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Optimisation and Logistics

Supply Chain Management (Australian Research Council funded)

= Large scale industrial optimisation problems with many
interacting components.

Dynamic Constraints (ARC funded)
= Algorithms for problems with dynamically changing constraints.

Dynamic Adaptive Software Configurations (ARC funded)*
= Self-adapt system configurations to changing conditions.

Lots of other knowledge, either in-house or via international
collaborations, e.g. more theory, system modelling, speed-up of
simulations (algorithmically or using machine learning)...



Some of the activities of Optimisation and
Logistics 2016-2018

ACM Genetic and Evolutionary Computation Conference 2016
(General Chair: Frank Neumann)

NII Shonan Meeting on “Computational Intelligence for Software
Engineering, Shonan Village Centre, Japan.

Organizers: Hong Mei (Peking), Frank Neumann (UoA),
Xin Yao (Birmingham)

Dagstuhl Seminar on “Automatic Algorithm Selection and
Configuration”, Schloss Dagstuhl, Germany

Organizers: Heike Trautmann (Muenster), Holger Hoos
(Vancouver), Frank Neumann (UoA).

NII Shonan Meeting on “Data-Driven Search-Based Software
Engineering’, Shonan Village Centre, Japan.

Organizers: Markus Wagner (UoA), Leandro Minku (Leicester),
Ahmed E. Hassan (Queens U), John Clark (York)

Australasian Conference on Artificial Life and Computational
Intelligence 2018

(General Chair: Markus Wagner)

International Workshop on Benchmarking of Computational
Intelligence Algorithms, BOCIA, http://iao.hfuu.edu.cn/bociai8
(Co-Chair: Markus Wagner)
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Approximation-Guided Evolutionary
Multi-Objective Optimization

Joint work with Frank Neumann (U Adelaide), Karl Bringmann (ETH
Zurich), Tobias Friedrich (Hasso Plattner Institute)



Evolutionary Algorithms:

Darwin’s “survival of the fittest”

Intialisation

Parent selection

Y

Temination

parent population

Population | (size 1)

(size A)
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Parents

offspring populationv

Recombination

Muiation

Survivor selection
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Example with two decision variables




Multi-Objective Optimisation

Many problems have more than one goal function
Example: Buying a new car

speed

There 1s no single optimal function value

Present the different trade offs
to a decision maker




Evolutionary Multi-Objective Optimisation

Try to compute/approximate the Pareto front by EAs

Evolve the population of an EA into a set of
Pareto optimal solutions

Approximation algorithms exist for many problems
but what about multi-objective optimisation?
- Many implicit approaches, but no explicit ones!




Preliminaries

We consider minimization problems
> d>2 objective dimensions

» objective functions f.: S 2 R, ] <i <d map the search
space S into the real numbers

Dominance relation

For two objective vectors x=(x,, ..., x;) and y=(y,, ..., y,), wWith
x,y ER, we define

xsyiff x,<y, forall 1<i=<d, (x weakly dominates y)
x <y iff x <y and xzy. (X strongly dominates y)

Relations translate to search points (elements of S)

Set of all non-dominated objective vectors is called the Pareto front.

24



Our overall idea for Approximation-Guided
Evolution (AGE)

= We keep an unbounded archive A of non-dominated
points seen so far.

= The archive is an approximation of the “true” Pareto
front.

= The goal is to have a population P that approximates the
archive as best as possible.

= We use additive approximation to measure
approximation quality.

= Multiplicative approximations can be used in a similar
way.



Additive Approximation

Definition. For finite sets §,7 C#, the additive
approximation of T w.r.t. S is defined as

a(S,T) := max min max (s, — ¢;)
s€S €T l=i=sd
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Additive Approximation

Definition. For finite sets §,7 C#, the additive
approximation of 7 w.r.t. S is defined as

a(S,T) := max min max (s, — ¢;)
s€S €T l=i=sd

)
V)

Given the set of blue points.
How well does it approximate the red points?

.

o(@sO)=max(1.0; 0.0; 0.2)=1

27



Additive Approximation

Goal. Minimize the approximation of the population P (our
output) w.r.t. to the archive A (all points seen so far).

Problem. a(A, P) is not sensitive to local changes of P:
measures only improvements of points which are currently
worst approximated.

Solution. Consider the set B={a({a}, P) | aEA}. Sort B
decreasingly and minimize S (A, P) :=(a,, ..., a4)
lexicographically.

28



Our contribution

Assuming that the archive approximates the Pareto
front, we measure the quality of the population by its
approximation w.r.t. the archive:

» Any set of feasible solutions constitutes an
approximation of the Pareto front, and

» we optimize the approximation w.r.t. all solutions seen
to far.
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Our contribution

Assuming that the archive approximates the Pareto
front, we measure the quality of the population by its
approximation w.r.t. the archive:

» Any set of feasible solutions constitutes an
approximation of the Pareto front, and

» we optimize the approximation w.r.t. all solutions seen
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Our contribution

Assuming that the archive approximates the Pareto
front, we measure the quality of the population by its
approximation w.r.t. the archive:

» Any set of feasible solutions constitutes an
approximation of the Pareto front, and

» we optimize the approximation w.r.t. all solutions seen

N,

population
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Simple Algorithm

Based on S, it is easy to come up with an algorithm!

