theory, system modelling, speed-up of 
simulations (algorithmically or using machine learning)…

Optimisation and Logistics



Some of the activities of Optimisation and 
Logistics 2016-2018
§ ACM Genetic and Evolutionary Computation Conference 2016 

(General Chair: Frank Neumann)
§ NII Shonan Meeting on “Computational Intelligence for Software 

Engineering, Shonan Village Centre, Japan.
Organizers: Hong Mei (Peking), Frank Neumann (UoA), 
Xin Yao (Birmingham)

§ Dagstuhl Seminar on “Automatic Algorithm Selection and 
Configuration”, Schloss Dagstuhl, Germany

Organizers: Heike Trautmann (Muenster), Holger Hoos
(Vancouver), Frank Neumann (UoA).

§ NII Shonan Meeting on “Data-Driven Search-Based Software 
Engineering”, Shonan Village Centre, Japan.

Organizers: Markus Wagner (UoA), Leandro Minku (Leicester), 
Ahmed E. Hassan (Queens U), John Clark (York)

§ Australasian Conference on Artificial Life and Computational 
Intelligence 2018

(General Chair: Markus Wagner)
§ International Workshop on Benchmarking of Computational 

Intelligence Algorithms, BOCIA, http://iao.hfuu.edu.cn/bocia18
(Co-Chair: Markus Wagner)
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Approximation-Guided Evolutionary 
Multi-Objective Optimization

Joint work with Frank Neumann (U Adelaide), Karl Bringmann (ETH 
Zurich), Tobias Friedrich (Hasso Plattner Institute)



Evolutionary Algorithms:
Darwin’s “survival of the fittest”

parent	population

(size μ)

offspring	population

(size λ)



Example with two decision variables



Many problems have more than one goal function

speed

comfort

There is no single optimal function value

Present the different trade offs 
to a decision maker

Example: Buying a new car

Multi-Objective Optimisation



Try to compute/approximate the Pareto front by EAs

Evolve the population of an EA into a set of 
Pareto optimal solutions

Approximation algorithms exist for many problems
but what about multi-objective optimisation?
à Many implicit approaches, but no explicit ones!

Evolutionary Multi-Objective Optimisation



Preliminaries
We consider minimization problems 
Ø d ≥ 2 objective dimensions
Ø objective functions fi: S à �, 1 ≤ i ≤ d map the search 

space S into the real numbers

Dominance relation
For two objective vectors x=(x1, …, xd) and y=(y1, …, yd), with 

x, y��d, we define
x � y iff xi ≤ yi for all 1 ≤ i ≤ d, (x weakly dominates y)
x � y iff x � y and x ≠ y. (x strongly dominates y)

Relations translate to search points (elements of S)
Set of all non-dominated objective vectors is called the Pareto front.
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Our overall idea for Approximation-Guided 
Evolution (AGE)
§ We keep an unbounded archive A of non-dominated 

points seen so far.
§ The archive is an approximation of the “true” Pareto 

front.
§ The goal is to have a population P that approximates the 

archive as best as possible.
§ We use additive approximation to measure 

approximation quality.
§ Multiplicative approximations can be used in a similar 

way.



Additive Approximation

26

€ 

α(S,T) :=max
s∈S

min
t∈T

max
1≤ i≤d

(si − ti)

Definition. For finite sets S,T��d, the additive 
approximation of T w.r.t. S is defined as



Additive Approximation

Definition. For finite sets S,T��d, the additive 
approximation of T w.r.t. S is defined as
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€ 

α(S,T) :=max
s∈S

min
t∈T

max
1≤ i≤d

(si − ti)

0.2

1

α(   ,   )=max(1.0; 0.0; 0.2)=1

0.5

Given	the	set	of	blue	points.

How	well	does	it	approximate	the	red	points?



Additive Approximation

Goal. Minimize the approximation of the population P (our 
output) w.r.t. to the archive A (all points seen so far).

Problem. α(A, P) is not sensitive to local changes of P: 
measures only improvements of points which are currently 
worst approximated.

Solution. Consider the set B={α({a}, P) | a�A}. Sort B
decreasingly and minimize Sα(A, P) := (α1, …, α|A|)
lexicographically.
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Our contribution

Assuming that the archive approximates the Pareto 
front, we measure the quality of the population by its 
approximation w.r.t. the archive:

Ø Any set of feasible solutions constitutes an 
approximation of the Pareto front, and

Ø we optimize the approximation w.r.t. all solutions seen 
to far.
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Our contribution

Assuming that the archive approximates the Pareto 
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Our contribution

Assuming that the archive approximates the Pareto 
front, we measure the quality of the population by its 
approximation w.r.t. the archive:

Ø Any set of feasible solutions constitutes an 
approximation of the Pareto front, and

Ø we optimize the approximation w.r.t. all solutions seen 
to far.
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Simple Algorithm

Based on Sα, it is easy to come up with an algorithm!

Population of size μ.
1.Generate λ offspring. 
2.Iteratively remove individual p from (μ � λ), for which 

Sα(A, P \ { p }) is minimal. drop point with smallest contribution
3.(Add all non-dominated points to the archive.)

34
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Runtime

We work with a population size of μ and generate in each generation λ
offspring. 

Having generated N solutions, we get the following runtime bounds.

Simple algorithm O( N (μ+λ) |A| ( d (μ+λ) + log |A| ) )
Works well when μ+λ is small, but e.g. for μ+λ=100 becomes slow 

due to (μ+λ)2 factor.

Fast algorithm O( N (μ+λ) |A|d)    
Idea: clever selection of the μ individuals for the next generation, 

looking at the worst approximation for which a population 
point p is responsible.

(for technical details: see IJCAI paper)

Problem: Runtime grows linearly with the archive size
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Development of the Unbounded Archive 
Size

100.000 evaluations, averages of 100 independent runs



ε-Dominance Approach [based on Laumanns et al. ’02]



§ Assign to each objective vector x its box-vector 
depending of  εgrid.

§ Archive size is bounded by 

Algorithm 6: (µ+ �)-Approximation Guided EA (AGE)

1 Initialize population P with µ random individuals;
2 Set "grid the resolution of the approximative archive A

"grid
;

3 foreach p 2 P do

4 Insert o↵spring floor(p) in the approximative archive A
"grid

such that only
non-dominated solutions remain;

5 foreach generation do

6 Initialize o↵spring population O  ;;
7 for j  1 to � do

8 Select two individuals from the pre-processed P (see Section 5);
9 Apply crossover and mutation;

10 Add new individual to O;

11 foreach p 2 O do

12 Insert o↵spring floor(p) in the approximative archive A
"grid

such that
only non-dominated solutions remain;

13 Discard o↵spring p if it is dominated by any point increment(a),
a 2 A;

14 Add o↵spring to population, i.e., P  P [O;
15 Apply fast approximation-guided selection of Subroutine 4 to P and

obtain population of size µ;

Subroutine 7: Function floor
input : d-dimensional objective vector x, archive parameter "grid
output: Corresponding vector v on the "-grid

1 for i = 1 to d do v[i] 
j

x[i]

"grid

k
;

Subroutine 8: Function increment
input : d-dimensional vector x, archive parameter "grid
output: Corresponding vector v that has each of its components increased

by 1

1 for i = 1 to d do v[i] o[i] + 1 ;

6.1. Archive approximation

In order to approximate the archive, we are facing a problem that is similar to
the original problem of multi-objective optimisation, namely a set of solutions is
sought that nicely represents the true set of compromise solutions.

12

We reuse AGE’s own main idea of maintaining a small set that approximates
the true Pareto front. By approximating the archive as well in a controlled manner,
we can guarantee a maximum size of the archive, which directly translates into a
bound with respect to the runtime of AGE when considering a fixed number of
iterations.

Our archive approximation is based on the idea of "-dominance introduced
in Laumanns et al. [22]. Instead of using an archive At that stores at any point in
time t the whole set of non-dominated objective vectors, we are using an archive
A

(t)

"grid that stores an additive "-approximation of the non-dominated objective vec-
tors produced until time step t.

In order to maintain such an approximation during the run of the algorithm, a
grid on the objective space is used to pick a small set of representatives (based on
"-dominance). We reuse the update-mechanism from [22], and thus can maintain

the "-Pareto set A
(t)

"grid of the set A(t) of all solutions seen so far. Due to [22], the
size is bounded by

���A(t)

"grid

��� 6
d�1Y

j=1

�
K

"grid

⌫

where
K =

d

max
i=1

✓
max
s2S

f
i

(s)

◆

is the maximum function value attainable among all objective functions.
We parameterize our algorithm by the desired approximation quality "grid > 0 of

the archive with respect to the seen objective vectors. AGE is shown in Algorithm 6,
and it uses the helper functions given in Subroutines 7 and 8. The latter is used to
perform a relaxed dominance check on the o↵spring p in Line 13. A strict dominance
check here would require an o↵spring to be not dominated by any point in the entire
archive. However, as the archive approximates all the solutions seen so far (via the
flooring), it might very unlikely, or even impossible, to find solutions that pass the
strict dominance test.

6.2. Impact of archive approximation on running times

The algorithm works at each time step t with an approximation A
(t)

"grid of the
set of non-dominated points At seen until time step t. Note, that setting "grid = 0
implies the basic AGE approach that stores every non-dominated objective vector.
We now investigate the e↵ect of working with di↵erent archives sizes (determined
by the choice of "grid) in AGE. Our goal is to understand the e↵ect of the choice of
this parameter on the actual archive size used during the run of the algorithm as
well as on the approximation quality obtained by AGE.

