Probabilistic Graphical Models (4): sampling-based approximate inference

Qinfeng (Javen) Shi
The Australian Centre for Visual Technologies,
The University of Adelaide, Australia

10 June 2011
Probabilistic Graphical Models:
1. Representation
2. Inference
3. Learning
4. Sampling-based approximate inference (Today)
5. Temporal models
6. ...
Sampling Outline

- Understanding samples
- Sampling techniques overview
- Sampling techniques in PGM inference
In fact, there is no way to check ’a sample’ is from a distribution or not — two totally different distributions can generate the same sample. For example, \textit{uniform}[0, 1] and gaussian \textit{N}(0, 1) can both generate a sample with value 0. Looking at a sample with value = 0 alone, how do you know its distribution for sure? What we really check (and know for sure) is the way that the samples were generated. When we say a procedure generates a sample from a distribution \(P \), what we really mean is that keeping sampling this way (by the procedure), the normalised histogram \(H^n \) with \(n \) samples is going to converge to the distribution \(P \). That is \(H^n \rightarrow P \) as \(n \rightarrow \infty \). If we don’t know the way that the samples were generated, we never know what’s the distribution for sure — we can only guess (e.g. using statistical tests) based on a number of available samples.
Sampling techniques overview

- Monte Carlo
- Importance sampling
- Acceptance-rejection sampling
- Markov chain Monte Carlo (MCMC)
Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling to compute their results.

```
repeat
  draw sample(s)
  compute result according to the samples
until sampled enough (or the result is stable)
```
Monte Carlo

To estimate π (area of a circle with radius r is $S_c = \pi r^2$).

Idea:

- draw a circle ($r = 1$) and a rectangle ($2r \times 2r$) enclosing the circle. We know the area of the rectangle is $S_{rec} = (2r)^2$. If we can estimate the area of the circle, then we can estimate π by $\pi = S_c/r^2$.

- Draw a sample point from the rectangle area uniformly. The chance of it being within the circle is S_c/S_{rec}. So if we throw enough points, we have $N_{within}/N_{total} \approx S_c/S_{rec}$. Thus $S_c \approx S_{rec} N_{within}/N_{total}$.

See a matlab demo.
Monte Carlo

#1000, \pi_{est}:3.156000, \pi:3.141593

Number of samples

\begin{align*}
\pi & \approx 3.156000 \\
\text{Estimated } \pi & \approx 3.141593
\end{align*}
To estimate an expectation:
Generate samples $x_i \sim q(X), i = 1, \ldots, N$.

$$\mathbb{E}_{X \sim q(X)}[f(X)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i),$$
Importance sampling

To compute $\mathbb{E}_{X \sim p(X)}[f(X)]$.

Assume $p(x)$ (target distribution) is hard to sample from directly, and $q(x)$ (proposal distribution) is easy to sample from and $q(x) > 0$ when $p(x) > 0$.

$$
\mathbb{E}_{X \sim p(X)}[f(X)] = \int_x p(x)f(x)\,dx
$$

$$
= \int_x q(x) \frac{p(x)}{q(x)} f(x)\,dx
$$

$$
= \mathbb{E}_{X \sim q(X)}[\frac{p(X)}{q(X)}f(X)].
$$

$$
\hat{\mathbb{E}}_{X \sim p(X)}[f(X)] = \hat{\mathbb{E}}_{X \sim q(X)}[\frac{p(X)}{q(X)}f(X)],
$$

where $\hat{\mathbb{E}}_{X \sim q(X)}[f(X)] = \frac{1}{N} \sum_{i=1}^{N} f(x_i), x_i \sim q(X), i = 1, \ldots, N.$
Target: to sample X from $p(x)$.

Given: $q(x)$ easy to sample from.

Find a constant M such that $M \cdot q(x) \geq p(x), \ \forall \ x$.

repeat

step 1: sample $Y \sim q(y)$

step 2: sample $U \sim Uniform[0, 1]$

if $U \leq \frac{p(y)}{M \cdot q(y)}$ then

then $X = Y$;

else

reject and go to step 1.

end if

until sampled enough
Acceptance-rejection sampling

Proof:

\[\Pr(\text{accept} | X = x) = \frac{p(x)}{M \cdot q(x)} \quad \text{and} \quad \Pr(X = x) = q(x) \]

\[\therefore \Pr(\text{accept}) = \int x \Pr(\text{accept} | X = x) \cdot \Pr(X = x) \, dx \]

\[= \int x \frac{p(x)}{M \cdot q(x)} \cdot q(x) \, dx = \frac{1}{M} \quad (\text{thus don’t want } M \text{ big}) \]

\[\therefore \Pr(X | \text{accept}) = \frac{\Pr(\text{accept} | X) \cdot P(X)}{\Pr(\text{accept})} \]

\[= \frac{p(x)}{M \cdot q(x)} \cdot q(x) = \frac{1}{M} = p(x). \]
I guess the most confusing part, is why M comes in. So let’s look at the case without M first.