Population of size u.
1. Generate 4 offspring.

2. Iteratively remove individual p from (u UA), for which
S (A, P\{p })is minimal. drop point with smallest contribution

3. (Add all non-dominated points to the archive.)

e I

population
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Runtime

We work with a population size of y and generate in each generation A
offspring.

Having generated N solutions, we get the following runtime bounds.

Simple algorithm O( N (u+A) IAl (d (u+A) + log 1Al ) )

Works well when u+4 is small, but e.g. for u+4=100 becomes slow
due to (u+4)? factor.

Fast algorithm O( N (u+4) I1Ald)

Idea: clever selection of the u individuals for the next generation,

looking at the worst approximation for which a population
point p is responsible.

(for technical details: see IJCAI paper)

Problem: Runtime grows linearly with the archive size

35



Development of the Unbounded Archive
Size

DTLZ 2, d=3

archive — A t =578, a=0.05

size

20,000

10,000

evaluations

25,000
35,000
45,000
55,000
65,000
75,000
85,000
95,000

I
(- -
(- -
q Oﬁ
0 L0
™

100.000 evaluations, averages of 100 independent runs



E—Dominance Appr()aCh [based on Laumanns et al. ’02]

€grid -

€grid 2 - €grid 3 - €grid 4 - €grid



= Assign to each objective vector x its box-vector
depending of €g4.

Subroutine 7: Function floor

input : d-dimensional objective vector z, archive parameter €g.q
output: Corresponding vector v on the e-grid

1 fori=1to d do v[i]%LﬂJ;

Egrid

= Archive size is bounded by

d—1
€grid
‘ ’ . Lgde

where p (

Q.

K = max

1=1 seS

max f;(s ))



Development of the Archive Size

DTLZ 2, d=3
archive | " 0 1 —a— €grid = 0 :t =578, a = 0.05
size —4— €4rid = 0.001 : £ = 600, a = 0.05
20000 —®— €grid — 0.01:t= 74, a = 0.05
—k— €gria = 0.1:1= 14, a =0.10
—B— €4ria =1.0:1= 12, a=0.56
10,000
0 x ran ra ra 7a 7ay ray ray .
S 2 82 2 82 82 82 82 8 & evaluations
S & & & & & & & &5 &
Yo Yo R Yo R Y= T Yo R Yo R Yo R Yo R YR Yo
— o o < L0 Ne) I~ o0 @)
u=A=100.

N=100.000 evaluations, averages of 100 independent runs



Experiments

= NSGA-II, IBEA, SPEA2, SMS-EMOA Note: MOEA/D was
with approx hyp SMS- EMOA MO-CMA-ES new back then!
AGE with £,,4=0, £4,;4=0.1, £,,;3=0.01

= ZDT 1/2/3/4/6
WEFG 1-9 (eachw1thd 2 and d=3)
LZ 1-9
DTLZ 1/2/3/4 (each with d=2,...,20)

- 80 functions
Limits: 4h (and varying numbers of evaluations)

= u=100, SBX, PM, implemented in jMetal

(code is available online:
http://cs.adelaide.edu.au/~markus/publications.html -> GECCO 2013)




Results

approximation for DTLZ 3

(smaller = better)
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Results

approximation for DTLZ 3
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Results

approximation for DTLZ 4

(smaller = better)
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Summary

= Approximated Guided Evolution (AGE) for multi-
objective optimization which works with a formal notion
of additive/multiplicative approximation.

= AGE outperforms state-of-the-art approaches, in terms
of additive approximation and covered hypervolume (for
DTLZ 1 and 3), given a fixed time budget (4h).

= This holds, in particular, for problems with many
objectives, which most other algorithms have difficulties
dealing with.
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EMO Applications (in Adelaide)

» Team Cycling: race time vs energy consumption

= Android Apps: energy consumption vs deviation from
test oracle

= Wind energy: power output vs vs cable
= Wave energy: power output vs vs cable
= Travelling thief: profit vs weight collected

...and others...

Note: typically, our code is online.



Travelling Thief Problem

http://cs.adelaide.edu.au/~optlog/research/
With code, instances, results, papers, ... (two competitions)




M THE UNIVERSITY
OF ADELAIDE

AUSTRALIA

University

o Of

Sheffield.
——

FARMZEMARKF

Nanjing University of Aeronautics & Astronautics

A case study of algorithm selection
for the travelling thief problem

Joint work with: Marius Lindauer, Mustata Misir,
Samadhi Nallaperuma, Frank Hutter




Travelling Thief Problem (2013, read-world
characteristic: interdependent problems)

Definition
TSP part: n cities

N

start/end

49



Travelling Thief Problem (2013, read-world
characteristic: interdependent problems)

Definition

TSP part: n cities

KP part: m items (weights & profits), capacity W
Interdependence:

renting rate R

travel speed v, , =>v(load) =>v,,,
objective score: totalProfit — R * travelTime

start/end W

50



Renting rate Travel fromcityitoi+linm

n

m; da:n:cl ., daiiﬂcz' 1
Z([H7P]) :Zzpmym -k ('Umax — VWg;n i Z Umax — ;W$z>

1=1 k=1 1=1

profits - /

= Umax —VUmin

Travel from last city to first city w

start/end W




TTP Situation (2016)

= Many algorithms have been introduced:

Initially generic hill-climbers, successively more and more
understanding was encoded

Deterministic construction heuristics, restart strategies, holistic
approaches

MIP & dynamic programming for special case
Increasing computational cost

= “Best algorithm” depends on instance (given the
computation budget of 10 minutes).

