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Overview

Given graph, we can learn the parameters, and do inference.

How to get the graph at the first place?

Manually specify a graph (based on domain knowledge, or
experience)

Use simple rules

Learn from data

Learn from labels (Chow-Liu Tree Algorithm (1968))
Learn from both labels and features.
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Manually specify a graph

Image denoising1

Applications in Vision and PR

Image denoising

Original CorrectedNoisy

Denoising

Real Applications

),( ii yxΦ

),( ji xxΨ

X ∗ = argmaxX P(X |Y )

1This example is from Tiberio Caetano’s short course: “Machine Learning
using Graphical Models”
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Pose estimation 2

2Left pic from http://cs.brown.edu/~ls/research.html; mid and right
pics from http://ieeexplore.ieee.org/ieee_pilot/articles/

96jproc10/96jproc10-wu/article.html
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Use simple rules

Image segmentation and object recognition (Gould&He, comm. acm 14)

Rules: each small segment (called super-pixel) is a node; if two segments

(nodes) are adjacent, add an edge between them.
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Use simple rules

Scene understanding on the street (driverless cars)

(a) original image (b) graph via super-pixel adjacency

(c) graph via distance mst (minimal

spanning tree)

Show KITTI dataset if internet works
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Use simple rules

Tracking (Zhang&van der Maaten CVPR13)

Rule: each bounding box is a node, and find distance mst (minimal spanning
tree) among all nodes.

Show their demo if internet works
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Learn from labels

Multiple labels classification (Tan etal CVPR15)

(d) Images of “plane” in PASCAL2007 database
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(e) Learn from labels
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(f) Learn from labels and fea-
tures

Figure : Comparison of graphs learned from PASCAL2007
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Why learning from data possible?

PGM represents the distribution, and you can estimate the
distribution

PGM carries independencies and dependencies, and you can
estimate them too
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Chow-Liu Tree Algorithm

The goal: to find a tree structure3 PGM whose distribution is
closest to the underlying distribution.

learn from labels only

proposed for Bayes Net initially (directed edges) in 1968

works for MRFs too with slight modification (undirected
edges)

3Not for all trees: for Bayes Net, each node can have at most 1 parent.
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Mutual info

Definition (Mutual information)

I (Xi ,Xj) =
∑
xi ,xj

P(xi , xj) log
( P(xi , xj)

P(xi )P(xj)

)
Properties:

I (Xi ,Xj) ≥ 0.

I (Xi ,Xj) = 0 if and only if Xi ,Xj are independent. (prove it in
Assignment 3).

Intuition: the higher I (Xi ,Xj) is, the more correlated Xi ,Xj are.
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KL divergence

Definition ( Kullback-Leibler divergence)

For any distributions P(x) and P ′(x) over x,

KL(P(x)||P ′(x)) =
∑
x

P(x) log
P(x)

P ′(x)

Properties:

KL(P(x)||P ′(x)) ≥ 0.

KL(P(x)||P ′(x)) = 0 if and only if P(x),P ′(x) are the same.
(prove it in Assignment 3).

Intuition: the smaller KL(P(x)||P ′(x)) is, the closer P(x),P ′(x)
are.
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Minimise KL divergence

Setting: Let P(x) be the joint distribution of n discrete variables
x1, x2, ..., xn, where x denotes (x1, x2, ..., xn).

Goal: For Bayes Net, we seek a tree structure, whose Pt(x) is
closest to P(x) in the sense of smallest KL(P(x)||Pt(x)) with one
condition: each node in the tree t has at most 1 parent. (show
some examples in the document camera)

minKL(P(x)||Pt(x))

Bayes Net: Pt(x) =
∏n

i=1 P(xi |pat(xi )).
Note: pat(xi ) (i.e. parent of xi ) is encoded in the tree t.
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Minimise KL divergence

KL(P(x)||Pt(x)) =
∑
x

P(x) log
P(x)

Pt(x)

= −
∑
x

P(x) logPt(x) +
∑
x

P(x) logP(x)

= −
∑
x

P(x) log
( n∏

i=1

P(xi |pat(xi ))
)

+
∑
x

P(x) logP(x)

= −
∑
x

P(x)
n∑

i=1

log
(P(xi , pat(xi ))

P(pat(xi ))

)
+
∑
x

P(x) logP(x)

= −
∑
x

P(x)
n∑

i=1

log
(P(xi , pat(xi ))P(xi )

P(xi )P(pat(xi ))

)
+
∑
x

P(x) logP(x)

= −
∑
x

P(x)
n∑

i=1

log
( P(xi , pat(xi ))

P(xi )P(pat(xi ))

)
−
∑
x

P(x)
n∑

i=1

logP(xi )︸ ︷︷ ︸
:=const1

+
∑
x

P(x) logP(x)︸ ︷︷ ︸
:=const2
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Minimise KL divergence

= −
∑
x

P(x)
n∑

i=1

log
( P(xi , pat(xi ))

P(xi )P(pat(xi ))

)
−
∑
x

P(x)
n∑

i=1

logP(xi )︸ ︷︷ ︸
:=const1

+
∑
x

P(x) logP(x)︸ ︷︷ ︸
:=const2

= −
n∑

i=1

[∑
x

P(x) log
( P(xi , pat(xi ))

P(xi )P(pat(xi ))

)]
− const1 + const2

= −
n∑

i=1

[ ∑
xi ,pat (xi )

P(xi , pat(xi )) log
( P(xi , pat(xi ))

P(xi )P(pat(xi ))

)
︸ ︷︷ ︸

I (Xi ,pat (Xi ))

]
− const1 + const2

= −
n∑

i=1

I (Xi , pat(Xi ))− const1 + const2

So to minimise KL div is to maximise mutual info,

argmin
t∈T

KL(P(x)||Pt(x)) = argmax
t∈T

n∑
i=1

I (Xi , pat(Xi )).

Qinfeng (Javen) Shi PGM 4 — Learning structures



Overview
Why learning from data possible?

Chow-Liu Tree Algorithm

Mutual info and KL divergence
Minimise KL divergence
Algorithm

Algorithm

Steps (both Bayes Nets and MRFs):

1 compute all pairwise I (Xi ,Xj)

2 find the maximal spanning tree w.r.t. mutual info

3 decide the direction of the edges for Bayes Nets (this step is
not needed for MRFs)

How to do step 2?
Sort I (Xi ,Xj) from highest to lowest. Keep adding edges in that
order, and skip if adding it would cause a loop (i.e. not a tree any
more).
How many edges to add?
n − 1 many edges (for n many nodes/variables).
Example in document camera
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That’s all

Thanks!
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