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Dice rolling game

Rolling a die (with numbers 1, ..., 6).
Chance of getting a 5 =?

1/6
Chance of getting a 5 or 4 =?
2/6

Probability ≈ a degree of confidence that an outcome or a
number of outcomes (called event) will occur.
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Random Variables

Assigning probabilities to events is intuitive (defer the formal
treatment to the appendix).

Assigning probabilities to attributes (of the outcome) taking
various values might be more convenient.

a patient’s attributes such “Age”, “Gender” and “Smoking
history” ...
“Age = 10”, “Age = 50”, ..., “Gender = male”,“Gender =
female”

a student’s attributes “Grade”, “Intelligence”, “Gender” ...

P(Grade = A) = the probability that a student gets a grade of A.
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Random Variables

Random Variable1 can take different types of values e.g. discrete
or continuous.

Val(X ): the set of values that X can take

x : a value x ∈ Val(X )

Shorthand notation:

P(x) short for P(X = x)∑
x P(x) shorthand for

∑
x∈Val(X ) P(X = x)∑

x

P(x) = 1

1formal definition is omitted
Qinfeng (Javen) Shi PGM 1 — Representation
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Example

P(Grade, Intelligence).
Grade ∈ {A,B,C}
Intelligence ∈ {high, low}.

P(Grade = B, Intelligence = high) = ?
P(Grade = B) =?
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Marginal and Conditional distribution

Distributions:

Marginal distribution P(X ) =
∑

y∈Val(Y ) P(X ,Y = y)
or shorthand as P(x) =

∑
y P(x , y)

Conditional distribution P(X |Y ) = P(X ,Y )
P(Y )

Rules for events carry over for random variables:

Chain rule: P(X ,Y ) = P(X )P(Y |X )

Bayes’ rule: P(X |Y ) = P(Y |X )P(X )
P(Y )
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Independence and conditional independence

Independences give factorisation.

Independence
X ⊥⊥ Y ⇔ P(X ,Y ) = P(X )P(Y )

Extension: X ⊥⊥ Y ,Z means X ⊥⊥ H where H = (Y ,Z ).
⇔ P(X ,Y ,Z ) = P(X )P(Y ,Z )

Conditional Independence
X ⊥⊥ Y |Z ⇔ P(X ,Y |Z ) = P(X |Z )P(Y |Z )

Independence: X ⊥⊥ Y can be considered as X ⊥⊥ Y |∅
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Properties

For conditional independence:

Symmetry: X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X |Z
Decomposition: X ⊥⊥ Y ,W |Z ⇒ X ⊥⊥ Y |Z and X ⊥⊥W |Z
Weak union: X ⊥⊥ Y ,W |Z ⇒ X ⊥⊥ Y |Z ,W
Contraction: X ⊥⊥W |Z ,Y and X ⊥⊥ Y |Z ⇒ X ⊥⊥ Y ,W |Z
Intersection:X ⊥⊥ Y |W ,Z and X ⊥⊥W |Y ,Z ⇒ X ⊥⊥ Y ,W |Z

For independence: let Z = ∅ e.g.
X ⊥⊥ Y ⇒ Y ⊥⊥ X
X ⊥⊥ Y ,W ⇒ X ⊥⊥ Y and X ⊥⊥W
...
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Marginal and MAP Queries

Given joint distribution P(Y ,E ), where

Y , query random variable(s), unknown

E , evidence random variable(s), observed i.e. E = e.

Two types of queries:

Marginal queries (a.k.a. probability queries)
task is to compute P(Y |E = e)

MAP queries (a.k.a. most probable explanation )
task is to find y∗ = argmaxy∈Val(Y ) P(Y |E = e)
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Scenario 1

A

C

B

Multiple problems (A,B, ...) affect each other

Joint optimal solution of all 6= the solutions of individuals
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Scenario 2

Two variables X ,Y each taking 10 possible values.
Listing P(X ,Y ) for each possible value of X ,Y requires
specifying/computing 102 many probabilities.