= There are exact approaches based on Dynamic
Programming now, I might get to them later...
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Our Contributions

1. Comprehensive dataset for algorithm performance

comparison
(21 algorithms on 9720 instances)

2. Comprehensive dataset for instance analysis
(55 features of 9720 instances)

3. Algorithm portfolios based on 1. and 2.
4. Analysis of 3.
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1. Algorithm Performance

» History
— Bonyadi et al. (2013): 4 cities, 6 items, exhaustive enumeration

— Polyakovskiy et al. (2014):

* 9720 instances established with up to almost 100Kk cities and 1m
items
* First heuristics:
1.  Strong focus on very good TSP tours (using LKH).
2.  Packing plan creation using hill-climbers or a deterministic
construction heuristic.

— Since then: more construction heuristics, co-evolutionary
approaches, holistic attempts, fast implementations of search
operators (for quick objective score update), special case
algorithms, ...
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1. Algorithm Performance

= 9720 Instances vary widely
— 51-85,900 cities (based on TSPlib)

— three different KP types (shown to have different difficulties for
KP solvers)

— 1-10 items per city, different KP sizes
— Renting rate R set so that there is at least on TTP solution with
objScore=0
= Researchers use not all of them (except Polyakovskiy et
al., 2014), for example:
— Mei et al. (2014): 30 instances with 11k-34k cities
— Faulkner et al. (2015): 72 instances with 195 to 86k cities
— Wagner (2016): 108 instances with 51 to 1000 cities

- complete picture not possible
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1. Algorithm Performance

worst average best ever
performance performance

= Benchmarking: .

— 9720 instances, once, 10 minutes, rescaled to [0,1],
-1 for crash/time-out

— Averages over all:

0.5

MATLS
S1
S2
S3
S4
S5
C1l
C2
C3 —
C4
C5
C6
CS2SA
M3

Construction heuristics SH/DH left out due to poor performance.
Dataset available online: http://tinyurl.com/ttpadelaide

M4
M3B
M4B

scaled performance
(larger = better)

1

0.93
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2. Instance Characteristics

= 47 TSP features (Mersmann et al. 2012/2013, Nallaperuma et al.

2013/2014, ...)

11 distance features (min/max/mean/fractions/...)
1 mode feature (distribution of edge cost)

6 cluster features (GDBSCAN, number of clusters,
mean distances to cluster centroids)

6 nearest neighbour features (min/max/mean/...)
5 angle features (min/... between node an NN)

11 MST features (min/max/mean depth, ...)

2 convex hull features

= 4 KP features

Capacity, knapsack type, total number of items, number of items per city

= TSP: number of cities
= 3 TTP features

— Renting ratio, minimum travel speed, maximum travel speed

Note: not too many are “really” TTP-specific.

Dataset available online: http://tinyurl.com/ttpadelaide
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3. Algorithm Selection

As seen previously: no single algorithm dominates all others
on all instances.

Exploit this using algorithm selection (idea from the 1970s).

Algorithm
Portfolio

Instance

Major success story SATzilla (2008): empirical performance
model predicts performance of an algorithm and selects the
one with best prediction + schedule to solve easy instances

without instance feature overhead
58



3. Algorithm Selection

= We are using AutoFolio (Lindauer et al. 2015):

— FlexFolio (Hoos et al. 2014): several different algorithm selection
methods

— SMAC (Hutter et al. 2011): search for best selection approach +
parameter tuning

= Example: AutoFolio determines whether classification or
regression performs better, and in case of classification
the parameters of a random forest (many decision trees)
are tuned.

59



[Random Forest]

Instance
Random forest: lots of
decision trees ‘
trained on
Person (a) random

subspaces
StWher
Exam Day ( ‘ l 2 '\l
O

Yﬂo Weekemeekday
Beer Nobeer  Beer No beer /{ N b }\

|
Actually, there is an RF with 10 trees for each pair of algorithms = ~n?/2 RFs \
O

Then, for each pair of algorithms <A, A> (i !=j),

a random forests (consisting of 10 randomized decision trees) votes either for A, or A,
and this one gets a point.

In the end, the algorithms with the most points gets selected.
OuUtpuUt. axXTeq, IX grecm & rea

60
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3. Algorithm Selection

= Results
Simulated System = Approach Performance
Single Best (S5) Baseline 0.959

Comparing different algorithm selection approaches on T'TP

Near-1 performance might be due to the large number of instances (almost 10k).

AutoFolio (1d, 4 cores) vs Satzilla’11-like: negligible improvement (chose RF, tuned parameters).
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4. Portfolio Analysis

» Complementarity important for good portfolios
— Single best vs oracle: difference of only 0.041
— Remember that 19 of 21 algorithms had >0.8 avg.