Next, we outline the results of our experimental investigation of the influence
of approximative archives on the runtime and the solution qualities. Note, that

13



Development of the Archive Size

μ=λ=100.
N=100.000 evaluations, averages of 100 independent runs



Experiments
§ NSGA-II, IBEA, SPEA2, SMS-EMOA

with approx hyp: SMS-EMOA, MO-CMA-ES
AGE with εgrid=0, εgrid=0.1, εgrid=0.01

§ ZDT 1/2/3/4/6
WFG 1-9 (each with d=2 and d=3)
LZ 1-9
DTLZ 1/2/3/4 (each with d=2,…,20) 
à 80 functions

Limits: 4h (and varying numbers of evaluations)

§ µ=100, SBX, PM, implemented in jMetal

(code is available online: 
http://cs.adelaide.edu.au/~markus/publications.html -> GECCO 2013)

Note:	MOEA/D	was	

new	back	then!



Results
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Results
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Results



Summary

§ Approximated Guided Evolution (AGE) for multi-
objective optimization which works with a formal notion 
of additive/multiplicative approximation.

§ AGE outperforms state-of-the-art approaches, in terms 
of additive approximation and covered hypervolume (for 
DTLZ 1 and 3), given a fixed time budget (4h).

§ This holds, in particular, for problems with many 
objectives, which most other algorithms have difficulties 
dealing with.
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EMO Applications (in Adelaide)

§ Team Cycling: race time vs energy consumption
§ Android Apps: energy consumption vs deviation from 

test oracle
§ Wind energy: power output vs area vs cable
§ Wave energy: power output vs area vs cable
§ Travelling thief: profit vs weight collected

…and others…

Note: typically, our code is online.



Travelling Thief Problem
http://cs.adelaide.edu.au/~optlog/research/

With	code,	instances,	results,	papers,	… (two	competitions)



A case study of algorithm selection 
for the travelling thief problem

Joint work with: Marius Lindauer, Mustafa Mısır, 
Samadhi Nallaperuma, Frank Hutter



Travelling Thief Problem (2013, read-world 
characteristic: interdependent problems)

49

start/end

Definition
TSP	part:	n cities



Travelling Thief Problem (2013, read-world 
characteristic: interdependent problems)

50

start/end

Definition
TSP	part:	n cities
KP	part:	m items	(weights	&	profits),	capacity	W
Interdependence:	

renting	rate	R
travel	speed	vmax =>	v(load)	=>	vmin
objective	score:	totalProfit – R	*	travelTime



start/end

were competitive to the state-of-the-art on a di↵erent range of TTP instances.
Wagner et al. [22] found in a study involving 21 approximate TTP algorithms
that only a small subset of them is necessary to form a well-performing algorithm
portfolio.

However, due to the lack of exact methods, the above approximate ap-
proaches cannot be evaluated with respect to their accuracy even on small TTP
instances. To address this issue, we propose three exact techniques and addi-
tional benchmark instances, which help to build a more comprehensive review
of the approximate approaches.

In the remainder, we revisit the definition of the TTP in Section 2 and in-
troduce our exact approaches in Section 3. In Section 4, we elaborate on the
setup of our experiments and compare our approaches with the best approxi-
mate solutions and with our own hybrid algorithms. The conclusion is drawn in
Section 5.

2 Problem Statement

In this section, we present the problem formulation concisely. For a comprehen-
sive description, we refer the interested reader to [17].

Given is a set of cities N = {1, . . . , n} and a set of items M = {1, . . . ,m}.
City i, i = 2, . . . , n, contains a set of items M

i

= {1, . . . ,m
i

}, M = [
i2N

M

i

. Item

k positioned in the city i is characterised by its profit p
ik

and weight w
ik

. The
thief must visit each of the cities exactly once starting from the first city and
return back to it in the end. The distance d

ij

between any pair of cities i, j 2 N

is known. Any item may be selected as long as the total weight of collected
items does not exceed the capacity C. A renting rate R is to be paid per each
time unit taken to complete the tour. Respectively, �

max

and �

min

denote the
maximal and minimum speeds that the thief can move. Assume that there is
a binary variable y

ik

2 {0, 1} such that y

ik

= 1 i↵ item k is chosen in city i.
The goal is to find a tour ⇧ = (x1, . . . , xn

), x
i

2 N , along with a packing plan
P = (y21, . . . , ynmn) such that their combination [⇧, P ] maximises the reward
given in the form the following objective function.

Z([⇧, P ]) =
nX

i=1

miX

k=1

p

ik

y

ik

�R

 
d

xnx1

�

max

� ⌫W

xn

+
n�1X

i=1

d

xixi+1

�

max

� ⌫W

xi

!
(1)

where ⌫ = (�
max

� �

min

) /C is a constant value defined by input parameters.
The minuend is the sum of all packed items’ profits and the subtrahend is the
amount that the thief pays for the knapsack’s rent equal to the total traveling
time along ⇧ multiplied by R. In fact, the actual travel speed along the distance
d

xixi+1 depends on the accumulated weight W

xi =
P

i

j=1

P
mj

k=1 wjk

y

jk

of the
items collected in the preceding cities 1, . . . , i. This then slows down the thief
and has an impact on the overall benefit Z.

profits

Renting	rate Travel	from	city	i to	i+1	in	π

Travel	from	last	city	to	first	city

Our results show that the large majority of the instances that can be handled by ex-
act methods, are solved much quicker by dynamic programming than the previously
developed mixed integer programming and branch-infer-and-bound approaches. Con-
sidering instances with a larger profit and weight range, we show that the choice of the
approximation guarantee significantly impacts the runtime behaviour.

The paper is structured as follows. In Section 2, we introduce the problem. We
present the exact dynamic programming approach in Section 3 and design a FPTAS
in Section 4. Our experimental results are shown in Section 5. Finally, we finish with
some conclusions.

Problem Statement

The PWT can be formally defined as follows. Given are n + 1 cities, distances di,
1 ≤ i ≤ n, from city i to city i + 1, and a set of items M , |M | = m, distributed all
over the first n cities. W.l.o.g., we assume m = Ω(n) to simplify our notations. Each
city i, 1 ≤ i ≤ n, contains a set of items Mi ⊆ M , |Mi| = mi. Each item eij ∈ Mi,
1 ≤ j ≤ mi, is characterised by its positive integer profit pij and weight wij .

In addition, a fixed route N = (1, 2, ..., n+ 1) is given that is traveled by a vehicle
with velocity v ∈ [vmin, vmax]. Let xij ∈ {0, 1} be a variable indicating whether
or not item eij is chosen in a solution. Then a set S ⊆ M of selected items can be
represented by a decision vector x = (x11, x12, ..., x1m1

, x21, ..., xnmn
). The total

benefit of selecting a subset of items S is calculated as

B(x) = P (x) −R · T (x),

where

P (x) =
n
∑

i=1

mi
∑

j=1

pijxij

represents the total profit of selected items and

T (x) =
n
∑

i=1

di

vmax − ν
i
∑

k=1

mk
∑

j=1
wkjxkj

is the total travel time for the vehicle carrying these items.
Here, ν = vmax−vmin

W
is the constant defined by the input parameters, where W is

the capacity of the vehicle. T (x) has the following interpretation: when the vehicle is
traveling from city i to city i+1, the selected items have to be carried and the maximal
speed vmax of the vehicle is reduced by a normalised amount that depends linearly on
the weight of these items. Because the velocity is influenced by the weight of collected
items, the total travel time increases along with their weight. Given a renting rate R ∈
(0,∞), R · T (x) is the total cost of carrying the items chosen by x. The objective of
this problem is to find a solution x∗ = argmaxx∈{0,1}mB(x).
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TTP Situation (2016)

§ Many algorithms have been introduced:
– Initially generic hill-climbers, successively more and more 

understanding was encoded 
– Deterministic construction heuristics, restart strategies, holistic 

approaches
– MIP & dynamic programming for special case
– Increasing computational cost

§ “Best algorithm” depends on instance (given the 
computation budget of 10 minutes).

§ There are exact approaches based on Dynamic 
Programming now, I might get to them later…
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Our Contributions

1. Comprehensive dataset for algorithm performance 
comparison 
(21 algorithms on 9720 instances)

2. Comprehensive dataset for instance analysis
(55 features of 9720 instances)

3. Algorithm portfolios based on 1. and 2.
4. Analysis of 3. 
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1. Algorithm Performance

§ History
– Bonyadi et al. (2013): 4 cities, 6 items, exhaustive enumeration
– Polyakovskiy et al. (2014): 

• 9720 instances established with up to almost 100k cities and 1m 
items

• First heuristics:
1. Strong focus on very good TSP tours (using LKH).
2. Packing plan creation using hill-climbers or a deterministic 

construction heuristic.

– Since then: more construction heuristics, co-evolutionary 
approaches, holistic attempts, fast implementations of search 
operators (for quick objective score update), special case 
algorithms, …

54



1. Algorithm Performance

§ 9720 Instances vary widely
– 51-85,900 cities (based on TSPlib)
– three different KP types (shown to have different difficulties for 

KP solvers)
– 1-10 items per city, different KP sizes
– Renting rate R set so that there is at least on TTP solution with 

objScore=0=opt(KP)–R*opt(TSP)
§ Researchers use not all of them (except Polyakovskiy et 

al., 2014), for example:
– Mei et al. (2014): 30 instances with 11k-34k cities
– Faulkner et al. (2015): 72 instances with 195 to 86k cities
– Wagner (2016): 108 instances with 51 to 1000 cities

à complete picture not possible
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1. Algorithm Performance

§ Benchmarking:
– 9720 instances, once, 10 minutes, rescaled to [0,1], 

-1 for crash/time-out
– Averages over all:

56

Construction	heuristics	SH/DH	left	out	due	to	poor	performance.

Dataset	available	online:	http://tinyurl.com/ttpadelaide

0.
93

worst	average	

performance

best	ever	

performance



2. Instance Characteristics

§ 47 TSP features (Mersmann et al. 2012/2013, Nallaperuma et al. 
2013/2014, …)
– 11 distance features (min/max/mean/fractions/…)
– 1 mode feature (distribution of edge cost)
– 6 cluster features (GDBSCAN, number of clusters, 

mean distances to cluster centroids)
– 6 nearest neighbour features (min/max/mean/...)
– 5 angle features (min/... between node an NN)
– 11 MST features (min/max/mean depth, ...)
– 2 convex hull features

§ 4 KP features
– Capacity, knapsack type, total number of items, number of items per city

§ TSP: number of cities
§ 3 TTP features

– Renting ratio, minimum travel speed, maximum travel speed

Note: not too many are “really” TTP-specific.

