Bounding Box Regression
Loss



Bounding Box Parametrization




Bounding Box Parametrization
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Bounding Box Parametrization

1. B= (x,Y1,%2,V2)

2. B= (x.,y.,w,h)

xC' yC




Bounding Box Regression Loss

Predicted BP = (x1 , y1 , x2 , )

Truth B9 = (xl ;3’1 1x2 » V2 )

Loss = MSE(BP,B9)

Loss = 1 — smooth(B?,BY)



Evaluation Metric

Intersection over Union ({oU), known as Jaccard Index

ANB
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IoU =




Evaluation Metric

What we like about IoU

* Encoding all shape properties into the region property and calculating
a normalized measure that focuses on areas (or volumes).

 JoU 1s a scale invariant metric
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[Loss vs Metric

1. IoU is mnvariant to the scale of the problem, but this 1s not the case
for these losses.
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[Loss vs Metric

1. IoU is mnvariant to the scale of the problem, but this 1s not the case
for these losses.

2. A distance loss over different types, of parameters are e.g. position,
size and angle, 1s heuristically normalized by regulizers.

3. There 1s a weak correlation between minimizing the commonly used
regression losses and improving their /loU values.



[Loss vs Metric

Predicted BP = (X1 3’1 x2 J’2)
Truth BY = (X1 }’1 xz 3’2)



[Loss vs Metric

II.II2 =841
IoU=0.26

Predicted BP = (xl,yl ;xz»yZ)
Truth B9 = (x7,y9,x9,vy7)



[Loss vs Metric
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[Loss vs Metric
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[Loss vs Metric
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[Loss vs Metric

II.II1 =9.07 II.II1 =9.07 II.II1 =9.07
IoU =0.27 IoU =0.59 IoU =0.66

Predicted BP = (xF,y?, w?, hP)
Truth BY = (xf,ycg,wg,hg)



loss function:

YOLO vl Regression Loss
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2.4. Limitations of YOLO

YOLO imposes strong spatial constraints on bounding
box predictions since each grid cell only predicts two boxes
and can only have one class. This spatial constraint lim-
its the number of nearby objects that our model can pre-
dict. Our model struggles with small objects that appear in
groups, such as flocks of birds.

Since our model learns to predict bounding boxes from
data, it struggles to generalize to objects in new or unusual
aspect ratios or configurations. Our model also uses rela-
tively coarse features for predicting bounding boxes since
our architecture has multiple downsampling layers from the

Finally, while we train on a loss function that approxi-
mates detection performance, our loss function treats errors
the same in small bounding boxes versus large bounding
boxes. A small error in a large box is generally benign but a
small error in a small box has a much greater effect on IOU.
Our main source of error is incorrect localizations.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection.

CVPR, 2016.




Faster/Mask R-CNN and YOLO v3 Loss

1.

C
Introducing the concept of an x : ‘
anchor box as a hypothetically c, i b ------ :
good 1nitial guess 1 " L b= olt) + e
phi b, '_i o(t,) b, = o(t,) + ¢,
Using a non-linear representation 1 BRS, bu = pwefw
to naively compensate for the scale bh = pne™
change e S— |

. S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with

region proposal networks. NIPS, 2015

. K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. ICCV, 2017
. J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv, 2018



loU as Loss

The optimal objective to optimize for a metric 1s the metric itself.




loU as Loss

The optimal objective to optimize for a metric 1s the metric itself.

In contrast to the prevailing belief, loU between two axis aligned
rectangle 1s backpropagable [1].

[1]J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang. Unitbox: An advanced object detection network. ACM on
Multimedia, 2016.



IoU Weakness

[. 1f two objects do not overlap, the JoU value will be zero
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Generalized Intersection over Union: A Metric and A Loss for Bounding Box
Regression
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for comparing any two arbitrary shapes.
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Our Contribution

* Introducing the generalized version of loU (GloU) , as a new metric
for comparing any two arbitrary shapes.

* Analytical solution for using GloU as loss between two axis-aligned
rectangles or generally n-orthotopes.

* Improving Faster R-CNN, Mask R-CNN and YOLO v3 performance
(%2~%15 relative improvements) on PASCAL VOC and COCO

benchmarks.
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In this paper, we address the weakness of JoU by extending the concept
to non-overlapping cases.
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Our Solution

In this paper, we address the weakness of JoU by extending the concept
to non-overlapping cases.

We ensure this generalization:

a) follows the same definition as loU, 1.e. encoding the shape
properties of the compared objects into the region property;

b) maintains the scale invariant property of loU, and

c) ensures a strong correlation with /oU 1n the case of overlapping
objects.



GloU

Algorithm 1: Generalized Intersection over Union

input : Two arbitrary convex shapes: A, B CS € R"
output: GIoU
1 For A and B, find the smallest enclosing convex object C,
where C' C S € R"

_[anp]
2 ToU = |AUB|
3 GIoU = IoU — C\AU B)|

C]




Correlation between loU and GloU
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Algorithm 2: /oU and GIoU as bounding box losses

GI 0 U aS LO S S input : Predicted B? and ground truth B9 bounding box
coordinates:

BP = (2,97, 2%, 95), BY = (27,y{,23,y3).

output: Liov, Lcr1oU.

