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What is a Memory Network?

* Memory Network

— Reasoning with long-term memory component that can be
read and written

* Why not RNN?

— The memory (encoded by hidden states and weights) are
too small

— Not accurately remember facts from the past (compressed
in dense vectors)

— Not even able to reproduce input as output
(Zaremba&Sutskever, 2014)



Brief History

First introduced in ICLR15 (MemNet) and then

NIPS15 (MemN2N)

— J. Weston, S. Chopra, and A. Bordes. Memory networks, /ICLR, 2015.

— S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus, End-To-End Memory
Networks, NIPS, 2015

Can be seen as a simplification of Neural Turing
Machine (NTM) arVix 2014

— A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv,
2014.

Many variants, mainly for 2 purposes:

— Attention mechanism: providing weights over the facts, past
examples, regions, objects (often via softmax)

— Storing facts and/or knowledge



Published as a conference paper at ICLR 2015
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Figure 1: Example “story” statements, questions and answers generated by a simple simulation.
Answering the question about the location of the milk requires comprehension of the actions “picked
up” and “left”. The questions also require comprehension of the time elements of the story, e.g., to
answer “where was Joe before the office?”.

Joe went to the kitchen. Fred went to the kitchen. Joe picked up the milk.
Joe travelled to the office. Joe left the milk. Joe went to the bathroom.
Where is the milk now? A: office

Where is Joe? A: bathroom

Where was Joe before the office? A: kitchen




Figure 2: Sample test set predictions (in red) for the simulation in the setting of word-based input
and where answers are sentences and an LSTM is used as the R component of the MemNN.

Joe went to the garden then Fred picked up the milk; Joe moved to the bathroom and Fred dropped the
milk, and then Dan moved to the living_room.

Where is Dan? A: living room I believe

Where is Joe? A: the bathroom

Fred moved to the bedroom and Joe went to the kitchen then Joe took the milk there and Dan journeyed
to the bedroom; Joe discarded the milk.

Where is the milk now ? A: the milk is in the kitchen

Where is Dan now? A: I think he is in the bedroom

Joe took the milk there, after that Mike travelled to the office, then Joe went to the living_room, next Dan
went back to the kitchen and Joe travelled to the office.

Where is Joe now? A: I think Joe is in the office

Figure 3: An example story with questions correctly answered by a MemNN. The MemNN was
trained on the simulation described in Section|5.2/and had never seen many of these words before,
e.g., Bilbo, Frodo and Gollum.

Bilbo travelled to the cave. Gollum dropped the ring there. Bilbo took the ring.
Bilbo went back to the Shire. Bilbo left the ring there. Frodo got the ring.
Frodo journeyed to Mount-Doom. Frodo dropped the ring there. Sauron died.
Frodo went back to the Shire. Bilbo travelled to the Grey-havens. The End.
Where is the ring? A: Mount-Doom

Where is Bilbo now? A: Grey-havens

Where is Frodo now? A: Shire
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We perform experiments on the synthetic QA tasks defined in [22] (using version 1.1 of the dataset).
A given QA task consists of a set of statements, followed by a question whose answer is typically
a single word (in a few tasks, answers are a set of words). The answer is available to the model at
training time, but must be predicted at test time. There are a total of 20 different types of tasks that
probe different forms of reasoning and deduction. Here are samples of three of the tasks:

Sam walks into the kitchen.
Sam picks up an apple.

Sam walks into the bedroom.
Sam drops the apple.

Q: Where is the apple?

A. Bedroom

Brian is a lion.

Julius is a lion.
Julius is white.
Bernhard is green.

Q: What color is Brian?
A. White

Mary journeyed to the den.

Mary went back to the kitchen.

John journeyed to the bedroom.

Mary discarded the milk.

Q: Where was the milk before the den?
A. Hallway



Mem N2N (NIPS15)
Setting

Our model takes a discrete set of inputs x1, ..., T, that are to be stored in the memory, a query g, and
outputs an answer a. Each of the z;, ¢, and a contains symbols coming from a dictionary with V'

We perform experiments on the synthetic QA tasks defined in [22] (using version 1.1 of the dataset).
A given QA task consists of a set of statements, followed by a question whose answer is typically
a single word (in a few tasks, answers are a set of words). The answer is available to the model at
training time, but must be predicted at test time. There are a total of 20 different types of tasks that
probe different forms of reasoning and deduction. Here are samples of three of the tasks:

Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?