What if we have 1000 variables each taking 10 possible values?
⇒ 101000 many probabilities

⇒ Difficult to store, and query naively.
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Remedy

Structured Learning, specially Probabilistic Graphical Models
(PGMs).
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PGMs

PGMs use graphs to represent the complex probabilistic
relationships between random variables.

P(A,B,C , ...)

Benefits:

compactly represent distributions of variables.

Relation between variables are intuitive (such as conditional
independences)

have fast and general algorithms to query without
enumeration. e.g. ask for P(A|B = b,C = c) or EP [f ]
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An Example

G

I

J

S

D

H

L

Difficulty Intelligence

Grade

Happy

Letter

SAT

Job

Intuitive
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Example

G

I

J

S

D

H

L

Difficulty Intelligence

Grade

Happy

Letter

SAT

Job

P(I)

P(S | I)

P(J | L,S)

P(D)

P(G | D,I)

P(H | G,J)

P(L | G)

Compact
Qinfeng (Javen) Shi PGM 1 — Representation
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History

Gibbs (1902) used undirected graphs in particles

Wright (1921,1934) used directed graph in genetics

In economists and social sci (Wold 1954, Blalock, Jr. 1971)

In statistics (Bartlett 1935, Vorobev 1962, Goodman 1970,
Haberman 1974)

In AI, expert system (Bombal et al. 1972, Gorry and Barnett
1968, Warner et al. 1961)

Widely accepted in late 1980s. Prob Reasoning in Intelli Sys
(Pearl 1988), Pathfinder expert system (Heckerman et al.
1992)
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History

Hot since 2001-2013. Flexible features and principled ways of
learning.
CRFs (Lafferty et al. 2001), SVM struct (Tsochantaridis etal
2004), M3Net (Taskar et al. 2004), DeepBeliefNet (Hinton et
al. 2006)

Fall of graphical models and rise of deep Learning 2013-2016.
Deep learning won a large number of challenges. Reflection at
ICCV 2013 and ECCV 2014 PGM workshops.

Marriage of graphical models and deep Learning since 2017.
Drawbacks of deep learning become apparent, and graphical
models inspired, math and reasoning driven deep learning is
the new trend.
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Good books

Chris Bishop’s book “Pattern Recognition and Machine
Learning” (Graphical Models are in chapter 8, which is
available from his webpage) ≈ 60 pages

Koller and Friedman’s “Probabilistic Graphical Models”
> 1000 pages

Stephen Lauritzen’s “Graphical Models”

Michael Jordan’s unpublished book “An Introduction to
Probabilistic Graphical Models”

· · ·
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Representations

A

C

B

(a) Directed graph

A

C

B

(b) Undirected graph

A

C

B

f2

f1

f3

(c) Factor graph

Nodes represent random variables

Edges reflect dependencies between variables

Factors explicitly show which variables are used in each factor
i.e. f1(A,B)f2(A,C )f3(B,C )
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Example — Image Denoising

Denoising2

Applications in Vision and PR

Image denoising

Original CorrectedNoisy

Denoising

Real Applications

),( ii yxΦ

),( ji xxΨ

X ∗ = argmaxX P(X |Y )

2This example is from Tiberio Caetano’s short course: “Machine Learning
using Graphical Models”
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Example —Human Interaction Recognition
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Factorisation for Bayesian networks

Directed Acyclic Graph (DAG).
Factorisation rule: P(x1, . . . , xn) =

∏n
i=1 P(xi |Pa(xi ))

Pa(xi ) denotes parent of xi . e.g. (A,B) = Pa(C )

A

C

B

⇒ P(A,B,C ) = P(A)P(B|A)P(C |A,B)
Acyclic: no cycle allowed. Replacing edge A→ C with C → A will
form a cycle (loop i.e. A→ B → C → A), not allowed in DAG.
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Factorisation for Markov Random Fields

Undirected Graph:
Factorisation rule:P(x1, . . . , xn) = 1

Z

∏
c∈C ψc(Xc),

Z =
∑

X

∏
c∈C ψc(Xc),

where c is an index set of a clique (fully connected subgraph), Xc

is the set of variables indicated by c.