For two axis aligne d re ctangle GloU has 1 For the predicted box BP, ensuring 5 > 27 and y5 > y!:
. ) ? 27 = min(z],28), 25 = max(2], 2b),
a well-behaved derivative 9% =min(y?,yb), 95 = max(yl, yb).

2 Calculating area of B9: A9 = (x5 — z7) X (y3 — y7).
3 Calculating area of BP: A? = (25 — 27) x (95 — 97).

4 Calculating intersection Z between B? and BY:
z

; r¥ = max(#?,29), 2% =min(28,z9),

y% - max(ﬁf: yf)’ y% - mln(gga yg),

I_ {(fcg'—a:{') X (yg —yi) if a3 >a1,y3 >yl
0 otherwise.

5 Finding the coordinate of smallest enclosing box B*:
x{ = min(z],2¥), 25 = max(zf,z3),
yi =min(y7,y7), vz = max(J3, y3).
6 Calculating area of B°: A° = (x5 — x7) X (y5 — y7).
7
I 7 IoU = = ,whereld = AP + A9 —T.

[ U .
8 GloU = IoU — AA_CU.

9 Liou=1—10U, Lgrov=1—-GIoU.




Experimental Results — YOLO v3

Ta.ble' I. Comparison between the performance of YOLO v3 [21] trained  Typle 2. Comparison between the performance of YOLO v3 [2 1] trained
using its own loss (MSE) as well as L7, and LG 1,u losses. The results using its own loss (MSE) as well as L}, and L7,y losses. The results

are reported on the test set of PASCAL VOC 2007. are reported on 5K of the 2014 validation set of MS COCO.
Loss / Evaluation AP APT5 Loss / Evaluation AP AP75
TIoU GloU TIoU GloU ToU GloU IoU GloU
MSE [21] 461 451 486 467 MSE [21] 283 312 289 330
Liou 466 460 504 498 - Lrou , 3219837 2..;%(0)/ 7..; é %7 4.38?7
Relative improv %  1.08%  2.02% 370%  6.64% elative tmprov % 5.10% 2007 96% 85%
C 477 469 513 299 Lcrou 301 332 325 359
~GIoU . : : ) Relative improv %  6.36%  6.41% 12.46% 8.79%
Relative improv %  3.45%  4.08% 5.56%  6.85%

Table 3. Comparison between the performance of YOLO v3 [2 1] trained
using its own loss (MSE) as well as using L7,y and L5, losses. The
results are reported on the test set of MS COCO 2018.

Loss / Evaluation AP AP75

MSE [21] 311 330

Lrou 312 338
Relative improv %  0.32%  2.37%

Larou 329 356

Relative improv %  5.47%  7.30%




Experimental Results — Faster R-CNN

Table 4. Comparison between the performance of Faster R-CNN [

trained using its own loss (¢1-smooth) as well as L7, and L 1,7 losses.

The results are reported on the test set of PASCAL VOC 2007.

Loss / Evaluation AP APTS
IoU GIoU IoU GIoU
f1-smooth [27] 370 361 358 .346
Lrou 384 375 395 .382
Relative improv. %  3.78% 3.88% 10.34% 10.40%
Larou 392 382 404 395
Relative improv. %  5.95%  5.82% 12.85% 14.16%

Table 5. Comparison between the performance of Faster R-CNN [

|

trained using its own loss (¢1-smooth) as well as L,y and L5 1,17 losses.
The results are reported on the validation set of MS COCO 2018.

Loss / Evaluation AP APT5
IoU GIoU IoU GIoU
¢1-smooth [22] .360 351 .390 379
Lrou 368 358 .396 385
Relative improv.% 2.22% 1.99% 1.54% 1.58%
Larou 369 .360 398 388
Relative improv. %  2.50%  2.56% 2.05%  2.37%

Table 6. Comparison between the performance of Faster R-CNN [22]
trained using its own loss (¢1-smooth) as well as L, and L 7,7 losses.
The results are reported on the test set of MS COCO 2018.

Loss / Metric AP AP75
¢1-smooth [22] .364 .392
LioUu 373 403

Relative improv.%  2.47%  2.81%
Larou 373 404

Relative improv.%  2.47%  3.06%




Experimental Results — Mask R-CNN

Table 7. Comparison between the performance of Mask R-CNN [6]
trained using its own loss (£1-smooth) as well as L7,y and L5 1,17 losses.
The results are reported on the validation set of MS COCO 2018.

Loss / Evaluation AP APT5
IoU GloU IoU GloU
¢1-smooth [6] .366 .356 .397 .385
Lrou 374 364 404 .393
Relative improv.%  2.19%  2.25% 1.76%  2.08%
Larou 376 366 405 395
Relative improv. %  2.73%  2.81% 2.02%  2.60%

Table 8. Comparison between the performance of Mask R-CNN [6]
trained using its own loss (¢1-smooth) as well as L7,y and L 1,17 losses.
The results are reported on the test set of MS COCO 2018.

Loss / Metric AP AP75
¢1-smooth [0] .368 .399
Lrou 377 408
Relative improv.%  2.45%  2.26%
LaroU 377 409

Relative improv.%  2.45%  2.51%




Extention