57
Dataset	available	online:	http://tinyurl.com/ttpadelaide



3. Algorithm Selection

§ As seen previously: no single algorithm dominates all others 
on all instances.

§ Exploit this using algorithm selection (idea from the 1970s).

§ Major success story SATzilla (2008): empirical performance 
model predicts performance of an algorithm and selects the 
one with best prediction + schedule to solve easy instances 
without instance feature overhead
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3. Algorithm Selection

§ We are using AutoFolio (Lindauer et al. 2015):
– FlexFolio (Hoos et al. 2014): several different algorithm selection 

methods
– SMAC (Hutter et al. 2011): search for best selection approach + 

parameter tuning

§ Example: AutoFolio determines whether classification or 
regression performs better, and in case of classification 
the parameters of a random forest (many decision trees) 
are tuned.
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[Random Forest]

60

Instance

Output:	4x	red,	1x	green	è red

https://www.researchgate.net/publication/260436143_Machine_learning_methods_in_chemoinformatics/figures?lo=1

Random	forest:	lots	of	

decision	trees

trained	on	

random	

subspaces

Person

Exam Day

Beer No beer Beer No beer

Actually,	there	is	an	RF	with	10	trees	for	each	pair	of	algorithms	à ~n2/2	RFs

Then,	for	each	pair	of	algorithms	<Ai,Aj>	(i !=	j),

a	random	forests	(consisting	of	10	randomized	decision	trees)	votes	either	for	Ai or	Aj

and	this	one	gets	a	point.

In	the	end,	the	algorithms	with	the	most	points	gets	selected.

Student Teacher

Yes No Weekend Weekday



3. Algorithm Selection

§ Results

61

Near-1	performance	might be	due	to	the	large	number	of	instances	(almost	10k).

AutoFolio (1d,	4	cores)	vs	Satzilla’11-like:	negligible	improvement	(chose	RF,	tuned	parameters).	



4. Portfolio Analysis

§ Complementarity important for good portfolios
– Single best vs oracle: difference of only 0.041
– Remember that 19 of 21 algorithms had >0.8 avg.

§ Correlations across instances (Spearman’s rank 
coefficients), and clustered
– Algorithms form clusters 

reflecting their historical 
development

– Analysis of similarity only 
(not performance)
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4. Portfolio Analysis

63

S5 19038.091
C4 18975.841
C3 18959.998
C6 18802.206
C5 18751.375

MATLS 18593.291
S2 18168.753
C1 18126.154
S4 18114.349
C2 18114.051
S1 18106.878
S3 18090.325

EA 17610.045
RLS 17547.679
M3 17480.118
M4 17444.665

M4B 16248.037
M3B 16227.732

Dh 14226.355
SH 10356.043

CS2SA 6517.236

1089.157
1057.732

1055.155
1027.216
1023.032

1056.274

972.92
970.558

967.737

969.797
968.651

966.755
928.937
925.898

981.636
982.51

919.483
903.344
729.913
529.018
414.268

18.68

2.117
1.53

0.437
0.456

19.717

0.173

0.263

0.107

0.213
0.227

0.15

0
0

6.41
4.613

12.521

2.849

0
0

58.396

Standalone performance Shapley value Marginal contribution
(contribution	to	any	

subset	of	the	

algorithm	portfolio)

(performance	increase	

of	portfolio	when	

algorithm	is	added)

(sum	across	all	instances,	

+9720	offset	for	negative	

performance)

Problem:	too	much	credit	for	

similar	algorithms,	fails	to	

consider	synergies

Problem:	penalises	

correlated	algorithms



4. Portfolio Analysis

How about portfolios that use only Top 1-5 features? à
(S5 only: 0.959, best portfolio before: 0.993)
Top 1-5: 0.977, 0.980, 0.986, 0.988, 0.992 64

Feature	calculation	times	

need	to	be	considered	

(e.g.	almost	10	minutes	

for	pla7397*	instances)

In	instance	file	header!



4. Portfolio Analysis

§ What else did we learn?
– Challenging: lots of dimensions to navigate, 10k instances, 21 

algorithms, noise in the underlying algorithm performance data
– For example, using only KP capacity:

• The smallest 1/3rd of the instances is dominated by the most 
complex algorithms, amongst those the ones that produce solutions 
with the longest tours.

• The largest 1/3rd is dominated by CS2SA (a fast implementation of 
search operators) and S5 (resampling solutions).

• Algorithm selection in the central 1/3rd seems to be difficult. (why?)

à Certain algorithms dominate, but they are not very 
complementary as only few feature values are necessary to 
achieve near-optimal portfolio performance.
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Summary

§ New datasets established:
– 21 algorithms on 9720 instances
– Raw data available as CSV and in the ASlib format 

http://cs.adelaide.edu.au/~optlog/research/ttp.php, ASlib URL to be 
added

§ Portfolios:
– Few algorithms needed
– Few features needed (can be determined quickly)

§ Future directions:
– Representative subset (which criteria?)
– More analyses
– (more algorithms…)

66



Markus Wagner
markus.wagner@adelaide.edu.au

http://cs.adelaide.edu.au/~markus/

The	slides	will	be	made	available	today.



”Packing While Travelling”

§ Simplification of the TTP
§ Tour is fixed, and we only deal with the packing 

component
§ Sergey/Frank: DP/FPTAS
§ This gave rise to the first non-trivial complete TTP 

approach (SEAL 2017), for relatively small instances 



Traveling Thief Problem (TTP)
§ Fitness is given by 

Frank Neumann

2 3

4

5

M3 ={e31,	e32,	…,	e3m3}

were competitive to the state-of-the-art on a di↵erent range of TTP instances.
Wagner et al. [22] found in a study involving 21 approximate TTP algorithms
that only a small subset of them is necessary to form a well-performing algorithm
portfolio.

However, due to the lack of exact methods, the above approximate ap-
proaches cannot be evaluated with respect to their accuracy even on small TTP
instances. To address this issue, we propose three exact techniques and addi-
tional benchmark instances, which help to build a more comprehensive review
of the approximate approaches.

In the remainder, we revisit the definition of the TTP in Section 2 and in-
troduce our exact approaches in Section 3. In Section 4, we elaborate on the
setup of our experiments and compare our approaches with the best approxi-
mate solutions and with our own hybrid algorithms. The conclusion is drawn in
Section 5.

2 Problem Statement

In this section, we present the problem formulation concisely. For a comprehen-
sive description, we refer the interested reader to [17].

Given is a set of cities N = {1, . . . , n} and a set of items M = {1, . . . ,m}.
City i, i = 2, . . . , n, contains a set of items M

i

= {1, . . . ,m
i

}, M = [
i2N

M

i

. Item

k positioned in the city i is characterised by its profit p
ik

and weight w
ik

. The
thief must visit each of the cities exactly once starting from the first city and
return back to it in the end. The distance d

ij

between any pair of cities i, j 2 N

is known. Any item may be selected as long as the total weight of collected
items does not exceed the capacity C. A renting rate R is to be paid per each
time unit taken to complete the tour. Respectively, �

max

and �

min

denote the
maximal and minimum speeds that the thief can move. Assume that there is
a binary variable y

ik

2 {0, 1} such that y

ik

= 1 i↵ item k is chosen in city i.
The goal is to find a tour ⇧ = (x1, . . . , xn

), x
i

2 N , along with a packing plan
P = (y21, . . . , ynmn) such that their combination [⇧, P ] maximises the reward
given in the form the following objective function.

Z([⇧, P ]) =
nX
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miX

k=1
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ik
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ik
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xnx1
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max
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+
n�1X
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d

xixi+1

�

max
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xi
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(1)

where ⌫ = (�
max

� �

min

) /C is a constant value defined by input parameters.
The minuend is the sum of all packed items’ profits and the subtrahend is the
amount that the thief pays for the knapsack’s rent equal to the total traveling
time along ⇧ multiplied by R. In fact, the actual travel speed along the distance
d

xixi+1 depends on the accumulated weight W

xi =
P

i

j=1

P
mj

k=1 wjk

y

jk

of the
items collected in the preceding cities 1, . . . , i. This then slows down the thief
and has an impact on the overall benefit Z.

1

start/end

profits

Renting	rate
Travel	from	city	i to	i+1	in	π

Travel	from	last	city	to	first	city

Our results show that the large majority of the instances that can be handled by ex-
act methods, are solved much quicker by dynamic programming than the previously
developed mixed integer programming and branch-infer-and-bound approaches. Con-
sidering instances with a larger profit and weight range, we show that the choice of the
approximation guarantee significantly impacts the runtime behaviour.

The paper is structured as follows. In Section 2, we introduce the problem. We
present the exact dynamic programming approach in Section 3 and design a FPTAS
in Section 4. Our experimental results are shown in Section 5. Finally, we finish with
some conclusions.

Problem Statement

The PWT can be formally defined as follows. Given are n + 1 cities, distances di,
1 ≤ i ≤ n, from city i to city i + 1, and a set of items M , |M | = m, distributed all
over the first n cities. W.l.o.g., we assume m = Ω(n) to simplify our notations. Each
city i, 1 ≤ i ≤ n, contains a set of items Mi ⊆ M , |Mi| = mi. Each item eij ∈ Mi,
1 ≤ j ≤ mi, is characterised by its positive integer profit pij and weight wij .