A

C

B

Consider Xc1 = {A,B},Xc2 = {A,C},Xc3 = {B,C}
⇒ P(A,B,C ) = 1

Z ψc1(A,B)ψc2(A,C )ψc3(B,C )

Consider Xc = {A,B,C} ⇒ P(A,B,C ) = 1
Z ψc(A,B,C ),
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Factorisation for Markov Random Fields

Factor Graph:
Factorisation rule:P(x1, . . . , xn) = 1

Z

∏
i fi (Xi ), Z =

∑
X

∏
i fi (Xi )

A

C

B

f2

f1

f3

⇒ P(A,B,C ) = 1
Z f1(A,B)f2(A,C )f3(B,C )
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Independences

Independence
A ⊥⊥ B ⇔ P(A,B) = P(A)P(B)

Conditional Independence
A ⊥⊥ B|C ⇔ P(A,B|C ) = P(A|C )P(B|C )
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From Graph to Independences

Case 1:

Head

Tail

A

CB

Question: B ⊥⊥ C?

Answer: No.

P(B,C ) =
∑
A

P(A,B,C )

=
∑
A

P(B|A)P(C |A)P(A)

6= P(B)P(C ) in general
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From Graph to Independences

Case 2:

A

CB

Question: B ⊥⊥ C |A?

Answer: Yes.

P(B,C |A) =
P(A,B,C )

P(A)

=
P(B|A)P(C |A)P(A)

P(A)

= P(B|A)P(C |A)

Qinfeng (Javen) Shi PGM 1 — Representation



Probability (simplified)
Probabilistic Graphical Models

Reasoning Bayesian Networks by Hand
Appendix: Probability (advanced)

History and books
Representations
Factorisation and independences

From Graph to Independences

Case 2:

A

CB

Question: B ⊥⊥ C |A?
Answer: Yes.

P(B,C |A) =
P(A,B,C )

P(A)

=
P(B|A)P(C |A)P(A)

P(A)

= P(B|A)P(C |A)

Qinfeng (Javen) Shi PGM 1 — Representation



Probability (simplified)
Probabilistic Graphical Models

Reasoning Bayesian Networks by Hand
Appendix: Probability (advanced)

History and books
Representations
Factorisation and independences

From graphs to independences

Case 3:

A

CB

A

CB

Question: B ⊥⊥ C , B ⊥⊥ C |A?

∵ P(A,B,C ) = P(B)P(C )P(A|B,C ),

∴ P(B,C ) =
∑
A

P(A,B,C )

=
∑
A

P(B)P(C )P(A|B,C )

= P(B)P(C )
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Bayesian networks

Directed Acyclic Graph (DAG).
Factorisation rule: P(x1, . . . , xn) =

∏n
i=1 P(xi |Pa(xi ))

Example:

A

C

B

P(A,B,C ) = P(A)P(B|A)P(C |A,B)
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Reasoning with all variables

DAG tells us: P(A,B,C ) = P(A)P(B|A)P(C |A,B)

P(A = a|B = b,C = c) =?

All variables are involved in the query.

=
P(A = a, B = b, C = c)

P(B = b, C = c)

=
P(A = a)P(B = b|A = a)P(C = c|A = a, B = b)∑

A∈{¬a,a} P(A, B = b, C = c)

=
P(A = a)P(B = b|A = a)P(C = c|A = a, B = b)∑

A∈{¬a,a} P(A)P(B = b|A)P(C = c|A, B = b)

=
P(A = a)P(B = b|A = a)P(C = c|A = a, B = b)

P(A = ¬a)P(B = b|A = ¬a)P(C = c|A = ¬a, B = b) + P(A = a)P(B = b|A = a)P(C = c|A = a, B = b)
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Reasoning with missing variable(s)

DAG tells us: P(A,B,C ) = P(A)P(B|A)P(C |A,B)

P(A = a|B = b) =?

C is missing in the query.

=
P(A = a,B = b)

P(B = b)

=

∑
C P(A = a,B = b,C )∑
A,C P(A,B = b,C )

=

∑
C P(A = a)P(B = b|A = a)P(C |A = a,B = b)∑

A,C P(A)P(B = b|A)P(C |A,B = b)
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Reasoning with missing variable(s)

DAG tells us: P(A,B,C ) = P(A)P(B|A)P(C |A,B)

P(A = a|B = b) =?