= Correlations across instances (Spearman’s rank
coefficients), and clustered

&\ D o ol
P IR PP PP @ Ce O

— Algorithms form clusters was ‘
reflecting their historical MEE =
development |

— Analysis of similarity only RDELS

MATLS |
(not performance) G|
S4t
Cl|
S3t
S1t

S2
C5F
c6F
S5}
C3}
Ca4t




4. Portfolio Analysis

similar algorithms, fails to

consider synergies

S5 19038.091
C4 18975.841
C3 18959.998
C6 18802.206
C5 18751.375
MATLS 18593.291
S2 18168.753
C1 18126.154
S4 18114.349
C2 18114.051
S118106.878
S3 18090.325
EA 17610.045
RLS 17547.679
M3 17480.118
M4 17444.665
M4B 16248.037
M3B 16227.732
Dh 14226.355
SH 10356.043
CS2SA 6517.236

Problem: penalises
correlated algorithms

Standalone performance  Shapley value Marginal contribution -

Problem: too much credit for

(sum across all instances,
+9720 offset for negative
performance)

(contribution to any
subset of the
algorithm portfolio)

(performance increase

of portfolio when

algorithm is added)
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4. Portfolio Analysis

Feature importances

Feature calculation times
need to be considered
(e.g. almost 10 minutes
for pla7397* instances)

In instance file header! & 7

How about portfolios that use only Top 1-5 features? -
(S5 only: 0.959, best portfolio before: 0.993)
Top 1-5: 0.977, 0.980, 0.986, 0.988, 0.992 o



4. Portfolio Analysis

= What else did we learn?

— Challenging: lots of dimensions to navigate, 10k instances, 21
algorithms, noise in the underlying algorithm performance data

— For example, using only KP capacity:

« The smallest 1/3™ of the instances is dominated by the most
complex algorithms, amongst those the ones that produce solutions
with the longest tours.

 The largest 1/3" is dominated by CS2SA (a fast implementation of
search operators) and S5 (resampling solutions).

 Algorithm selection in the central 1/3rd seems to be difficult. (why?)
—> Certain algorithms dominate, but they are not very

complementary as only few feature values are necessary to
achieve near-optimal portfolio performance.
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Summary

= New datasets established:
— 21 algorithms on 9720 instances

— Raw data available as CSV and in the ASlib format
http://cs.adelaide.edu.au/~optlog/research/ttp.php, ASlib URL to be
added

= Portfolios:
— Few algorithms needed
— Few features needed (can be determined quickly)

= Future directions:
— Representative subset (which criteria?)
— More analyses
— (more algorithms...)
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"Packing While Travelling”

= Simplification of the TTP

= Tour is fixed, and we only deal with the packing
component

= Sergey/Frank: DP/FPTAS

= This gave rise to the first non-trivial complete TTP
approach (SEAL 2017), for relatively small instances



Traveling Thief Problem (TTP)

Renting rate

= Fitness is given by /

Travel fromcityitoi+linm

/

n m; n—l Ay 2.
Z(MLP) =) > puwyix — R ( dm_”ilwx + —;1Wm>

i=1 k=1 Ymaz i=1 Umas

— Ymax —Umin
/ T o v

profits Travel from last city to first city

M; ={e3y, €35 -, €33}
2
1
start/end
5

Frank Neumann




Packing While Traveling

Assume that the tour is fixed . Then we only have to deal with the packing
component.
B(z) = P(z) - R-T(x),
e
where v —

profit Cost dependent on weight of chosen items

P(x)=>" S:Pijxij

i=1 j=1

represents the total profit of selected items and

=1 Umax — V Z Wk Tk
k=11=1
o >@ >@ >@ o >@
1 2 3 4 n 1

Frank Neumann



Dynamic Programming for PWT

= Sort the items as they appear on the path, breaking ties
for items at the same city arbitrarily.

= Use dynamic programming (similar to classical o/1
knapsack) and process the items in sorted order. Store
for the first i items and each possible weight the maximal
possible benefit (delete dominated entries).

= Size of the table in polynomial in m and the maximum
possible weight => algorithm with pseudopolynomial
runtime.

Frank Neumann



DP for PWT

Store for the first i cities on the path and every possible
weight, the maximal possible objective value.

ma {Bz’ 7',k 1 1
/8’[, 7 k—w; +p7/.7 Rdin(’vmax—Vk’ - ’Umaa:_y(k_wij))

[1] [2] [n]
weight | R R R R
B 150

k-WIJ i,,j’
\ 200
k B, , B,. 210
, 3 ,
220
210

To decide: keep the previous plan OR add the item?

Frank Neumann



Experimental Results (Exact)

Exact Approaches

Instance m oPrPT eMIP =10 S B

RT(s) RT(s)| RT(s)

