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Course Outline

Probabilistic Graphical Models:
1 Representation (Today)
2 Inference
3 Learning
4 Sampling-based approximate inference
5 Temporal models
6 · · ·
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History

Gibbs (1902) used undirected graphs in particles
Wright (1921,1934) used directed graph in genetics
In economists and social sci (Wold 1954, Blalock, Jr.
1971)
In statistics (Bartlett 1935, Vorobev 1962, Goodman
1970, Haberman 1974)
In AI, expert system (Bombal et al. 1972, Gorry and
Barnett 1968, Warner et al. 1961)
Widely accepted in late 1980s. Prob Reasoning in
Intelli Sys (Pearl 1988), Pathfinder expert system
(Heckerman et al. 1992)
Hot since 2001. CRFs (Lafferty et al. 2001), SVM
struct (Tsochantaridis etal 2004), M3Net (Taskar et
al. 2004), DeepBeliefNet (Hinton et al. 2006)
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Good books

Chris Bishop’s book “Pattern Recognition and
Machine Learning” (Graphical Models are in chapter
8, which is available from his webpage) ≈ 60 pages
Koller and Friedman’s “Probabilistic Graphical
Models” > 1000 pages
Stephen Lauritzen’s “Graphical Models”
Michael Jordan’s unpublished book “An Introduction
to Probabilistic Graphical Models”
· · ·
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Three main types of graphical models

A

C

B

(a) Directed graph

A

C

B

(b) Undirected graph

A

C

B

f2

f1

f3

(c) Factor graph

Nodes represent random variables.
Edges represent dependencies between variables
Factors explicitly show which variables are used in
each factor i.e. f1(A,B)f2(A,C)f3(B,C)
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Benefits of graphical models

Relationships (and interactions) between variables
are intuitive (such as conditional independences)
compactly represent distributions of variables.
have general inference algorithms (such as
message-passing algorithms) to efficiently query
P(A|B = b,C = c) or compute EP [f ] without
enumerating all possible values of variables.
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Independences and factorisation

Independences give factorisation.
Independence
A ⊥⊥ B ⇔ P(A,B) = P(A)P(B)

Conditional Independence
A ⊥⊥ B|C ⇔ P(A,B|C) = P(A|C)P(B|C)
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From graphs to factorisation

Directed Acyclic Graph:
P(x1, . . . , xn) =

∏n
i=1 P(xi |Paxi )

A

C

B

⇒ P(A,B,C) = P(A)P(B|A)P(C|A,B)
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From graphs to factorisation

Undirected Graph:
P(x1, . . . , xn) =

1
Z

∏
c∈C ψc(Xc), Z =

∑
X
∏

c∈C ψc(Xc),
where c is an index set of a clique (fully connected
subgraph), Xc is the set of variables indicated by c.

A

C

B

⇒ P(A,B,C) = 1
Zψc1(A,B)ψc2(A,C)ψc3(B,C), when

Xc1 = {A,B},Xc2 = {A,C},Xc3 = {B,C}
or P(A,B,C) = 1

Zψc(A,B,C), when Xc = {A,B,C}
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From graphs to factorisation

Factor Graph:
P(x1, . . . , xn) =

1
Z

∏
i fi(Xi), Z =

∑
X
∏

i f (Xi)

A

C

B

f2

f1

f3

⇒ P(A,B,C) = 1
Z f1(A,B)f2(A,C)f3(B,C)
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From graphs to independences

Case 1: A is said to be tail-to-tail.

Head

Tail

A

CB

Question: B ⊥⊥ C?
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From graphs to independences
Case 1:

A

CB

Question: B ⊥⊥ C?
Answer: No.

P(B,C) =
∑

A

P(A,B,C)

=
∑

A

P(B|A)P(C|A)P(A)

6= P(B)P(C) in general
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From graphs to independences

Case 1:

A

CB

Question: B ⊥⊥ C|A?
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From graphs to independences
Case 1:

A

CB

Question: B ⊥⊥ C|A?
Answer: Yes.

P(B,C|A) = P(A,B,C)

P(A)

=
P(B|A)P(C|A)P(A)

P(A)
= P(B|A)P(C|A)
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From graphs to independences

Case 2: B is said to be head-to-tail.

A

C

B

A

C

B

Question: A ⊥⊥ C, A ⊥⊥ C|B?
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From graphs to independences

Case 3: A is said to be head-to-head.

A

CB

A

CB

Question: B ⊥⊥ C, B ⊥⊥ C|A?
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From graphs to independences
Case 3:

A

CB

A

CB

Question: B ⊥⊥ C, B ⊥⊥ C|A?