C is missing in the query.

=
P(A = a,B = b)

P(B = b)

=

∑
C P(A = a,B = b,C )∑
A,C P(A,B = b,C )

=

∑
C P(A = a)P(B = b|A = a)P(C |A = a,B = b)∑

A,C P(A)P(B = b|A)P(C |A,B = b)
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Reasoning
A universal way

Example of 4WD

Someone finds that people who drive 4WDs vehicles (S) consume
large amounts of gas (G ) and are involved in more accidents than
the national average (A). They have constructed the Bayesian
network below (here t implies “true” and f implies “false”).

Figure : 4WD Bayesian network
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Example of 4WD

P(¬g , a|s)? (i.e. P(G = ¬g ,A = a|S = s))

P(a|s)?

P(A|s)?
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Factorisation
Reasoning
A universal way

Example of 4WD

Someone else finds that there are two types of people that drive
4WDs, people from the country (C ) and people with large families
(F ). After collecting some statistics, here is the new Bayesian
network.
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P(g ,¬a, s, c)?

P(g ,¬a|c , f )?
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How to reason by hand?

A universal way: express the query probability in terms of the full
distribution3, and then factorise it.

Step by step:

1 when you see a conditional distribution, break it into the
nominator and the denominator.

2 when you see a distribution (may be from the nominator
and/or the denominator) with missing variable(s), rewrite it as
a sum of the full distribution w.r.t. the missing variable(s).

3 After everything is expressed by the full distribution, factorise
the full distribution into local distributions (which are known).

3the joint distribution over all variables of your Bayesian network
Qinfeng (Javen) Shi PGM 1 — Representation
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Probability Space

Probability space (a.k.a Probability triple) (Ω,F,P):

Outcome space (or sample space), denoted Ω (read
“Omega”) : the set of all possible outcomes4.

roll a die: Ω = {1, 2, 3, 4, 5, 6}. flip a coin: Ω = {Head ,Tail}.
σ-Field (read “sigma-field”, a set of events), denoted F: An
event (α ∈ F) is a set of outcomes.

roll a die to get 1: α = {1};
to get 1 or 3: α = {1, 3}
roll a die to get an even number: α = {2, 4, 6}

Probability measure P: the assignment of probabilities to
the events; i.e. a function returning an event’s probability.

4of the problem that you are considering
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Probability measure

Probability measure (or distribution) P over (Ω,F): a function
from F (events) to [0, 1] (range of probabilities), such that,

P(α) ≥ 0 for all α ∈ F

P(Ω) = 1, P(∅) = 0.

For α, β ∈ F, P(α ∪ β) = P(α) + P(β)− P(α ∩ β)
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Interpretations of Probability

Frequentist Probability: P(α) = frequencies of the event.
i.e. fraction of times the event occurs if we repeat the
experiment indefinitely.

A die roll: P(α) = 0.5, for α = {2, 4, 6} means if we
repeatedly roll this die and record the outcome, then the
fraction of times the outcomes in α will occur is 0.5.

Problem: non-repeatable event e.g. “it will rain tomorrow
morning” (tmr morning happens exactly once, can’t repeat).

Subjective Probability: P(α) = one’s own degree of belief
that the event α will occur.
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Conditional probability

Event α: “students with grade A”
Event β: “students with high intelligence”
Event α ∩ β: “students with grade A and high intelligence”

Question: how do we update the our beliefs given new evidence?
e.g. suppose we learn that a student has received the grade A,
what does that tell us about the person’s intelligence?

Answer: Conditional probability.
Conditional probability of β given α is defined as

P(β|α) =
P(α ∩ β)

P(α)
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Chain rule and Bayes’ rule

Chain rule: P(α ∩ β) = P(α)P(β|α)
More generally,
P(α1 ∩ ... ∩ αk) = P(α1)P(α2|α1) · · ·P(αk |α1 ∩ ... ∩ αk−1)

Bayes’ rule:

P(α|β) =
P(β|α)P(α)

P(β)
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That’s all

Thanks!
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