A. Bedroom A. White A. Hallway
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).

p; = Softmax(u’m;). 0= szcz a = Softmax(W (o + u))
Softmax(z;) = e* /) . €%



Attention mechanisms

e Attention mechanisms have become almost a
de facto standard in many sequence-based

tasks (Bah- danau et al., 2015; Gehring et al.,
2016).

* One of the benefits of attention mechanisms
is that they allow for

— dealing with variable sized inputs

— focusing on the most relevant parts of the input to
make decisions.



An example: attention model to recognise
faces in a video (sequence)

Jiaolong Yang, Gang Hua, et al., Neural Aggregation

Networks for Video face Recognition, CVPR 2017
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Figure 1. Our network architecture for video face recognition. All
input face images {x:} are processed by a feature embedding
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Question

 What is the essence of a traditional Memory
Network?

* Answer (using verbal or whiteboard):

— Retrieving and storing

— Inner product gives a score (which can be
normalised by softmax)

— Inner product can be applied directly to the query
and candidates vectors, or their transformations

(via @ matrix, or encoder)



 What if the input is not a vector, a tensor, or a
sequence?

e What ifitisagraph?
 What if every graph can be different, and you

wish what you have learnt can be applied/
generalised to a different graph?
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Figure 2: A t-SNE plot of the computed feature representations of a pre-trained GAT model’s
first hidden layer on the Cora dataset. Node colors denote classes. Edge thickness indicates ag-
gregated normalized attention coefficients between nodes ¢ and j, across all eight attention heads
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Dataset Type Nodes Edges Classes Features Label rate
Citeseer  Citation network 3,327 4,732 § 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44,338 3 500 0.003
NELL Knowledge graph 65,755 266,144 210 5,414 0.001
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GRAPH ATTENTIONAL LAYER

* |nput: a set of node features

h = {517527”'751\7}7}—;2’ < RF

e Qutput: a set of node features (with
potentially different dimensionality)

h' = {Rh},hb,..., Ry}, b, € RE



Attention coefficients
per neighborhood

* For each node i, and we only compute e_ij if j
is i’s neighbor (N _i, determined by the graph)

€ij — a(Wﬁi, Wﬁj)
a: R xRF 5 R

a weight matrix, W € R¥ *F ig applied to every node.

* Normalize it via softmax

exp(e;;)
ZkeNi exp(eik)

Qi; = SOftman (ez-j) —



a is a single layer feedforward network

Qg
exp (LeakyReLU (aT [wfzinwﬁj])) I
<
Q5 = S S =
> ke, exp (LeakyReLU (&7 [Wh;|Wiik]) £
— — /
h; =0 Z CkijWhj
JEN; R
a
T is transpose, and Il is concatenation N =~ S




Multi-head attention

 Learn to asingle, aand W, to perform well, is difficult,
or at least requires more hand engineering

e Let’s try to use K indepedent a, W (a*k, W”k, k=1, ...,
K) (like drawing raffle tickets multiple times to increase
the chance that one of the drawing is lucky)

* Why indepedent?
— Paralisable

— Easier
— Won'’t be effected much by some bad drawing previously



2 schemes:
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Benefits

* |t does not need to know the entire graph
upfront.

* Alearned model can be applied to any unseen
arbitrary graph.



Datasets

Transductive learning We utilize three standard citation network benchmark datasets—Cora,
Citeseer and Pubmed (Sen et al., 2008)—and closely follow the transductive experimental setup of
Yang et al. (2016). In all of these datasets, nodes correspond to documents and edges to (undirected)
citations. Node features correspond to elements of a bag-of-words representation of a document.
Each node has a class label. We allow for only 20 nodes per class to be used for training—however,
honoring the transductive setup, the training algorithm has access to all of the nodes’ feature vec-
tors. The predictive power of the trained models 1s evaluated on 1000 test nodes, and we use 500
additional nodes for validation purposes (the same ones as used by Kipf & Welling (2017)). The
Cora dataset contains 2708 nodes, 5429 edges, 7 classes and 1433 features per node. The Citeseer
dataset contains 3327 nodes, 4732 edges, 6 classes and 3703 features per node. The Pubmed dataset
contains 19717 nodes, 44338 edges, 3 classes and 500 features per node.