uncorr_ 01 100 1651.697 1.217 5.694 0.027
uncorr_ 06 100 | 10155.4942 12.605 3.698 0.065
uncorr_ 10 100 | 10297.7134 3.525 0.795 0.036
uncorr-s-w__01 100 2152.6188 0.328 7.566 0.001
uncorr-s-w__06 100 4333.8512 12.59 2.215 0.012
uncorr-s-w__10 100 9048.4908 37.144 1.107 0.022
b-s-corr_ 01 100 4441 .9852 1.42| 125.954 0.014
b-s-corr 06 100 | 10260.9767 4.509 22.541 0.101
b-s-corr 10 100 | 13630.6153 11.013 27.081 0.187
uncorr_ 01 500 | 17608.5781 19.594 27.581 0.247
uncorr_ 06 500 | 56294.5239| 384.213 13.354 2.829
uncorr_ 10 500 66141.484| 211.302 2.325 4.01
uncorr-s-w__01 500 | 13418.8406 4.337 34.866 0.09
uncorr-s-w__ 06 500 34280.473 346.43 7.285 1.04
uncorr-s-w__ 10 500 | 50836.6588| 519.902 3.338 2.022
b-s-corr 01 500 | 21306.9158 40.482| 624.204 1.534
b-s-corr 06 500 | 69370.2367| 236.387 97.313| 14.616
b-s-corr 10 500 | 82033.9452| 376.569| 21&8.728| 22.011
uncorr_ 01 1000| 36170.9109| 218.306| 114.567 1.872
uncorr_ 06 1000| 93949.1981(1261.949 36.847| 20.944
uncorr_ 10 1000|122963.6617| 620.896 4.821| 30.116
uncorr-s-w__ 01 1000| 27800.9614| 241.957| 399.158 0.802
uncorr-s-w__06 1000| 61764.4599|1152.624 12.792 9.872
uncorr-s-w__10 1000(103572.40741|2146.408 7.644| 15.047
b-s-corr 01 1000| 46886.1094| 378.551|6129.531| 11.783
b-s-corr 06 1000|125830.6887| 643.533| 919.201| 94.523
b-s-corr 10 1000|{161990.5015| 862.572| 1646.52|151.601

Frank Neumann




NP-hardness (Non-negative benefit)

= PWT solutions can attain positive and negative values.

Theorem 2. Given a PWT instance, the problem to decide whether there is a solution
x with B(xz) > 0 is NP-complete.

= This rules out meaningful multiplicative approximations.

Frank Neumann



FPTAS for PWT

s et B@)=-R- ;di/vmax
the baseline travel cost when the vehicle travels

empty.

= Consider the objective function

which gives the amount gained over the baseline

travel cost.
s [et OPT = max B'(x).

xe{0,1}™
= We design a fully polynomial time approximation
scheme for B’. Solution x of quality B'(z) > (1 —¢)OPT.

Runtime polynomial in n and 1/e.



FPTAS for PWT

= Assume each item e, on its own makes a positive
contribution.

. Con51der1ng the single items e.;, we have.

1J J

ZZ (es5) — R-T(es;))x}; — B(0) > B(x*) — B(#) = OPT

1=1 7=1

= Pick item with the large% value B’ V&lll§ %n set
Mmaze,.c B (€

= Wehave L= OPT/mand L < OPT.

= Set r=¢cL/m, round B'(z)to [(B'(z)/r]  and run DP.

= Number of rows in DP table is upper bounded by
(OPT/r)+1 < OPT/(eL/m) +1<m?/e + 1

* Errorineachstepisatmost ,—cr/m<coPT/m

" Atmost msteps. So,weget  p/.y > (1-oPT.



Algorithm 1 FPTAS for B’ (z)
e Set L = max, enm B'(€ij),r =eL/m,and d;, = >, di, 1 <i <.

e Compute order < on the items e;; by sorting them in lexicographic order with
respect to their indices (i, 7).

e For the first item e;; according to <, set 5(4,,0) = B'(0) and 3(i, j, w;;) =
B/(Gij).

e Consider the remaining items of M in the order of < and do for each item e;;
and its predecessor e,

— In increasing order of k do for each 3(i', j', k) with 5(i’, ', k) # —o0

« If there is no 5(i, j, k") with (|8(i, 7,k )/r| > |B(i',5',k)/r] and
kK < k),
set 8(i, 7, k) = max{B(i, j, k), 5(, 7', k)}.

* If there is no (4, j, k') with (| 8(¢, 5, k") /r] > [ B, j', k + wij)/r|
and k' < k + wz-j),
set B(Z,],k + wij) = maa:{ﬁ(i,j,k: + wij),ﬁ(i’,j’,k) + Dij +
Rd;n( 1_Vk — L )}

Umax Umaz_y(k+wij)

Theorem 3. Algorithm 1 is a fully polynomial time approximation scheme (FPTAS)
for the objective B'. It obtains for any ¢, 0 < ¢ < 1, a solution x with B'(x) >
(1 —€) - OPT in time O(m3 /¢).
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Experiments FPTAS