In addition, a fixed route N = (1, 2, ..., n+ 1) is given that is traveled by a vehicle
with velocity v ∈ [vmin, vmax]. Let xij ∈ {0, 1} be a variable indicating whether
or not item eij is chosen in a solution. Then a set S ⊆ M of selected items can be
represented by a decision vector x = (x11, x12, ..., x1m1

, x21, ..., xnmn
). The total

benefit of selecting a subset of items S is calculated as

B(x) = P (x) −R · T (x),

where

P (x) =
n
∑

i=1

mi
∑

j=1

pijxij

represents the total profit of selected items and

T (x) =
n
∑

i=1

di

vmax − ν
i
∑

k=1

mk
∑

j=1
wkjxkj

is the total travel time for the vehicle carrying these items.
Here, ν = vmax−vmin

W
is the constant defined by the input parameters, where W is

the capacity of the vehicle. T (x) has the following interpretation: when the vehicle is
traveling from city i to city i+1, the selected items have to be carried and the maximal
speed vmax of the vehicle is reduced by a normalised amount that depends linearly on
the weight of these items. Because the velocity is influenced by the weight of collected
items, the total travel time increases along with their weight. Given a renting rate R ∈
(0,∞), R · T (x) is the total cost of carrying the items chosen by x. The objective of
this problem is to find a solution x∗ = argmaxx∈{0,1}mB(x).
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Packing While Traveling
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Frank Neumann

1 n432 1

Assume	that	the	tour	is	fixed	.	Then	we	only	have	to	deal	with	the	packing	

component.	

profit Cost	dependent	on	weight	of	chosen	items

…



Dynamic Programming for PWT

§ Sort the items as they appear on the path, breaking ties 
for items at the same city arbitrarily.

§ Use dynamic programming (similar to classical 0/1 
knapsack) and process the items in sorted order. Store 
for the first i items and each possible weight the maximal 
possible benefit (delete dominated entries).

§ Size of the table in polynomial in m and the maximum 
possible weight => algorithm with pseudopolynomial
runtime.

Frank Neumann



DP for PWT

Store for the first i cities on the path and every possible 
weight, the maximal possible objective value.

Frank Neumann

Βi’,j’ 150

200

Βi’,j’ Βi,j 210

220

210

weight

[1] [2] [n]

We investigate dynamic programming and approximation algorithms [5] for the
non-linear packing while traveling problem. A FPTAS for a given maximisation prob-
lem is an algorithm A that obtains for any valid input I and ϵ, 0 < ϵ ≤ 1, a solution
of objective value A(I) ≥ (1− ϵ)OPT (I) in time polynomial in the input size |I| and
1/ϵ.

Dynamic Programming

We introduce a dynamic programming approach for solving the PWT. Dynamic pro-
gramming is one of the traditional approaches for the classical knapsack problem [13].
The dynamic programming table β consists of W rows and m columns. Items are
processed in the order they appear along the path N and we consider them in the lexi-
cographic order with respect to their indices, i.e.

eab ≼ eij , iff ((a < i) ∨ (a = i ∧ b ≤ j)).

Note that ≼ is a total strict order and we process the items in this order starting with the
smallest element. The entry βi,j,k represents the maximal benefit that can be obtained
by considering all combinations of items eab with eab ≼ eij leading to weight exactly
k. We denote by β(i, j, ·) the column containing the entries βi,j,k. In the case that a
combination of weight k doesn’t exist, we set βi,j,k = −∞. We denote by

din =
n
∑

l=i

dl

the distance from city i to the last city n+ 1.
We denote by B(∅) the benefit of the empty set which is equivalent to the travel

cost when the vehicle travels empty. Furthermore, B(eij) denotes the benefit when
only item eij is chosen.

For the first item eij according to ≼, we set

β(i, j, 0) = B(∅),

β(i, j, wij) = B(eij),

and
β(i, j, k) = −∞ iff k ̸∈ {0, wij}.

Let ei′j′ be the predecessor of item eij in ≼. Based on β(i′, j′, ·) we compute for
β(i, j, ·) each entry βi,j,k as

max

{

βi′,j′,k

βi′,j′,k−wij
+pij−Rdin(

1
vmax−νk

− 1
vmax−ν(k−wij)

)

Let est be the last element according to ≼, then maxk β(s, t, k) is reported as the
value of an optimal solution. We now investigate the runtime for this dynamic program.
If din has been computed for each i, 1 ≤ i ≤ n − 1, which takes O(n) time in total,
then each entry can be compute in constant time.

4
k-wij

k

To	decide:	keep	the	previous	plan	OR	add	the	item?



Experimental Results (Exact)

Frank Neumann

23:10
A

FullyPolynomialTimeApproximationSchemeforPackingW
hileTraveling

Table 1 Results on Small Range Instances

Instance m OPT
Exact Approaches Approximation Approaches

eMIP BIB DP aMIP FPTAS
‘ = 0.0001 ‘ = 0.01 ‘ = 0.1 ‘ = 0.25 ‘ = 0.75

RT(s) RT(s) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s)
instance family eil101

uncorr_01 100 1651.697 1.217 5.694 0.027 100 3.838 100 0.001 100 0.001 100 0.001 100 0.001 100 0.025
uncorr_06 100 10155.4942 12.605 3.698 0.065 100 4.961 100 0.012 100 0.011 100 0.011 100 0.011 99.9928 0.063
uncorr_10 100 10297.7134 3.525 0.795 0.036 100 0.624 100 0.017 100 0.017 99.9939 0.016 99.9939 0.016 99.9653 0.037

uncorr-s-w_01 100 2152.6188 0.328 7.566 0.001 100 3.978 100 0 100 0 100 0 100 0 100 0.003
uncorr-s-w_06 100 4333.8512 12.59 2.215 0.012 100 2.699 100 0.008 100 0.007 100 0.007 99.9569 0.008 99.9569 0.017
uncorr-s-w_10 100 9048.4908 37.144 1.107 0.022 100 1.763 100 0.012 100 0.012 100 0.012 100 0.013 99.9355 0.02

b-s-corr_01 100 4441.9852 1.42 125.954 0.014 100 5.366 100 0.01 100 0.009 100 0.009 100 0.008 100 0.013
b-s-corr_06 100 10260.9767 4.509 22.541 0.101 100 2.761 100 0.058 100 0.057 100 0.048 100 0.043 100 0.087
b-s-corr_10 100 13630.6153 11.013 27.081 0.187 99.9971 3.713 100 0.103 100 0.101 99.9971 0.081 99.9606 0.065 99.8143 0.113
uncorr_01 500 17608.5781 19.594 27.581 0.247 100 5.757 100 0.171 100 0.161 100 0.153 100 0.163 100 0.377
uncorr_06 500 56294.5239 384.213 13.354 2.829 100 7.8 100 2.37 100 2.344 100 2.3 100 2.212 100 2.34
uncorr_10 500 66141.484 211.302 2.325 4.01 100 0.718 100 3.72 100 3.645 100 3.446 100 3.531 100 3.632

uncorr-s-w_01 500 13418.8406 4.337 34.866 0.09 100 50.31 100 0.085 100 0.09 100 0.084 100 0.087 99.991 0.085
uncorr-s-w_06 500 34280.473 346.43 7.285 1.04 100 9.609 100 0.964 100 0.933 100 0.905 100 0.936 100 0.92
uncorr-s-w_10 500 50836.6588 519.902 3.338 2.022 100 3.354 100 2.005 100 1.783 100 1.753 100 1.784 100 2.147

b-s-corr_01 500 21306.9158 40.482 624.204 1.534 100 13.338 100 1.373 100 1.279 100 1.116 100 0.949 100 0.716
b-s-corr_06 500 69370.2367 236.387 97.313 14.616 99.9996 7.847 100 13.393 100 12.975 100 11.642 99.9996 9.741 99.9996 6.018
b-s-corr_10 500 82033.9452 376.569 218.728 22.011 100 2.309 100 21.372 100 20.829 100 18.573 100 15.313 99.9943 8.84
uncorr_01 1000 36170.9109 218.306 114.567 1.872 99.9993 11.918 100 1.891 100 1.875 100 1.832 100 1.845 100 1.764
uncorr_06 1000 93949.1981 1261.949 36.847 20.944 100 17.971 100 17.024 100 16.615 100 16.545 100 16.378 100 15.713
uncorr_10 1000 122963.6617 620.896 4.821 30.116 100 2.184 100 27.305 100 26.783 100 26.541 100 26.051 100 23.905

uncorr-s-w_01 1000 27800.9614 241.957 399.158 0.802 100 4985.566 100 0.73 100 0.69 100 0.688 100 0.724 100 0.687
uncorr-s-w_06 1000 61764.4599 1152.624 12.792 9.872 100 19.063 100 8.686 100 8.812 100 8.56 100 8.74 100 8.396
uncorr-s-w_10 1000 103572.4074 2146.408 7.644 15.047 100 9.688 100 14.03 100 13.912 100 13.797 100 13.982 100 13.492

b-s-corr_01 1000 46886.1094 378.551 6129.531 11.783 99.9988 46.394 100 11.714 100 11.358 100 10.793 100 9.592 100 6.536
b-s-corr_06 1000 125830.6887 643.533 919.201 94.523 99.9999 10.311 100 92.411 100 91.039 100 83.002 99.9999 71.078 100 45.433
b-s-corr_10 1000 161990.5015 862.572 1646.52 151.601 100 7.16 100 150.279 100 149.722 100 134.764 100 113.049 99.9981 70.135



NP-hardness (Non-negative benefit)

§ PWT solutions can attain positive and negative values. 

§ This rules out meaningful multiplicative approximations.

Frank Neumann

Theorem 1. The entry β(i, j, k) stores the maximal possible benefit for all subsets of

Iij = {eab | eab ≼ eij} having weight k.