Denote the histogram formed by n samples from $q(x)$ as H^n_q, the histogram formed by n samples from $p(x)$ as H^n_p, the histogram formed by n accepted samples from AR sampling procedure as H^n.

For a sample $x \sim q(x)$, if $p(x) < q(x)$, it suggests if you accept all the x and keep sampling this way, the histogram you will get is H^n_q. But what you really want to get, is a way that the resulting histogram H becomes H^n_p. Rejecting some portion of x can make the histogram H has the same shape as H_p at point x. In other words, the histogram H has more counts at point x than H_p, so we remove some counts to make $H(x) = H_p(x)$. (Take a moment to think this through).
What if for a sample $x \sim q(x), p(x) > q(x)$? The histogram H_q^n already has less counts than H_p^n at x. What do we do? Well, we can sample $M \times n$ points from $q(x)$ to build H_q^{Mn} first. Now H_q^{Mn} should have more counts than H_q^n at x (because we choose a M such that $p(x) < Mq(x)$ for all x. If not, choose a larger M). Visually, H_q^{Mn} encloses H_p^n. At point x, we only want to keep $H_p^n(x)$ many samples from totally $H_q^{Mn}(x)$ many. This is how uniform sampling and M came in. We sample $u \sim \text{Uniform}[0, Mq(x)]$, accept x when $u < p(x)$ (equivalent to sample $u \sim \text{Uniform}[0, 1]$, accept x when $u < p(x)/Mq(x)$). As a result, after Mn samples, we will get a H close to H_p^n. Moreover,

$$\lim_{n \to \infty} H^n = \lim_{n \to \infty} H_p^n = p.$$
Here we can choose any M such that $p(x) < Mq(x)$ for all x. The bigger M is, the more samples (Mn samples) you need to approximate H^n_p. That’s why in practice, people want to use the smallest M (such that $p(x) < Mq(x)$ for all x) to reduce the number of rejected samples.
Sampling from probability distributions based on constructing a Markov chain that has the desired distribution $p(x)$ as its equilibrium distribution $\pi(x)$.

- Metropolis-Hastings algorithm
- Gibbs sampling
- ...
Metropolis-Hastings algorithm

Ingredients:

- want to sample from $\pi(x)$ (but impossible directly).
- sample from $q(x)$ is easy.
- a **homogenous** and **stationary** Markov chain with transition kernel $q(x_{t+1} | x_t)$.
Properties of Markov chain: let \((X_n)_{n \geq 0}\) be regular Markov \((\lambda, P)\), then for all \(n, m \geq 0\),

- \(\Pr(X_n = j) = (\lambda P^n)_j\)
- exists an unique invariant (stationary) \(\pi'\), for any \(\lambda\),
 \[
 \Pr(X_n = j) \rightarrow \pi'_j \quad \text{as} \quad n \rightarrow \infty \quad \text{for all} \quad j
 \]
- If detailed balance equation holds,
 \[
 \pi_i P_{ij} = \pi_j P_{ji},
 \]
 \(\pi\) is the invariant distribution.
We know that for a regular markov chain, given transition kernel q and initial distribution λ, sampling from the chain will eventually become sampling from its invariant distribution π'. Metropolis-Hastings algorithm asks a reversed question: How do we change q, such that the invariant distribution becomes the desirable π instead of π'? That is, without knowing π', but knowing λ, q, we know there exists a π', such that $(\lambda q^{(n)}) \rightarrow \pi'$ as $n \rightarrow \infty$. Now, knowing π, λ, q, how do we find q' such that $(\lambda q'^{(n)}) \rightarrow \pi$ as $n \rightarrow \infty$?
Suppose have x_t from $\pi(x)$, to sample x_{t+1} from $\pi(x)$. Sample $x' \sim q(x|x_t)$ first.

Case 1: If $\pi(x_t)q(x'|x_t) = \pi(x')q(x_t|x')$ (detailed balance), take $x_{t+1} = x'$.

