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What is uncertainty in machine learning

We make observations using the sensors in the world (e.g. camera)

Based on the observations, we intend to make decisions

Given the same observations, the decision should be the same

However,

● The world changes, observations change, our sensors change, the 
output should not change!

● We’d like to know how confident we can be about the decisions



Why Uncertainty is important?

Medical diagnostics



Why Uncertainty is important?

Imagine you are designing the vision system for an autonomous vehicle



Why Uncertainty is important?

Applications that require reasoning in earlier stages

Apply brake

Pedestrian detection

image understanding
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What is uncertainty in machine learning

We build models for predictions, can we trust 
them? Are they certain?



What is uncertainty in machine learning

Many applications of machine learning depend on good estimation 
of the uncertainty:

● Forecasting
● Decision making
● Learning from limited, noisy, and missing data
● Learning complex personalised models
● Data compression
● Automating scientific modelling, discovery, and experiment 

design



Where uncertainty comes from?

Remember the machine learning’s objective: minimize the expected loss

When the hypothesis function class is “simple” we can build 
generalization bound that underscore our confidence in average prediction

Uncertainty in data 
(Aleatoric)

Uncertainty in the model 
(Epistemic)



Where uncertainty comes from?

Alternatively, the probabilistic view: 

Which is,

Uncertainty in data 
(Aleatoric)

Uncertainty in the model 
(Epistemic)



WHAT IS A NEURAL NETWORK?
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Neural network is a parameterized function
Use a neural network to model the probability
Parameters θ are weights of neural net.
Feedforward neural nets model p(y|x, θ)
as a nonlinear function of θ and x.
Samples from the true 
distribution are the observations: 

Multilayer / deep neural networks model the overall function as a  
composition of functions (layers).

Usually trained to maximise likelihood (or penalised likelihood).



Point Estimate of Neural Nets: Maximum likelihood 
Estimate (MLE)

● The weights are obtained by minimizing the expected loss

● It assumes the state of the world is realized by a “single” parameter

● We assume the samples of observations are independent 

I’ll use “minimizing loss” and “maximizing 
the likelihood” interchangeably.



DEEP LEARNING

Deep learning systems are neural network models similar to  those 
popular in the ’80s and ’90s, with:
● Architectural and algorithmic innovations (e.g. many  layers, 

ReLUs, better initialisation and learning rates, dropout,  LSTMs, ...)
● Vastly larger data sets (web-scale)
● Vastly larger-scale compute resources (GPUs, cloud)
● Much better software tools (PyTorch, TensorFlow, MxNet, etc)
● Vastly increased industry investment and media hype

figure from http://www.andreykurenkov.com/

http://www.andreykurenkov.com/


LIMITATIONS OF DEEP LEARNING

Neural networks and deep learning systems give amazing  
performance on many benchmark tasks, but they are generally:
● Very data hungry (e.g. often millions of examples)
● Very compute-intensive to train and deploy (cloud GPU resources)
● Poor at representing uncertainty
● Easily fooled by adversarial examples
● Hard to optimise: non-convex + choice of architecture, learning 

procedure, initialisation, etc, require expert knowledge and 
experimentation



LIMITATIONS OF DEEP LEARNING

Neural networks and deep learning systems give amazing  
performance on many benchmark tasks, but they are generally:
● Uninterpretable black-boxes, lacking in transparency, difficult to trust
● Hard to perform reasoning with
● Assumed single parameter generated the data distribution
● Prone to overfitting (generalize poorly)
● Overly confident prediction about the input (p(y|x, θ) is not the 

confidence!)



These networks can easily be fooled!

Adding a perturbation to images cause 
the natural images to be misclassified.

Moosavi-Dezfooli et al., CVPR 2017



Optimization

Gradient descent is the method we usually use to minimize the loss

It follows the gradient and updates the parameters

Learning rate 
(step size)

Gradient with respect to 
the full training set



Optimization

For large neural networks with a large training set, computing the gradient 
is costly.

Alternatively we “estimate” the full gradient with samples from the 
dataset

Called stochastic gradient descent



Updating the network

Compute loss
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Using stochastic gradient descent is not ideal!

When minimizing the loss, we assume the landscape is smooth ...



Using stochastic gradient descent is not ideal!

However the real loss landscape is

VGG-56                                             VGG-110                                       ResNet-56

Hao Li et al., NIPS, 2017



Using stochastic gradient descent is not ideal!

Stochastic Gradient Descent (SGD) is a Terrible Optimizer

SGD is very noisy, and turns the gradient descent into a random walk over 
the loss.