Proof. The proof is by induction. The statement is true for the first item eij according
to ≼ as there are only the two options of choosing or not choosing eij . Assume that
β(i′, j′, k) stores the maximal benefit for each weights k when considering all items
of Ii′j′ . There two options exist when we consider item eij in addition: to include
or not include eij . If eij is not included, then the best possible value for β(i, j, k) is
β(i′, j′, k). If eij is included, then remaining weight has to come from the previous
items whose maximal benefit has been β(i′, j′, k−wij). Transporting a set of items of
weight k − wij from city i to city n+ 1 has cost

Rdin
vmax − ν(k − wij)

and transporting a set of items of weight k from city i to n+ 1 has cost

Rdin
vmax − νk

.

This cost of transporting items of a fixed weight from city i to city n+1 is independent
of the choice of items. Therefore, β(i, j, k) stores the maximal possible benefit when
considering all possible subsets of Iij = {eab | eab ≼ eij} having weight k.

To speed up the computation of our DP approach, we only store an entry for
β(i, j, k) if it is not dominated by any other entry in β(i, j, ·), i.e. there is no other entry
β(i, j, k′) with β(i, j, k′) ≥ β(i, j, k) and k′ < k. This does not affect the correctness
of the approach as an item eij can be added to any entry of β(i′, j′, ·) and therefore we
obtain for each dominated entry at least one entry in the last column having at least the
same benefit but potentially smaller weight.

Approximation Algorithms

We now turn our attention to approximation algorithms. The NP-hardness proof for
PWT given in [11] does not rule out polynomial time approximation algorithms. In
this section, we first show that polynomial time approximation algorithms with a finite
approximation ratio do not exist under the assumption P ̸= NP . This motivates the
design of a FPTAS for the amount that can be gained over the baseline cost when the
vehicle is traveling empty.

Inapproximability of PWT

The objective function for PWT can take on positive and negative values. We show that
deciding whether a given PWT instances has a solution that is non-negative is already
NP-complete.

Theorem 2. Given a PWT instance, the problem to decide whether there is a solution
x with B(x) ≥ 0 is NP-complete.
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FPTAS for PWT

§ Let                       
the baseline travel cost when the vehicle travels 

empty. 
§ Consider the objective function

which gives the amount gained over the baseline 
travel cost. 
§ Let                                
§ We design a fully polynomial time approximation 

scheme for B’. Solution x of quality 
Runtime polynomial in n and 1/ε.

Frank Neumann

g′′R∗ (x) =
m∑

k=1

p1kxk −

R∗

υmax −

υmin
W

m∑

k=1

w1kxk

.

Similarly, there exists an x ∈ {0, 1}m such that g′′R∗(x) ≥ 0 iff

m
∑

k=1

skxk =
m
∑

k=1

w1kxk =
m
∑

k=1

p1kxk = Q.

Therefore, the instance of SSP has answer YES iff the optimal solution of the PWT
instance I ′′ has objective value at least 0, while the reduction can be carried out in
polynomial time.

The objective function can take on negative and non-negative values. Theorem 2
rules out meaningful approximations for the original objective functions B and we
state this in the following corollary.

Corollary 1. There is no polynomial time approximation algorithm for PWT with a
meaningful approximation ratio, unless P=NP.

FPTAS for amount over baseline travel cost

As there are no polynomial time approximation algorithms for fixed approximation
ratio for PWT, we consider the amount that can be gained over the cost when the
vehicle travels empty as the objective. This is motivated by the scenario where the
vehicle has to travel along the given route and the goal is to maximise the gain over this
baseline cost. Note that an optimal solution for this objective is also an optimal solution
for PWT. However, approximation results do not carry over to PWT as the objective
values are “shifted” by the cost when traveling empty.

Let

B(∅) = −R ·
n
∑

i=1

di/vmax

be the travel cost (or benefit) for the empty truck. B(∅) can be seen as the set up cost
that we have to pay at least. We consider the objective

B′(x) = B(x) −B(∅),

i. e. for the amount that we can gain over this setup cost, and give an FPTAS. Note, that
we have −R · T (x) ≤ B(∅) for any x ∈ {0, 1}m and P (x)−R · T (x)−B(∅) = 0 if
x = 0m.

We now give a FPTAS for the amount that can be gained over the cost when the
vehicle travels empty and denote by OPT the optimal value for this objective, i.e.

OPT = max
x∈{0,1}m

B′(x).
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be maximal possible objective value when choosing exactly one item. We have

L ≥ OPT/m and L ≤ OPT.

We set r = ϵL/m, where ϵ is the approximation parameter for the FPTAS. For the
FPTAS we round B′(x) to ⌊(B′(x)/r⌋ and store for each of such values the minimal
weight obtained. As we only store entries with 0 ≤ B′(x) ≤ OPT , and for each such
integer based on dominance and rounding one entry, the total number of entries per
column is upper bounded by

(OPT/r) + 1 ≤ OPT/(ϵL/m) + 1 ≤ m2/ϵ+ 1

and number of entries in the dynamic programming table is O(m3/ϵ).
In each step, we make an error of at most
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and the error after m steps is at most ϵL ≤ ϵOPT. Hence, the solution x with maximal
B′-value after having considered all items fulfils

B′(x) ≥ (1 − ϵ)OPT.

To implement the idea (see Algorithm 1), we only store an entry β(i, j, k) if there
is no entry β(i, j, k′) with

⌊β(i, j, k′)/r⌋ ≥ ⌊β(i, j, k)/r⌋ and k′ < k.

Hence, for each possible value ⌊β(i, j, k)/r⌋ at most one entry is stored and the number
of entries for each column β(i, j, ·) is upper bounded by m2/ϵ + 1 (as stated above).
Using for each β(i, j, ·) a list which stores the entries β(i, j, k) in increasing order of
k can be used for our implementation.

Based on our investigations and the design of Algorithm 1, we can state the follow-
ing result.

Theorem 3. Algorithm 1 is a fully polynomial time approximation scheme (FPTAS)

for the objective B′. It obtains for any ϵ, 0 < ϵ ≤ 1, a solution x with B′(x) ≥
(1− ϵ) · OPT in time O(m3/ϵ).

The construction of the FPTAS only used the fact that the travel time per unit dis-
tance is monotonically increasing and convex. Hence, the FPTAS holds for any PWT
problem where the travel time per unit distance has this property.

Experiments and Results

In this section, we investigate the effectiveness of the proposed DP and FPTAS ap-
proaches based on our implementations in Java1. We mainly focus on two issues: 1)
studying how the DP and FPTAS perform compared to the state-of-the-art approaches;
2) investigating how the performance and accuracy of the FPTAS change when the
parameter ϵ is altered.

1The code will be made available online at time of publication.
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FPTAS for PWT
§ Assume each item eij, on its own makes a positive 

contribution.
§ Considering the single items eij, we have.

§ Pick item with the largest value B’ value and set

§ We have
§ Set                    round                                    and run DP. 
§ Number of rows in DP table is upper bounded by 

§ Error in each step is at most
§ At most m steps. So, we get 

Algorithm 1 FPTAS for B′(x)

• Set L = maxeij∈M B′(eij), r = ϵL/m, and din =
∑n

l=i dl, 1 ≤ i ≤ n.

• Compute order ≼ on the items eij by sorting them in lexicographic order with
respect to their indices (i, j).

• For the first item eij according to ≼, set β(i, j, 0) = B′(∅) and β(i, j, wij) =
B′(eij).

• Consider the remaining items of M in the order of ≼ and do for each item eij
and its predecessor ei′j′ :

– In increasing order of k do for each β(i′, j′, k) with β(i′, j′, k) ̸= −∞

∗ If there is no β(i, j, k′) with (⌊β(i, j, k′)/r⌋ ≥ ⌊β(i′, j′, k)/r⌋ and
k′ < k),
set β(i, j, k) = max{β(i, j, k),β(i′, j′, k)}.

∗ If there is no β(i, j, k′) with (⌊β(i, j, k′)/r⌋ ≥ ⌊β(i′, j′, k + wij)/r⌋
and k′ < k + wij ),
set β(i, j, k + wij) = max{β(i, j, k + wij),β(i′, j′, k) + pij +
Rdin(

1
vmax−νk

− 1
vmax−ν(k+wij)

)}.

Considering the dynamic program for B′(x) instead of B(x) increases each entry
by |B(∅)| and therefore obtains an optimal solution for B′(x) in pseudo-polynomial
time. In order to obtain an FPTAS, we round the values of B′(x) and store for each
rounded value only the minimal achievable weight.

Let

t(w) =
1

vmax − νw

denote the travel time per unit distance when traveling with weight w. We have t(x +
w)− t(x) ≥ t(w) for any x ≥ 0 as t(w) is a convex function.

Consider the value B(eij) − B(∅) which gives the additional amount over B(∅)
when only packing item eij . We assume that there exists at least one item eij with
B(eij) − B(∅) > 0 as otherwise OPT = 0 the solution being {0}m. Let P (eij)
and T (eij) be the profit and travel time when only choosing item eij . Furthermore, let
x∗ = argmaxx∈{0,1}m B′(x) be an optimal solution of value OPT > 0.

We have

n
∑

i=1

mi
∑

j=1

(P (eij)−R · T (eij))x
∗
ij −B(∅) ≥ B(x∗)−B(∅) = OPT

as t(w) is monotonically increasing and convex.
Therefore the item eij of x∗ with B(eij) − B(∅) > 0 maximal fulfils B(eij) −

B(∅) ≥ OPT/m.
Let

L = maxeij∈MB′(eij) > 0

8

Algorithm 1 FPTAS for B′(x)

• Set L = maxeij∈M B′(eij), r = ϵL/m, and din =
∑n

l=i dl, 1 ≤ i ≤ n.

• Compute order ≼ on the items eij by sorting them in lexicographic order with
respect to their indices (i, j).

• For the first item eij according to ≼, set β(i, j, 0) = B′(∅) and β(i, j, wij) =
B′(eij).