Case 2: if $\pi(x_t)q(x'|x_t) > \pi(x')q(x_t|x')$, it means x' too often. Need to accept it with probability α, such that $\pi(x_t)[\alpha q(x'|x_t)] = \pi(x')q(x_t|x')$. So $\alpha = \frac{\pi(x')q(x_t|x')}{\pi(x_t)q(x'|x_t)}$. Accept x' with probability α is simple: draw $u \sim Uniform[0,1]$. If $u < \alpha$, $x_{t+1} = x'$, else $x_{t+1} = x_t$ (so can resample $x' \sim q(x|x_t)$ again).

Case 3: if $\pi(x_t)q(x'|x_t) < \pi(x')q(x_t|x')$, it means x' too few. So accept all x'. That is $x_{t+1} = x'$.
Metropolis-Hastings algorithm

Target: to sample from $\pi(x)$.

for $t = 1, 2, \cdots, N$ **do**

Generate $x' \sim q(x|x_t)$, $u \sim \text{Uniform}[0, 1]$

$A(x_t \rightarrow x') = \min\{1, \frac{\pi(x')q(x_t|x')}{\pi(x_t)q(x'|x_t)}\}$

if $u \leq A(x_t \rightarrow x')$ **then**

$x_{t+1} = x'$;

else

$x_{t+1} = x_t$;

end if

end for

So $q'(x'|x_t) = A(x'|x_t)q(x'|x_t)$. One can check for any q

$$\pi(x_t)q'(x'|x_t) = \pi(x')q'(x_t|x').$$

So one can build $\text{Markov}(\lambda, q')$ from any q (as long as q makes it regular), any λ, such that $(\lambda q'(n)) \rightarrow \pi$.

Note a regular Markov\((\lambda, q')\) only ensures \((\lambda q'(n)) \to \pi\) as \(n \to \infty\). Thus we need \(n\) to be sufficiently big so that \(\{x_t\}_{t>n}\) is sampled from a distribution that is close enough to \(\pi\). The number of steps we take until we collect a sample from the chain, is called 'burn-in time'.

Definition

The \(\epsilon\)-mixing time of a markov chain, is the minimal \(T\) such that, for any starting distribution \(P^{(0)}\) \((i.e. \lambda)\),

\[
D_{\text{var}}(P^{(T)}; \pi) \leq \epsilon,
\]

where \(D_{\text{var}}(q, p) = \sup_x \|q(x) - p(x)\|\) is the variational distance.
Gibbs sampling

Target: to sample from $p(X)$, $X = (x^1, \cdots, x^n)$

$i = 1$

repeat

sample $x^i_t \sim p(x^i_t|x^1_t, \cdots, x^{i-1}_t, x^{i+1}_t, \cdots, x^n_{t-1})$

$i = i + 1$

until enough
Sampling in PGM inference Overview

- Forward sampling
- Likelihood weighting sampling
- Importance sampling inference
- Gibbs sampling inference
- Metropolis-Hastings inference
- ...

Forward sampling

Given an ordering of subsets of random variables \(\{X^i\}_{i=1}^n \) (knowing parents to generate children).

\[
\text{for } i = 1 \text{ to } n \text{ do }
\begin{align*}
 & u^i \leftarrow \text{Pa}_{x^{i-1}} \\
 & \text{sample } x^i \text{ from } P(X^i | u^i)
\end{align*}
\text{end for}
\]
Assume $\{x_i\}_{i=1}^M$ are M samples from $P(X)$, we can approximately compute expectation:

$$
\mathbb{E}_{X \sim P(X)}[f(X)] \approx \frac{1}{M} \sum_{i=1}^M f(x_i)
$$

- MAP solution: $\arg\max_x P(x) \approx \arg\max_{x \in \{x_i\}_{i=1}^M} P(x)$
- marginal: $P(x) \approx N_{X=x}/N_{total}$
- sample from $P(X|\mathbf{e})$ when evidences \mathbf{e}: sample from $P(X)$ first, and reject x when it does not agree on \mathbf{e}.

Forward sampling
Problems?
Problem: Rejection step in estimating $P(X|e)$ wastes too many samples when $P(e)$ is small. In real applications, $P(e)$ is almost always very small.

Question: how do we avoid rejecting samples?
How about setting the observed random variables to the observed values, and then doing forward sampling on the rest?
Forward sampling

Let’s see if it works.
To sample from \(P(D, I, G, L | S = 0) \) from a simplified PGM.