Inductive learning We make use of a protein-protein interaction (PPI) dataset that consists of
graphs corresponding to different human tissues (Zitnik & Leskovec, 2017). The dataset contains
20 graphs for training, 2 for validation and 2 for testing. Critically, testing graphs remain com-
pletely unobserved during training. To construct the graphs, we used the preprocessed data provided
by Hamilton et al. (2017). The average number of nodes per graph is 2372. Each node has 50
features that are composed of positional gene sets, motif gene sets and immunological signatures.
There are 121 labels for each node set from gene ontology, collected from the Molecular Signatures
Database (Subramanian et al., 2005), and a node can possess several labels simultaneously.



Results

Table 2: Summary of results in terms of classification accuracies, for Cora, Citeseer and Pubmed.
GCN-64* corresponds to the best GCN result computing 64 hidden features (using ReLU or ELU).

Transductive

Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%

LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%

ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%

GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0 %
MoNet (Monti et al., 2016) 817 £0.5% — 78.8 £ 0.3%
GCN-64* 81.4+05% 709 +05% 79.0+ 0.3%

GAT (ours) 83.0£0.7% 725 +0.7% 79.0 £0.3%




Results

Table 3: Summary of results in terms of micro-averaged F; scores, for the PPI dataset. GraphSAGE*
corresponds to the best GraphSAGE result we were able to obtain by just modifying its architecture.
Const-GAT corresponds to a model with the same architecture as GAT, but with a constant attention
mechanism (assigning same importance to each neighbor; GCN-like inductive operator).

Inductive
Method PPI
Random 0.396
MLP 0.422

GraphSAGE-GCN (Hamilton et al., 2017) 0.500
GraphSAGE-mean (Hamilton et al., 2017) 0.598
GraphSAGE-LSTM (Hamilton et al., 2017) 0.612
GraphSAGE-pool (Hamilton et al., 2017) 0.600

GraphSAGE* 0.768
Const-GAT (ours) 0.934 £+ 0.006
GAT (ours) 0.973 £+ 0.002




Reasoning with knowledge?

* Memory networks can store past observation.
Can they store facts and knowledge and
reasons with them?

* Yes, but only to a small degree.
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ABSTRACT

By offering a natural way for information seeking, multimodal dia-
logue systems are attracting increasing attention in several domains
such as retail, travel etc. However, most existing dialogue systems
are limited to textual modality, which cannot be easily extended
to capture the rich semantics in visual modality such as product
images. For example, in fashion domain, the visual appearance of
clothes and matching styles play a crucial role in understanding
the user’s intention. Without considering these, the dialogue agent
may fail to generate desirable responses for users.

In this paper, we present a Knowledge-aware Multimodal Dia-
logue (KMD) model to address the limitation of text-based dialogue
systems. It gives special consideration to the semantics and domain
knowledge revealed in visual content, and is featured with three key
components. First, we build a taxonomy-based learning module to
capture the fine-grained semantics in images (e.g., the category and
attributes of a product). Second, we propose an end-to-end neural
conversational model to generate responses based on the conver-
sation history, visual semantics, and domain knowledge. Lastly,

to avoid inconsistent dialogues, we adopt a deep reinforcement
learning methad which acconnts for future rewards tao antimize
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Figure 1: An example of knowledge-aware multimodal dia-
logue for fashion retail. The agent manages to understand
the semantics of product image and modify attributes dur-
ing back-end retrieval, offer matching suggestions for the
user, and generate responses with different modalities.
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of responses enriched with extracted domain knowledge. Deep reinforcement learning measures the goodness of a response
through a reinforcement signal and optimizes the long-term rewards that characterize a good conversation.



We then incorporate these knowledge into encoder state. Note
that g; refers to the vector representation of knowledge i, we have:

Multimodal m; = Ag; (1)
Knowledge Memory !
o; = Bg; (2)
exp(h; m;)
ai = = (3)
Zk=0 exp(ht mk)

M
s = Z a;i0; (4)

mym;msz my_ My i=1

where M 1s the total number of knowledge entries. A,B € R9%Y are
the parameters of the memory network. The former one embeds the
knowledge g; into memory representation while the later one trans-
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Reasoning Module

The outputs stored in the working memory buffer
are passed to the reasoning module. The reason-
ing module used in this work 1s a Relation Net-
work (RN). In the RN the output vectors are con-
catenated in pairs together with the question vec-
tor. Each pair is passed through a neural network
go and all the outputs of the network are added to
produce a single vector. Then, the sum is passed
to a final neural network fy:

r= f¢(;ge([oi;0j;u])), (%)



 We will cover relation networks (RNs) and
statistical relational learning (SRL) in future.