• Consider the remaining items of M in the order of ≼ and do for each item eij
and its predecessor ei′j′ :

– In increasing order of k do for each β(i′, j′, k) with β(i′, j′, k) ̸= −∞

∗ If there is no β(i, j, k′) with (⌊β(i, j, k′)/r⌋ ≥ ⌊β(i′, j′, k)/r⌋ and
k′ < k),
set β(i, j, k) = max{β(i, j, k),β(i′, j′, k)}.

∗ If there is no β(i, j, k′) with (⌊β(i, j, k′)/r⌋ ≥ ⌊β(i′, j′, k + wij)/r⌋
and k′ < k + wij ),
set β(i, j, k + wij) = max{β(i, j, k + wij),β(i′, j′, k) + pij +
Rdin(

1
vmax−νk

− 1
vmax−ν(k+wij)

)}.

Considering the dynamic program for B′(x) instead of B(x) increases each entry
by |B(∅)| and therefore obtains an optimal solution for B′(x) in pseudo-polynomial
time. In order to obtain an FPTAS, we round the values of B′(x) and store for each
rounded value only the minimal achievable weight.

Let

t(w) =
1

vmax − νw

denote the travel time per unit distance when traveling with weight w. We have t(x +
w)− t(x) ≥ t(w) for any x ≥ 0 as t(w) is a convex function.

Consider the value B(eij) − B(∅) which gives the additional amount over B(∅)
when only packing item eij . We assume that there exists at least one item eij with
B(eij) − B(∅) > 0 as otherwise OPT = 0 the solution being {0}m. Let P (eij)
and T (eij) be the profit and travel time when only choosing item eij . Furthermore, let
x∗ = argmaxx∈{0,1}m B′(x) be an optimal solution of value OPT > 0.

We have

n
∑

i=1

mi
∑

j=1

(P (eij)−R · T (eij))x
∗
ij −B(∅) ≥ B(x∗)−B(∅) = OPT

as t(w) is monotonically increasing and convex.
Therefore the item eij of x∗ with B(eij) − B(∅) > 0 maximal fulfils B(eij) −

B(∅) ≥ OPT/m.
Let

L = maxeij∈MB′(eij) > 0

8

be maximal possible objective value when choosing exactly one item. We have

L ≥ OPT/m and L ≤ OPT.

We set r = ϵL/m, where ϵ is the approximation parameter for the FPTAS. For the
FPTAS we round B′(x) to ⌊(B′(x)/r⌋ and store for each of such values the minimal
weight obtained. As we only store entries with 0 ≤ B′(x) ≤ OPT , and for each such
integer based on dominance and rounding one entry, the total number of entries per
column is upper bounded by

(OPT/r) + 1 ≤ OPT/(ϵL/m) + 1 ≤ m2/ϵ+ 1

and number of entries in the dynamic programming table is O(m3/ϵ).
In each step, we make an error of at most

r = ϵL/m ≤ ϵOPT/m

and the error after m steps is at most ϵL ≤ ϵOPT. Hence, the solution x with maximal
B′-value after having considered all items fulfils

B′(x) ≥ (1 − ϵ)OPT.

To implement the idea (see Algorithm 1), we only store an entry β(i, j, k) if there
is no entry β(i, j, k′) with

⌊β(i, j, k′)/r⌋ ≥ ⌊β(i, j, k)/r⌋ and k′ < k.

Hence, for each possible value ⌊β(i, j, k)/r⌋ at most one entry is stored and the number
of entries for each column β(i, j, ·) is upper bounded by m2/ϵ + 1 (as stated above).
Using for each β(i, j, ·) a list which stores the entries β(i, j, k) in increasing order of
k can be used for our implementation.

Based on our investigations and the design of Algorithm 1, we can state the follow-
ing result.

Theorem 3. Algorithm 1 is a fully polynomial time approximation scheme (FPTAS)

for the objective B′. It obtains for any ϵ, 0 < ϵ ≤ 1, a solution x with B′(x) ≥
(1− ϵ) · OPT in time O(m3/ϵ).

The construction of the FPTAS only used the fact that the travel time per unit dis-
tance is monotonically increasing and convex. Hence, the FPTAS holds for any PWT
problem where the travel time per unit distance has this property.

Experiments and Results

In this section, we investigate the effectiveness of the proposed DP and FPTAS ap-
proaches based on our implementations in Java1. We mainly focus on two issues: 1)
studying how the DP and FPTAS perform compared to the state-of-the-art approaches;
2) investigating how the performance and accuracy of the FPTAS change when the
parameter ϵ is altered.

1The code will be made available online at time of publication.
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• For the first item eij according to ≼, set β(i, j, 0) = B′(∅) and β(i, j, wij) =
B′(eij).

• Consider the remaining items of M in the order of ≼ and do for each item eij
and its predecessor ei′j′ :

– In increasing order of k do for each β(i′, j′, k) with β(i′, j′, k) ̸= −∞

∗ If there is no β(i, j, k′) with (⌊β(i, j, k′)/r⌋ ≥ ⌊β(i′, j′, k)/r⌋ and
k′ < k),
set β(i, j, k) = max{β(i, j, k),β(i′, j′, k)}.

∗ If there is no β(i, j, k′) with (⌊β(i, j, k′)/r⌋ ≥ ⌊β(i′, j′, k + wij)/r⌋
and k′ < k + wij ),
set β(i, j, k + wij) = max{β(i, j, k + wij),β(i′, j′, k) + pij +
Rdin(

1
vmax−νk

− 1
vmax−ν(k+wij)

)}.

Considering the dynamic program for B′(x) instead of B(x) increases each entry
by |B(∅)| and therefore obtains an optimal solution for B′(x) in pseudo-polynomial
time. In order to obtain an FPTAS, we round the values of B′(x) and store for each
rounded value only the minimal achievable weight.

Let

t(w) =
1

vmax − νw

denote the travel time per unit distance when traveling with weight w. We have t(x +
w)− t(x) ≥ t(w) for any x ≥ 0 as t(w) is a convex function.

Consider the value B(eij) − B(∅) which gives the additional amount over B(∅)
when only packing item eij . We assume that there exists at least one item eij with
B(eij) − B(∅) > 0 as otherwise OPT = 0 the solution being {0}m. Let P (eij)
and T (eij) be the profit and travel time when only choosing item eij . Furthermore, let
x∗ = argmaxx∈{0,1}m B′(x) be an optimal solution of value OPT > 0.

We have

n
∑

i=1

mi
∑

j=1

(P (eij)−R · T (eij))x
∗
ij −B(∅) ≥ B(x∗)−B(∅) = OPT

as t(w) is monotonically increasing and convex.
Therefore the item eij of x∗ with B(eij) − B(∅) > 0 maximal fulfils B(eij) −

B(∅) ≥ OPT/m.
Let

L = maxeij∈MB′(eij) > 0

8
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Table 2 Results of DP and FPTAS on Large Range Instances

Instance m
DP FPTAS

‘ = 0.0001 ‘ = 0.001 ‘ = 0.01 ‘ = 0.1 ‘ = 0.25 ‘ = 0.5 ‘ = 0.75
OPT RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s) AR(%) RT(s)

instance family eil101_large-range
uncorr_01 100 69802802.2801 0.03 100 0.002 100 0.002 100 0.002 100 0.002 100 0.002 100 0.002 100 0.029
uncorr_06 100 204813765.6933 0.053 100 0.019 100 0.02 100 0.019 100 0.019 100 0.019 100 0.019 100 0.049
uncorr_10 100 172176182.1249 0.041 100 0.028 100 0.028 100 0.028 100 0.028 100 0.027 100 0.026 99.9628 0.037

uncorr-s-w_01 100 36420530.5753 0.006 100 0.003 100 0.003 100 0.003 100 0.003 100 0.003 100 0.002 100 0.004
uncorr-s-w_06 100 148058928.2952 0.098 100 0.072 100 0.502 100 0.072 100 0.069 100 0.065 100 0.059 100 0.07
uncorr-s-w_10 100 142538516.4602 0.136 100 0.101 100 0.104 100 0.103 99.9978 0.096 99.9978 0.086 99.9978 0.073 99.9978 0.089

m-s-corr_01 100 19549602.2671 0.003 100 0.002 100 0.002 100 0.002 100 0.002 100 0.002 100 0.001 100 0.002
m-s-corr_06 100 137203175.1921 0.147 100 0.115 100 0.118 100 0.113 100 0.089 100 0.063 100 0.04 100 0.043
m-s-corr_10 100 225584278.6004 0.424 100 0.326 100 0.329 100 0.312 100 0.2 100 0.179 100 0.086 100 0.073

uncorr_01 500 385692662.0930 0.47 100 0.451 100 0.454 100 0.619 100 0.508 100 0.445 100 0.43 100 0.517
uncorr_06 500 958013934.6172 3.539 100 3.749 100 7.431 100 3.947 100 3.69 99.9996 3.677 99.9996 3.486 99.9993 3.021
uncorr_10 500 844949838.4389 4.87 100 5.393 100 5.716 100 5.483 100 5.135 100 4.851 99.9992 4.609 99.9992 4.295

uncorr-s-w_01 500 182418888.9364 1.157 100 1.157 100 1.199 100 1.145 99.9995 1.112 99.9995 1.063 99.9995 0.977 99.9904 0.929
uncorr-s-w_06 500 780432253.0187 22.39 100 25.04 100 26.276 100 24.024 100 23.282 99.9997 21.756 99.9997 18.293 99.9997 18.411
uncorr-s-w_10 500 714433353.7957 30.959 100 34.458 100 39.004 100 34.308 100 32.308 99.9996 28.792 99.999 26.392 99.999 25.971

m-s-corr_01 500 96463941.1275 2.335 100 2.478 100 2.782 100 2.695 100 1.509 100 0.963 100 0.546 100 0.408
m-s-corr_06 500 666701000.1488 108.705 100 126.833 100 139.63 100 122.75 100 62.479 100 33.547 100 17.959 100 10.642
m-s-corr_10 500 1082009880.5886 262.999 100 299.862 100 317.352 100 274.284 100 145.087 100 78.47 99.9994 41.816 99.9994 25.924