DP FPTAS
Instance m e = 0.0001 e = 0.001 e=0.01 e=0.1 e=0.25 e=0.5 e=0.75
OPT RT(s)|AR(%) RT(s)|AR(%) RT(s)|AR(%) RT(s)]AR(%) RT(s)]AR(%) RT(s)|AR(%) RT(s)|AR(%) RT(s)
instance family ei1101_large-range
uncorr_ 01 100 | 69802802.2801 0.03 100  0.002 100  0.002 100  0.002 100  0.002 100  0.002 100  0.002 100 0.029
uncorr__ 06 100 | 204813765.6933  0.053 100 0.019 100 0.02 100  0.019 100 0.019 100 0.019 100 0.019 100 0.049
uncorr 10 100 | 172176182.1249  0.041 100 0.028 100 0.028 100  0.028 100 0.028 100 0.027 100  0.026|99.9628 0.037
uncorr-s-w__01 100 | 36420530.5753  0.006 100 0.003 100  0.003 100  0.003 100 0.003 100  0.003 100  0.002 100 0.004
uncorr-s-w__06 100 | 148058928.2952  0.098 100 0.072 100  0.502 100  0.072 100 0.069 100 0.065 100 0.059 100  0.07
uncorr-s-w__10 100 | 142538516.4602  0.136 100 0.101 100  0.104 100 0.103]99.9978  0.096/99.9978  0.086]99.9978  0.073|99.9978  0.089
m-s-corr_ 01 100 | 19549602.2671  0.003 100 0.002 100 0.002 100  0.002 100 0.002 100 0.002 100  0.001 100 0.002
m-s-corr_ 06 100 | 137203175.1921  0.147 100 0.115 100 0.118 100  0.113 100 0.089 100 0.063 100 0.04 100 0.043
m-s-corr__10 100 | 225584278.6004  0.424 100 0.326 100  0.329 100  0.312 100 0.2 100  0.179 100  0.086 100 0.073
uncorr_ 01 500 | 385692662.0930 0.47 100  0.451 100  0.454 100  0.619 100  0.508 100  0.445 100  0.43 100 0.517
uncorr__06 500 | 958013934.6172  3.539 100 3.749 100 7.431 100  3.947 100 3.69(99.9996 3.677[99.9996 3.486(99.9993 3.021
uncorr__10 500 | 844949838.4389 4.87 100 5.393 100 5.716 100  5.483 100 5.135 100 4.851(99.9992 4.609(99.9992 4.295
uncorr-s-w__01 500 | 182418888.9364  1.157 100 1.157 100 1.199 100 1.145]99.9995 1.112(99.9995 1.063(99.9995 0.977(99.9904 0.929
uncorr-s-w__06 500 | 780432253.0187  22.39 100  25.04 100  26.276 100 24.024 100 23.282(99.9997 21.756|99.9997 18.293|99.9997 18.411
uncorr-s-w__10 500 | 714433353.7957  30.959 100 34.458 100  39.004 100  34.308 100 32.308|99.9996 28.792| 99.999 26.392| 99.999 25.971
m-s-corr_ 01 500 | 96463941.1275  2.335 100 2.478 100 2.782 100  2.695 100 1.509 100 0.963 100 0.546 100 0.408
m-s-corr__ 06 500 | 666701000.1488 108.705 100 126.833 100 139.63 100 122.75 100 62.479 100 33.547 100 17.959 100 10.642
m-s-corr__10 500 [1082009880.5886 262.999 100 299.862 100 317.352 100 274.284 100 145.087 100 78.47(99.9994 41.816(99.9994 25.924
uncorr 01 1000| 777386336.9660  4.222 100 4.397 100  4.347 100  4.309 100 4.341 100 4.377 100 4.28 100 4.24
uncorr__ 06 1000{1933319297.4248  46.043 100 51.383 100 53.087 100  48.861 100 52.957|99.9999 52.062|99.9997 50.286|99.9996 51.488
uncorr__10 1000{1693797490.1704  64.485 100  76.744 100  78.847 100 74.128 100 82.754 100 77.057 100 72.283 100 72.567
uncorr-s-w__01 1000 361991311.8336  14.254 100  15.072 100 15.67 100 14.523 100 14.11 100 14.039 100 12.088 100 11.129
uncorr-s-w__06 1000|1574469459.3163 286.843 100 318.096 100 330.508 100 337.289 100 334.318 100 307.588|99.9998 270.013{99.9996 245.927
uncorr-s-w__10 1000(1439410696.3695 393.793 100 438.775 100  455.83 100 464.527 100 441.955 100 433.672(99.9994 378.917(99.9994 340.813
m-s-corr__ 01 1000 191170309.5684 46.858 100  58.031 100 59.987 100  58.101 100  31.703 100 18.771 100 10.728 100  6.831
m-s-corr__06 1000(1315708161.7720 2393.205 100 2512.281 100 2606.412 100 1921.573 100 666.749 100 364.452 100 208.969 100 150.06
m-s-corr__10 1000(2163713055.3759 6761.49 100 6668.535 100 6441.906 100 4526.653 100 1334.882 100 703.258 100 397.527 100 282.211

Frank Neumann



DP for TTP

Let 11, /(*)] be the best solution obtained when using
permutation n

We can obtain an optimal solution for TTP by considering all
permutations, 7* = arg maxym we. Z([I, f(w)])

Idea:

Adapt dynamic programming for TSP to TTP by making use of
DP for PWT.

Let S be a subset of nodes and 1 be the first city of the tour.

The DP for TSP stores for each S and endpoint k, the shortest
ath from city 1 to city k visiting all cities in S exactly once at

[5.k1.

For TTP store at [S,k,w] the lar%est benefit when ending at city
k with weight w (and visiting all cities in S exactly once)



DP for TTP

= Let $=N\{1} all cities except the first one.

= Let W,, and P,, be the total weight and profit of items
picked at city x,.. We have

Z([S, L, fo, We,)I") = Z([S \A{zn}, Tns fr,_, (W, — Wmn)])

BB diL’ 1
+Pmn—R< n )

= In general, we can compute |5, 7, f; (Wj)] from
S\ {5},7, fi-1(W; — W )], where i € S\ S and j € S.