∵ P(A,B,C) = P(B)P(C)P(A|B,C),

∴ P(B,C) =
∑

A

P(A,B,C)

=
∑

A

P(B)P(C)P(A|B,C)

= P(B)P(C)
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D-separation - def

Graph G(V,E) and nonintersecting sets X ,Y ,O ⊂ V.
How to check X ⊥⊥ Y |O just by reading the graph G?
Consider all paths from any node ∈ X to any node ∈ Y . A
path is said to be blocked by O, if it includes a node such
that either

exists a node ∈ O is either head-to-tail or tail-to-tail.
does not exist a head-to-head node ∈ O, nor any of
its descendants ∈ O.

If all paths from X to Y are blocked by O, then X is said to
be d-separated (directed separated) from Y by O .
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D-separation - Example

B

DA

C

E

F

B

DA

C

E

F

Questions:
Is A ⊥⊥ F |C? Check if A is d-separated from F by C.
Is A ⊥⊥ F |D? Check if A is d-separated from F by D.
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Inference - variable elimination

A

CB

What is P(A), or argmaxA,B,C P(A,B,C)?

P(A) =
∑
B,C

P(B)P(C)P(A|B,C)

=
∑

B

P(B)
∑

C

P(C)P(A|B,C)

=
∑

B

P(B)m1(A,B) (C eliminated)

= m2(A) (B eliminated)
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Inference - variable elimination

X3X2

X1

P(x1, x2, x3) =
1
Z
ψ(x1, x2)ψ(x1, x3)ψ(x1)ψ(x2)ψ(x3)

P(x1) =
1
Z

∑
x2,x3

ψ(x1, x2)ψ(x1, x3)ψ(x1)ψ(x2)ψ(x3)

=
1
Z
ψ(x1)

∑
x2

(
ψ(x1, x2)ψ(x2)

)∑
x3

(
ψ(x1, x3)ψ(x3)

)
=

1
Z
ψ(x1)m2→1(x1)m3→1(x1)
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Inference - variable elimination

X3X2

X1

P(x2) =
1
Z
ψ(x2)

∑
x1

(
ψ(x1, x2)ψ(x1)

∑
x3

[ψ(x1, x3)ψ(x3)]
)

=
1
Z
ψ(x2)

∑
x1

ψ(x1, x2)ψ(x1)m3→1(x1)

=
1
Z
ψ(x2)m1→2(x2)
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Inference - Message Passing

In general,

P(xi) =
1
Z
ψ(xi)

∏
j∈Ne(i)

mj→i(xi)

mj→i(xi) =
∑

xj

(
ψ(xj)ψ(xi , xj)

∏
k∈Ne(j)\{i}

mk→j(xj)
)
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Inference - sum-product

X4X3

X2

X1

m2->1(X1)

m3->2(X2) m4->2(X2)

X4X3

X2

X1

m1->2(X2)

m2->3(X3) m2->4(X4)

P(xi) =
1
Z
ψ(xi)

∏
j∈Ne(i)

mj→i(xi)

mj→i(xi) =
∑

xj

(
ψ(xj)ψ(xi , xj)

∏
k∈Ne(j)\{i}

mk→j(xj)
)

called sum-product algorithm or belief propagation.
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Inference - max-product
To compute (x∗1 , · · · , x∗4 ) = argmaxx∗

1 ,··· ,x
∗
4

P(x∗1 , · · · , x∗4 ),
use max-product algorithm.

X4X3

X2

X1

m2->1(X1)

m3->2(X2) m4->2(X2)

X4X3

X2

X1

m1->2(X2)

m2->3(X3) m2->4(X4)

x∗i = argmax
xi

(
ψ(xi)

∏
j∈Ne(i)

mj→i(xi)
)

mj→i(xi) = max
xj

(
ψ(xj)ψ(xi , xj)

∏
k∈Ne(j)\{i}

mk→j(xj)
)
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Inference - Message Passing in Log Space

To avoid over/underflow,

log P(xi) = log(ψ(xi)) +
∑

j∈Ne(i)

µj→i(xi)− log(Z )

µj→i(xi) := log mj→i(xi)
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A real application

Denoising1

Applications in Vision and PR

Image denoising

Original CorrectedNoisy

Denoising

Real Applications

),( ii yxΦ

),( ji xxΨ

X ∗ = argmaxX P(X |Y )

1This example is from Tiberio Caetano’s short course: “Machine
Learning using Graphical Models”
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More details of BP and other inference methods will be
covered at the next talk.
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