uncorr_01 1000 777386336.9660 4.222 100 4.397 100 4.347 100 4.309 100 4.341 100 4.377 100 4.28 100 4.24
uncorr_06 1000 1933319297.4248 46.043 100 51.383 100 53.087 100 48.861 100 52.957 99.9999 52.062 99.9997 50.286 99.9996 51.488
uncorr_10 1000 1693797490.1704 64.485 100 76.744 100 78.847 100 74.128 100 82.754 100 77.057 100 72.283 100 72.567

uncorr-s-w_01 1000 361991311.8336 14.254 100 15.072 100 15.67 100 14.523 100 14.11 100 14.039 100 12.088 100 11.129
uncorr-s-w_06 1000 1574469459.3163 286.843 100 318.096 100 330.508 100 337.289 100 334.318 100 307.588 99.9998 270.013 99.9996 245.927
uncorr-s-w_10 1000 1439410696.3695 393.793 100 438.775 100 455.83 100 464.527 100 441.955 100 433.672 99.9994 378.917 99.9994 340.813

m-s-corr_01 1000 191170309.5684 46.858 100 58.031 100 59.987 100 58.101 100 31.703 100 18.771 100 10.728 100 6.831
m-s-corr_06 1000 1315708161.7720 2393.205 100 2512.281 100 2606.412 100 1921.573 100 666.749 100 364.452 100 208.969 100 150.06
m-s-corr_10 1000 2163713055.3759 6761.49 100 6668.535 100 6441.906 100 4526.653 100 1334.882 100 703.258 100 397.527 100 282.211
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DP for TTP
§ Let                    be the best solution obtained when using 

permutation π
§ We can obtain an optimal solution for TTP by considering all 

permutations, 

Idea:
§ Adapt dynamic programming for TSP to TTP by making use of 

DP for PWT.
§ Let S be a subset of nodes and 1 be the first city of the tour.
§ The DP for TSP stores for each S and endpoint k, the shortest 

path from city 1 to city k visiting all cities in S exactly once at 
[S,k].

§ For TTP store at [S,k,w] the largest benefit when ending at city 
k with weight w (and visiting all cities in S exactly once)

Frank Neumann

As a simplified version of the TTP, Polyakovskiy and Neumann [16] have
recently introduced the packing while travelling problem (PWT), in which the
tour ⇧ is predefined and only the packing plan P is variable. Furthermore,
Neumann et al. [14] prove that the PWT can be solved in pseudo-polynomial
time by dynamic programming taking into account the fact that the weights are
integer. The dynamic programming algorithm maps every possible weight w to
a packing plan P , i.e. f : w 7! P , which guarantees a certain profit. Then the
optimal packing plan P

⇤ is to be selected among all the plans that have been
obtained.

Here, we adopt these findings to derive two exact algorithms for the TTP.
Let · denote all possible weights for a given TTP instance. Let [⇧, f(·)] desig-
nate the best solutions for the instance with tour ⇧ obtained via the dynamic
programming for the PWT. As ⇧ is to be variable, the optimum objective value
of the TTP is Z

⇤ = argmax8⇧,w2· Z([⇧, f(w)]),. This yields the basis for two
of our approaches: dynamic programming (DP) and branch and bound search
(BnB). The following sections describe the two approaches as well as a constraint
programming (CP) technique adopted for the TTP.

3.1 Dynamic Programming

Our DP approach is based on the Held-Karp algorithm for the TSP [8] and on
the dynamic programming to the PWT [14]. Algorithm 1 depicts the pseudocode
for our approach. Let Ṡ = N \ {1} be a subset of the cities and k 2 N refer to
a particular city. Then [S, k] is a tour starting in city 1, visiting all the cities
in S ✓ Ṡ exactly once, and ending in city k. The optimal solution of the TTP
therefore can be described by [Ṡ, 1, f

xn(Wxn)]
⇤, where W

xn is the total weight
of the knapsack when leaving the last city x

n

and f

xn results from the dynamic
programming algorithm for the PWT considering the tour ⇧ = (1, . . . , x

n

). The
following statement is valid with respect to the TTP’s statement:
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Here, W

xn and P

xn are the total weight and the total profit of the items
picked in city x
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. Clearly, Z([Ṡ \ {x
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xn)]) is optimal for
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]. Furthermore, such a relationship exists for every pair of
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j

)] and [S \ {j}, j, f
j�1(Wj

� W

j

)], where i 2 Ṡ \ S and j 2 S. In
fact, having an optimal solution for a given TTP instance, one can compute the
optimal solution for the instance that excludes the last city from the solution of
the original problem. Following this idea, we build our DP for the TTP.

The DP is costly in terms of the memory consumption, which reachesO(2nnC).
To reduce these cost, let E

U

define an upper bound on the value of a feasible
solution built on the partial solution [S, k, f

k

(·)] as follows:
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recently introduced the packing while travelling problem (PWT), in which the
tour ⇧ is predefined and only the packing plan P is variable. Furthermore,
Neumann et al. [14] prove that the PWT can be solved in pseudo-polynomial
time by dynamic programming taking into account the fact that the weights are
integer. The dynamic programming algorithm maps every possible weight w to
a packing plan P , i.e. f : w 7! P , which guarantees a certain profit. Then the
optimal packing plan P

⇤ is to be selected among all the plans that have been
obtained.

Here, we adopt these findings to derive two exact algorithms for the TTP.
Let · denote all possible weights for a given TTP instance. Let [⇧, f(·)] desig-
nate the best solutions for the instance with tour ⇧ obtained via the dynamic
programming for the PWT. As ⇧ is to be variable, the optimum objective value
of the TTP is Z

⇤ = argmax8⇧,w2· Z([⇧, f(w)]),. This yields the basis for two
of our approaches: dynamic programming (DP) and branch and bound search
(BnB). The following sections describe the two approaches as well as a constraint
programming (CP) technique adopted for the TTP.

3.1 Dynamic Programming

Our DP approach is based on the Held-Karp algorithm for the TSP [8] and on
the dynamic programming to the PWT [14]. Algorithm 1 depicts the pseudocode
for our approach. Let Ṡ = N \ {1} be a subset of the cities and k 2 N refer to
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DP for TTP

§ Let                     all cities except the first one. 
§ Let                          be the total weight and profit of items 

picked at city xn. We have

§ In general, we can compute                           from

§ Compute entries for each of the 2n subsets and n-1 
endpoints.
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As a simplified version of the TTP, Polyakovskiy and Neumann [16] have
recently introduced the packing while travelling problem (PWT), in which the
tour ⇧ is predefined and only the packing plan P is variable. Furthermore,
Neumann et al. [14] prove that the PWT can be solved in pseudo-polynomial
time by dynamic programming taking into account the fact that the weights are
integer. The dynamic programming algorithm maps every possible weight w to
a packing plan P , i.e. f : w 7! P , which guarantees a certain profit. Then the
optimal packing plan P

⇤ is to be selected among all the plans that have been
obtained.

Here, we adopt these findings to derive two exact algorithms for the TTP.
Let · denote all possible weights for a given TTP instance. Let [⇧, f(·)] desig-
nate the best solutions for the instance with tour ⇧ obtained via the dynamic
programming for the PWT. As ⇧ is to be variable, the optimum objective value
of the TTP is Z

⇤ = argmax8⇧,w2· Z([⇧, f(w)]),. This yields the basis for two
of our approaches: dynamic programming (DP) and branch and bound search
(BnB). The following sections describe the two approaches as well as a constraint
programming (CP) technique adopted for the TTP.

3.1 Dynamic Programming

Our DP approach is based on the Held-Karp algorithm for the TSP [8] and on
the dynamic programming to the PWT [14]. Algorithm 1 depicts the pseudocode
for our approach. Let Ṡ = N \ {1} be a subset of the cities and k 2 N refer to
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tour ⇧ is predefined and only the packing plan P is variable. Furthermore,
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n

}, x
n

, f

xn�1(Wxn �W

xn)])

+ P

xn +R

✓
d

xnx1

v

max

� ⌫W

xn

◆
.

Here, W

xn and P

xn are the total weight and the total profit of the items
picked in city x

n

. Clearly, Z([Ṡ \ {x
n

}, x
n

, f

xn�1(Wxn � W

xn)]) is optimal for

the tour [Ṡ \ {x
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n

}, x
n

, f

xn�1(Wxn �W

xn)])

+ P

xn +R

✓
d

xnx1

v

max

� ⌫W

xn

◆
.

Here, W

xn and P

xn are the total weight and the total profit of the items
picked in city x

n

. Clearly, Z([Ṡ \ {x
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n

}, x
n

]. Furthermore, such a relationship exists for every pair of
[S, i, f

j

(W
j

)] and [S \ {j}, j, f
j�1(Wj

� W

j
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)], where i 2 Ṡ \ S and j 2 S. In
fact, having an optimal solution for a given TTP instance, one can compute the
optimal solution for the instance that excludes the last city from the solution of
the original problem. Following this idea, we build our DP for the TTP.

The DP is costly in terms of the memory consumption, which reachesO(2nnC).
To reduce these cost, let E

U

define an upper bound on the value of a feasible
solution built on the partial solution [S, k, f

k

(·)] as follows:

E

U

([S, k, f
k

(·)]) = maxZ([S, k, f
k

(·)]) +
X

i2Ṡ\S
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Fig. 1. The trend of running time (sec.) of exact approaches with increasing number
of cities.