= Compute entries for each of the 2" subsets and n-1
endpoints.



Experiments TTP (Exact)

Running time (sec.)

Instance n m DP BnB CpP
eil51_n05_m4_uncorr_01 5 4 0.018 0.023 0.222
eil51_n06_mb5_uncorr_01 6 5 0.07 0.079 0.24
eil51_n07_m6_uncorr_01 7 6 0.143 0.195 0.497
eil51_n08_m7_uncorr_01 8 7 0.343 0.505 4.594
eil51_n09_m8&_uncorr_01 9 8 0.633 1.492 63.838
eil51_n10_m9_uncorr_01 10 9 0.933 5.188 776.55
eilb1_nl11_m10_uncorr_01 11 10 2.414 23.106 12861.181
eilb1_nl12_-m11_uncorr_01 12 11 3.938 204.786 -
eil51_n13_-m12_uncorr_01 13 12 14.217 2007.074 -
eilb1_nl14_m13_uncorr_01 14 13 13.408 36944.146 -
eil51_nl15_-m14_uncorr_01 15 14 89.461 - -
eil51_nl16_m15_uncorr_01 16 15 59.526 - -
eil51_nl17_m16_uncorr_01 17 16 134.905 - -
eil51_nl18_m17_uncorr_01 18 17 366.082 - -
eil51_n19_m18_uncorr_01 19 18 830.18 - -
eil51_n20_m19_uncorr_01 20 19 2456.873 - -
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TTP-DP MA2B C5 DP-S5
Instance OPT RT|Gap Std RT|Gap Std|Gap Std
€il51_n05-m4_multiple-strongly-corr_01 619.227 0.02{29.1 12.1 2.71|35.5 1.20e-6[41.3 0.0
€il51_n05_m4_uncorr_01 466.929 0.02] 0.0 0.0 3.22| 0.0 2.20e-6| 0.0 2.20e-6
€il51_n05_-m4_uncorr-similar-weights_01 | 299.281 0.02| 0.0 0.0 3.21| 7.8 2.40e-6| 7.8 1.20e-6
€il51_n05_m20_multiple-strongly-corr_01 | 773.573 0.08{13.4 0.0 1.44[14.3 0.0/12.8 0.0
€il51_n05_m20_uncorr_01 2144.796 0.07| 0.0 0.0 3.35| 7.4 0.0| 6.6 2.30e-6
eil51_n05-m20_uncorr-similar-weights_01| 269.015 0.04| 0.0 0.0 3.51| 0.0 2.30e-6| 0.0 0.0
€il51_n10_m9_multiple-strongly-corr .01 | 573.897 1.21| 0.0 0.0 6.07| 0.0 0.0| 0.0 0.0
€il51_n10_m9_uncorr_01 1125.715 0.93] 0.0 0.0 6.06| 0.0 1.30e-6| 0.0 1.30e-6
€il51_n10_-m9_uncorr-similar-weights_01 | 753.230 0.86| 0.0 0.0 5.87| 0.0 0.0 0.0 0.0
€il51_n10_m45_multiple-strongly-corr_01 [1091.127 14.89| 0.0 0.0 7.99| 0.0 0.0 0.0 0.0
€il51_n10_-m45_uncorr_01 6009.431 6.39/ 0.0 0.0 8.6 6.6 2.30e-6| 0.0 0.0
€il51_n10_m45_uncorr-similar-weights_01{3009.553 8.87| 0.0 0.0 6.78| 0.0 2.30e-6| 0.0 2.30e-6
€il51 n12_m11_multiple-strongly-corr_01 | 648.546 4.58| 0.0 0.0 6.08| 4.6 2.20e-6| 4.6 2.20e-6
€il51 n12_ml11_uncorr_01 1717.699 3.94| 0.0 0.0 7.21| 0.0 1.20e-6| 0.0 1.20e-6
€il51_n12_m11_uncorr-similar-weights_01| 774.107 3.36| 0.0 0.0 7.03| 0.0 2.30e-6| 0.0 2.30e-6
€il51_n12_m55_multiple-strongly-corr_01 [1251.780 117.99| 0.0 0.0 9.19| 0.0 0.0 0.0 0.0
€il51_n12_m55_uncorr_01 8838.012 35.79| 0.0 0.0 9.76| 0.0 0.0| 0.0 0.0
€il51_n12_mb55_uncorr-similar-weights_01(3734.895 38.36/12.3 0.0 8.34[12.3 0.0 0.2 0.0
€il51_n15_m14_multiple-strongly-corr_01 | 547.419 39.82| 0.0 0.0 7.87[14.1 1.30e-6|13.3 1.30e-6
€il51 n15_ml14_uncorr_01 2392.996 89.46| 0.0 0.0 7.28| 3.8 0.0| 3.8 0.0
€il51_n15_ml14_uncorr-similar-weights_ 01| 637.419 16.35] 0.0 0.0 6.86| 0.0 1.60e-6| 0.0 1.60e-6
eil51_n15_m70_multiple-strongly-corr_-01 | 920.372 3984.29| 2.1 1.1 12.11| 0.0 2.70e-6| 0.0 2.70e-6
€il51_n15_m70_uncorr_01 9922.137 740.22| 0.0 0.0 9.67 7 1.20e-6| 1.9 0.0