Fixing \(S = 0 \), and then sample \(D, I, G, L \).
Does this give the same result comparing to forward sampling with rejection?
No! It doesn’t.
The samples are not from $P(D, I, G, L | S = 0)$ at all!
Fixing this lead to Likelihood weighting sampling.
Input: \(\{Z^i = z^i\}_i \) are observed.
Step 1: set \(\{Z^i\}_i \) to the observed values.
Step 2: forward sampling the unobserved variables.
Step 3: weight the sample by \(\prod_i P(z^i | Pa(z^i)) \)
To sample from $P(D, I, G, L|S = 0)$ from the following PGM.

Fix $S = 0$, and forward sample D, I, G, L. Then weight the sample by $P(D, I, G, L|S = 0)$. Does this give the same result comparing to forward sampling with rejection?
Likelihood weighting sampling

\[\mathbb{E}_{X \sim P(D,I,G,L|S=0)}[f(D,I,G,L,0)] \]

\[\approx \frac{1}{N} \sum_{j=1}^{N} [f(d_j, i_j, g_j, l_j, 0) \cdot P(d_j, i_j, g_j, l_j|S = 0)] \]
Importance sampling inference

(a) \(S_1 \) with \(p(X) \)

(b) \(S_2 \) with \(q(X) \)

Mutilate

Sample \(\{x_i\}_{i=1}^N \) from \(q(X) \).

\[
\hat{E}_{X \sim p(X)}[f(X)] = \frac{1}{N} \sum_{i=1}^N \frac{p(x_i)}{q(x_i)} f(x_i).
\]
To sample from $P(D, I, G, L|S=0)$ from the following PGM.
Target: To sample \(\mathbf{x} \sim P(D, I, G, L, S) \).
Given any order \(\mathbf{x}^{(i)} \) (say \(D, I, G, S, L \)). Randomly initialise \(\mathbf{x} \). \(i = 1 \)
repeat
\[
sample \ x^i \sim P(x^i | x^{-i}) \\
i = i + 1
\]
until enough
Gibbs sampling inference

\(P(x^i|x^{-i}) \) turns out easy to compute.

\[
P(x^i|x^{-i}) = \frac{\prod_j P(x^i|Pa_{x^i})}{\sum_{x^i} \prod_j P(x^i|Pa_{x^i})}
= \frac{\prod_{j: x^i \in D_j} \Phi(x^i, D_j - \{x^i\})}{\sum_{x^i} \prod_{j: x^i \in D_j} \Phi(x^i, D_j - \{x^i\})}
\]

Terms in which \(x^i \notin D_j \) cancel out. For example,

\[
x^1 = D \sim P(D|G, I, S, L) = \frac{q(D)q(G|D, I)}{\sum_D q(D)q(G|D, I)}.
\]

In BN, it also turns out the only variables remaining in \(P(x^i|x^{-i}) \) are \(x^i \) and its Markov blanket. Similarly in MRFs.
Target: To sample \(x \sim P(x) \).

Given any order \(x^{(i)} \). Randomly initialise \(x \). \(i = 1 \)

for \(t = 1, 2, \cdots \) # iterations do
 for \(i = 1, 2, \cdots \) # nodes do
 Sample \(x^i \sim q(x^i|x_t^i, x_t^{-i}) \), \(u \sim Uniform[0, 1] \)
 Instead of \(A(x_t \rightarrow x') = \min\{1, \frac{\pi(x')q(x_t|x')}{\pi(x_t)q(x'|x_t)}\} \)
 \(A(x_t^{-i}, x_t^i \rightarrow x_t^{-1}, x^i) = \min\{1, \frac{\pi(x^i,x_t^{-1})q(x_t^i|x_t^i,x_t^{-i})}{\pi(x_t^i,x_t^{-1})q(x_t^i|x_t^i,x_t^{-1})}\} \)
 if \(u \leq A(x_t^{-i}, x_t^i \rightarrow x_t^{-1}, x^i) \) then
 \(x_t^i = x^i; \)
 else
 \(x_t^i = x_t^i; \)
 end if
 end for
 \(x_{t+1} = x_t; \)
end for
\[
\frac{\pi(x^i, x_{t-1}^i)q(x_t^i|x^i, x_{t-1}^i)}{\pi(x_t^i, x_{t-1}^i)q(x_t^i|x_t^i, x_{t-1}^i)}
\] is easy to compute. In BN, the only variables remaining above (the rest cancels out) are \(x^i\) and its Markov blanket. Similarly in MRFs.

Again, only collect samples after burn-in time.
Next tutorial:
Temporal Models (such as models used in tracking).