Running time (sec.)
Instance n m DP BnB CP

eil51 n05 m4 uncorr 01 5 4 0.018 0.023 0.222
eil51 n06 m5 uncorr 01 6 5 0.07 0.079 0.24
eil51 n07 m6 uncorr 01 7 6 0.143 0.195 0.497
eil51 n08 m7 uncorr 01 8 7 0.343 0.505 4.594
eil51 n09 m8 uncorr 01 9 8 0.633 1.492 63.838
eil51 n10 m9 uncorr 01 10 9 0.933 5.188 776.55
eil51 n11 m10 uncorr 01 11 10 2.414 23.106 12861.181
eil51 n12 m11 uncorr 01 12 11 3.938 204.786 -
eil51 n13 m12 uncorr 01 13 12 14.217 2007.074 -
eil51 n14 m13 uncorr 01 14 13 13.408 36944.146 -
eil51 n15 m14 uncorr 01 15 14 89.461 - -
eil51 n16 m15 uncorr 01 16 15 59.526 - -
eil51 n17 m16 uncorr 01 17 16 134.905 - -
eil51 n18 m17 uncorr 01 18 17 366.082 - -
eil51 n19 m18 uncorr 01 19 18 830.18 - -
eil51 n20 m19 uncorr 01 20 19 2456.873 - -

Table 1. Running time in seconds of DP, BnB and CP for different no. of cities and
items with 24 hours limit. ‘-’ denotes the case of out of time. ‘n’ and ‘m’ denote the
number of cities and items respectively.
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TTP-DP MA2B C5 DP-S5
Instance OPT RT Gap Std RT Gap Std Gap Std
eil51 n05 m4 multiple-strongly-corr 01 619.227 0.02 29.1 12.1 2.71 35.5 1.20e-6 41.3 0.0
eil51 n05 m4 uncorr 01 466.929 0.02 0.0 0.0 3.22 0.0 2.20e-6 0.0 2.20e-6
eil51 n05 m4 uncorr-similar-weights 01 299.281 0.02 0.0 0.0 3.21 7.8 2.40e-6 7.8 1.20e-6
eil51 n05 m20 multiple-strongly-corr 01 773.573 0.08 13.4 0.0 1.44 14.3 0.0 12.8 0.0
eil51 n05 m20 uncorr 01 2144.796 0.07 0.0 0.0 3.35 7.4 0.0 6.6 2.30e-6
eil51 n05 m20 uncorr-similar-weights 01 269.015 0.04 0.0 0.0 3.51 0.0 2.30e-6 0.0 0.0
eil51 n10 m9 multiple-strongly-corr 01 573.897 1.21 0.0 0.0 6.07 0.0 0.0 0.0 0.0
eil51 n10 m9 uncorr 01 1125.715 0.93 0.0 0.0 6.06 0.0 1.30e-6 0.0 1.30e-6
eil51 n10 m9 uncorr-similar-weights 01 753.230 0.86 0.0 0.0 5.87 0.0 0.0 0.0 0.0
eil51 n10 m45 multiple-strongly-corr 01 1091.127 14.89 0.0 0.0 7.99 0.0 0.0 0.0 0.0
eil51 n10 m45 uncorr 01 6009.431 6.39 0.0 0.0 8.6 6.6 2.30e-6 0.0 0.0
eil51 n10 m45 uncorr-similar-weights 01 3009.553 8.87 0.0 0.0 6.78 0.0 2.30e-6 0.0 2.30e-6
eil51 n12 m11 multiple-strongly-corr 01 648.546 4.58 0.0 0.0 6.08 4.6 2.20e-6 4.6 2.20e-6
eil51 n12 m11 uncorr 01 1717.699 3.94 0.0 0.0 7.21 0.0 1.20e-6 0.0 1.20e-6
eil51 n12 m11 uncorr-similar-weights 01 774.107 3.36 0.0 0.0 7.03 0.0 2.30e-6 0.0 2.30e-6
eil51 n12 m55 multiple-strongly-corr 01 1251.780 117.99 0.0 0.0 9.19 0.0 0.0 0.0 0.0
eil51 n12 m55 uncorr 01 8838.012 35.79 0.0 0.0 9.76 0.0 0.0 0.0 0.0
eil51 n12 m55 uncorr-similar-weights 01 3734.895 38.36 12.3 0.0 8.34 12.3 0.0 0.2 0.0
eil51 n15 m14 multiple-strongly-corr 01 547.419 39.82 0.0 0.0 7.87 14.1 1.30e-6 13.3 1.30e-6
eil51 n15 m14 uncorr 01 2392.996 89.46 0.0 0.0 7.28 3.8 0.0 3.8 0.0
eil51 n15 m14 uncorr-similar-weights 01 637.419 16.35 0.0 0.0 6.86 0.0 1.60e-6 0.0 1.60e-6
eil51 n15 m70 multiple-strongly-corr 01 920.372 3984.29 2.1 1.1 12.11 0.0 2.70e-6 0.0 2.70e-6
eil51 n15 m70 uncorr 01 9922.137 740.22 0.0 0.0 9.67 7 1.20e-6 1.9 0.0
eil51 n15 m70 uncorr-similar-weights 01 4659.623 867.78 0.0 0.0 7.98 0.0 0.0 0.0 0.0
eil51 n16 m15 multiple-strongly-corr 01 794.745 105.5 0.0 0.0 7.7 18.9 1.6e-6 18.9 1.6e-6
eil51 n16 m15 multiple-strongly-corr 10 4498.848 623.4 0.0 0.0 9.1 12.9 0.0 16.6 1.3e-6
eil51 n16 m15 uncorr 01 2490.889 59.5 1.0 0.7 8.4 1.6 2.3e-6 1.6 2.3e-6
eil51 n16 m15 uncorr 10 3601.077 211.5 0.0 0.0 9.0 7.1 1.6e-6 7.1 1.6e-6
eil51 n16 m15 uncorr-similar-weights 01 540.897 36.4 0.0 0.0 8.5 0.0 3.0e-6 0.0 3.0e-6
eil51 n16 m15 uncorr-similar-weights 10 3948.211 245.4 0.0 0.0 8.7 5.8 1.5e-6 13.6 0.0
eil51 n17 m16 multiple-strongly-corr 01 685.565 248.6 0.0 0.0 8.4 0.2 1.5e-6 0.0 1.5e-6
eil51 n17 m16 multiple-strongly-corr 10 3826.098 2190.4 0.0 0.0 9.8 0.0 1.5e-6 0.0 1.5e-6
eil51 n17 m16 uncorr 01 2342.664 134.9 0.0 0.0 8.3 0.0 0.0 0.0 0.0
eil51 n17 m16 uncorr 10 2275.279 554.5 0.0 0.0 9.6 0.0 0.0 0.0 0.0
eil51 n17 m16 uncorr-similar-weights 01 556.851 70.8 0.0 0.0 8.1 0.0 0.0 0.0 0.0
eil51 n17 m16 uncorr-similar-weights 10 2935.961 787.7 0.0 0.0 9.7 0.0 0.0 0.0 0.0
eil51 n18 m17 multiple-strongly-corr 01 834.031 715.7 7.9 0.8 10.2 9.2 0.0 12.9 1.7e-6
eil51 n18 m17 multiple-strongly-corr 10 5531.373 6252.4 0.0 0.0 10.5 0.4 1.5e-6 0.4 1.5e-6
eil51 n18 m17 uncorr 01 2644.491 366.1 0.0 0.0 9.7 0.2 0.0 1.8 0.0
eil51 n18 m17 uncorr 10 3222.603 1462.7 0.0 0.0 10.3 0.0 1.3e-6 0.2 0.0
eil51 n18 m17 uncorr-similar-weights 01 532.906 148.3 0.0 0.0 8.5 0.0 1.3e-6 0.0 1.3e-6
eil51 n18 m17 uncorr-similar-weights 10 4420.438 1929.3 0.0 0.0 9.9 0.0 2.9e-6 0.3 1.8e-6
eil51 n19 m18 multiple-strongly-corr 01 910.229 1771.6 0.0 0.0 9.3 20.1 1.6e-6 20.1 1.6e-6
eil51 n19 m18 multiple-strongly-corr 10 - - - - 10.4 - - - -
eil51 n19 m18 uncorr 01 2604.844 830.2 0.0 0.0 9.7 0.0 0.0 0.0 0.0
eil51 n19 m18 uncorr 10 4048.408 3884.3 0.0 0.0 10.9 0.0 1.4e-6 0.0 1.4e-6
eil51 n19 m18 uncorr-similar-weights 01 472.186 412.3 0.0 0.0 9.2 0.0 1.5e-6 0.0 1.5e-6
eil51 n19 m18 uncorr-similar-weights 10 5573.695 5878.8 0.0 0.0 10.5 0.0 0.0 0.0 0.0
eil51 n20 m19 multiple-strongly-corr 01 518.189 4533.7 0.6 0.6 11.1 14.1 1.4e-6 12.3 0.0
eil51 n20 m19 multiple-strongly-corr 10 - - - - 12.1 - - - -
eil51 n20 m19 uncorr 01 2092.673 2456.9 0.0 0.0 8.7 0.0 0.0 0.0 0.0
eil51 n20 m19 uncorr 10 3044.391 12776.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0
eil51 n20 m19 uncorr-similar-weights 01 451.052 1007.7 0.0 0.0 7.9 0.0 0.0 0.0 0.0
eil51 n20 m19 uncorr-similar-weights 10 4169.799 15075.7 0.0 0.0 9.4 0.0 0.0 0.0 0.0

Table 3. Comparison between DP and the approximate approaches running in 10
minutes limits. Each approximate algorithm runs 10 times for each instance and use
the average as the objective Obj. Gap is measured by OPT−Obj

OPT % and runtime (RT) is
in second. The results of C5 and DP-S5 are obtained when they reach the time limit
of 10 minutes per instance. Highlighted in blue are the best approximate results. DP
runs out of memory for the instances without results.

Evaluation	Heuristics	on	small	benchmarks



Conclusions

§ TTP is a multi-component problem combining TSP and 
KP. 

§ Many heuristic algorithms have been developed for TTP.
§ We have shown exact approaches for PWT and TTP 

based on dynamic programming.
§ Design gives insights into the interaction of the 

subproblems in TTP.
§ Approaches allow to evaluate the quality achieved by 

state of the art heuristics.
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