€il51_n15_m70_uncorr-similar-weights_01(4659.623 867.78| 0.0 0.0 7.98| 0.0 0.0 0.0 0.0
eil51_n16_-m15_multiple-strongly-corr_01 | 794.745 105.5| 0.0 0.0 7.7|/18.9 1.6e-6|18.9 1.6e-6
€il51_n16_m15_multiple-strongly-corr_10 [4498.848 623.4| 0.0 0.0 9.1{12.9 0.0|/16.6 1.3e-6
€il51_.n16_m15_uncorr_01 2490.889 59.5| 1.0 0.7 8.4 1.6 2.3e-6| 1.6 2.3e-6
€il51_n16_m15_uncorr_-10 3601.077 211.5| 0.0 0.0 9.0] 7.1 1.6e-6| 7.1 1.6e-6
€il51 n16_m15_uncorr-similar-weights_01| 540.897 36.4| 0.0 0.0 8.5/ 0.0 3.0e-6| 0.0 3.0e-6
eil51_n16-m15_uncorr-similar-weights_10|3948.211 245.4| 0.0 0.0 8.7| 5.8 1.5e-6[13.6 0.0
€il51_n17_m16_multiple-strongly-corr_01 | 685.565 248.6| 0.0 0.0 8.4| 0.2 1.5e-6| 0.0 1.5e-6
€il51_n17_ml16_multiple-strongly-corr_10 [3826.098 2190.4| 0.0 0.0 9.8] 0.0 1.5e-6| 0.0 1.5e-6
€il51_n17_-m16_uncorr_01 2342.664 134.9| 0.0 0.0 8.3| 0.0 0.0| 0.0 0.0
€il51 nl17_ml6_uncorr_10 2275.279 554.5| 0.0 0.0 9.6| 0.0 0.0| 0.0 0.0
€il51_nl17_ml6_uncorr-similar-weights_01| 556.851 70.8/ 0.0 0.0 8.1] 0.0 0.0 0.0 0.0
€il51_n17_m16_uncorr-similar-weights_10{2935.961  787.7| 0.0 0.0 9.7| 0.0 0.0] 0.0 0.0
€il51 n18_m17_multiple-strongly-corr_01 | 834.031 715.7| 7.9 0.8 10.2| 9.2 0.0|112.9 1.7e-6
eil51_n18_m17_multiple-strongly-corr_10 |5531.373 6252.4| 0.0 0.0 10.5| 0.4 1.5e-6| 0.4 1.5e-6
€il51 n18_m17_uncorr_01 2644.491 366.1| 0.0 0.0 9.7| 0.2 0.0| 1.8 0.0
€il51 n18_m17_uncorr_10 3222.603 1462.7| 0.0 0.0 10.3| 0.0 1.3e-6| 0.2 0.0
eil51_n18_m17_uncorr-similar-weights_01| 532.906 148.3| 0.0 0.0 8.5/ 0.0 1.3e-6| 0.0 1.3e-6
€il51 n18_m17_uncorr-similar-weights_10(4420.438 1929.3] 0.0 0.0 9.9] 0.0 2.9¢-6| 0.3 1.8e-6
€il51_n19_m18_multiple-strongly-corr_01 | 910.229 1771.6] 0.0 0.0 9.3/20.1 1.6e-6/20.1 1.6e-6
€il51_n19_m18_multiple-strongly-corr_10 - - - - 104 - - - -
€il51 n19_m18_uncorr_01 2604.844 830.2| 0.0 0.0 9.7| 0.0 0.0| 0.0 0.0
€il51_.n19_m18_uncorr_-10 4048.408 3884.3| 0.0 0.0 10.9] 0.0 1.4e-6| 0.0 1.4e-6
€il51_n19_m18_uncorr-similar-weights_01| 472.186 412.3| 0.0 0.0 9.2] 0.0 1.5e-6| 0.0 1.5e-6
€il51_n19_m18_uncorr-similar-weights_10(5573.695 5878.8| 0.0 0.0 10.5| 0.0 0.0 0.0 0.0
eil51_.n20-m19_multiple-strongly-corr_01| 518.189 4533.7| 0.6 0.6 11.1|14.1 1.4e-6[12.3 0.0
€il51_n20_m19_multiple-strongly-corr_10 - - - - 121 - - - -
€il51_.n20-m19_uncorr_01 2092.673 2456.9| 0.0 0.0 8.7| 0.0 0.0] 0.0 0.0
€il51_n20_m19_uncorr_10 3044.391 12776.0/ 0.0 0.0 9.8| 0.0 0.0| 0.0 0.0
€il51_n20_m19_uncorr-similar-weights_01| 451.052 1007.7| 0.0 0.0 7.9| 0.0 0.0 0.0 0.0
eil51_n20-m19_uncorr-similar-weights_10|4169.799 15075.7| 0.0 0.0 9.4| 0.0 0.0 0.0 0.0
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Conclusions

= TTP is a multi-component problem combining TSP and
KP.

= Many heuristic algorithms have been developed for TTP.

= We have shown exact approaches for PWT and TTP
based on dynamic programming.

= Design gives insights into the interaction of the
subproblems in TTP.

= Approaches allow to evaluate the quality achieved by
state of the art heuristics.




