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Bounding Box Regression Loss 
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Evaluation Metric

Intersection over Union (IoU), known as Jaccard Index



Evaluation Metric

What we like about IoU
• Encoding all shape properties into the region property and calculating 

a normalized measure that focuses on areas (or volumes).
• IoU is a scale invariant metric

IoU ( )       =     IoU (             )
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Loss vs Metric

1. IoU is invariant to the scale of the problem, but this is not the case 
for these losses. 

2. A distance loss over different types, of parameters are e.g. position, 
size and angle, is heuristically normalized by regulizers.

3. There is a weak correlation between minimizing the commonly used 
regression losses and improving their IoU values.
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Loss vs Metric
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YOLO v1 Regression Loss

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. 
CVPR, 2016.



Faster/Mask R-CNN and YOLO v3 Loss

1. Introducing the concept of an 
anchor box as a hypothetically 
good initial guess

2. Using a non-linear representation 
to naively compensate for the scale 
change

1. S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with 
region proposal networks. NIPS, 2015

2. K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. ICCV, 2017
3. J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv, 2018



IoU as Loss

The optimal objective to optimize for a metric is the metric itself. 



IoU as Loss

The optimal objective to optimize for a metric is the metric itself. 

In contrast to the prevailing belief, IoU between two axis aligned 
rectangle is backpropagable [1]. 

[1] J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang. Unitbox: An advanced object detection network. ACM on 
Multimedia, 2016.
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Our Contribution

• Introducing the generalized version of IoU (GIoU) , as a new metric
for comparing any two arbitrary shapes.

• Analytical solution for using GIoU as loss between two axis-aligned
rectangles or generally n-orthotopes.

• Improving Faster R-CNN, Mask R-CNN and YOLO v3 performance
(%2~%15 relative improvements) on PASCAL VOC and COCO
benchmarks.
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Our Solution

In this paper, we address the weakness of IoU by extending the concept 
to non-overlapping cases. 

We ensure this generalization:
a) follows the same definition as IoU, i.e. encoding the shape 

properties of the compared objects into the region property; 
b) maintains the scale invariant property of IoU, and 
c) ensures a strong correlation with IoU in the case of overlapping 

objects.
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Correlation between IoU and GIoU



GIoU as Loss

For two axis aligned rectangle , GIoU has 
a well-behaved derivative



Experimental Results – YOLO v3



Experimental Results – Faster R-CNN



Experimental Results – Mask R-CNN



Extention