However, it’s very cheap, and cheap is all we can afford at scale.



Types of Uncertainty

Aleatoric: Uncertainty inherent in the observation noise

Epistemic: Our ignorance about the correct model that generated the data

This includes the uncertainty in the model, parameters, convergence



Example

Kendel A., Gal Y., NIPS 2017



Types of Uncertainty

Aleatoric: Uncertainty inherent in the observation noise

Data augmentation: add manipulated data to training set



Types of Uncertainty

Aleatoric: Uncertainty inherent in the observation noise

Ensemble methods, e.g.

1. Augment with adversarial training

2. Encourage                to be similar to 

3. Train M models as an ensemble with random initialization

4. Combine at test for prediction

Minor change to the 
input



Types of Uncertainty

Aleatoric: Uncertainty inherent in the observation noise

Ensemble methods



Types of Uncertainty

Aleatoric: Uncertainty inherent in the observation noise

Epistemic: Our ignorance about the correct model that generated the data

This includes the uncertainty in the model, parameters, convergence



Bayesian  Methods
We can’t tell what our model is certain about

We utilise Bayesian modeling …

Bayesian Modeling addresses two uncertainties



We have a prior about the world

We update our understanding of the world with the likelihood of events

We obtain a new belief about the world

BAYES RULE



BAYES RULE

P(hypothesis|data) = P(hypothesis)P(data|hypothesis)

hP(h)P(data|h) 

● Bayes rule tells us how to do inference  about 
hypotheses (uncertain quantities)  from data 
(measured quantities).

● Learning and prediction can be seen as  forms 
of inference. Reverend Thomas Bayes (1702-1761)
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BAYES RULE

P(parameter|data) = P(parameter)P(data|parameter)

θP(θ)P(data|θ) 

● Bayes rule tells us how to do inference  about 
hypotheses (uncertain quantities)  from data 
(measured quantities).

● Learning and prediction can be seen as  forms 
of inference. Reverend Thomas Bayes (1702-1761)
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Point Estimate of Neural Nets: Maximum A-posteriori 
Estimate (MAP)

● The weights are obtained by minimizing the expected loss

● It assumes the state of the world is fully realized by the mode of the 
distribution of the parameters

Regularizer



MAP is not Bayesian!

MAP is still a point estimate

There is no distribution for the parameters

There is still a chance to reach a bad mode



WHAT DO I MEAN BY BEING BAYESIAN?

Dealing with all sources of parameter uncertainty
Also potentially dealing with structure uncertainty

34 / 
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Parameters θ are weights of neural net. They are 

assumed to be random variables.

Structure is the choice of architecture,  number 
of hidden units and layers, choice of  activation 
functions, etc.



Rules for Bayesian Machine Learning

Everything follows from two simple rules:
ΣyP(x) =     P(x, y)Sum rule:  

Product rule: P(x, y) = P(x)P(y|x)



How Bayesians work

● Now, the distribution over parameters is (Learning),

● The likelihood is

● There is an ideal test (predictive) distribution

Prior

Likelihood

Posterior



How Bayesians work

Prior

Likelihood
Posterior



Inference using Sampling

Computing            is difficult. We can use

● Sampling (Monte Carlo methods)

Variants of sampling methods: Gibbs, Metropolis-hastings, 
Gradient-based ...



Long history

Neal, R.M. Bayesian learning  via 
stochastic dynamics. In  NIPS 
1993.
First Markov Chain Monte  Carlo 
(MCMC) sampling  algorithm for 
Bayesian neural  networks. Uses 
Hamiltonian  Monte Carlo (HMC), 
a  sophisticated MCMC algorithm  
that makes use of gradients to  
sample efficiently.

Zoubin 
Ghahram
ani
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Langevin Dynamics

We said SGD randomly traverses the weight distributions. Let’s 
utilise it

Update SGD with a Gaussian noise

Learning rate decreases to zero



Langevin Dynamics

We said SGD randomly traverses the weight distributions. Let’s 
utilise it

● Gradient term encourages dynamics to spend more time in high 
probability areas. 

● Brownian motion provides noise so that dynamics will explore the 
whole parameter space.



Langevin Dynamics

Treat parameters of the network as different functions of the ensemble



Langevin Dynamics

Treat parameters of the network as different functions of the ensemble



Langevin Dynamics

Treat parameters of the network as different functions of the ensemble



Langevin Dynamics

Each parameter sample generates a new network
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Langevin Dynamics

There would be a lot more networks from the low loss regions

Training involves a “warm-up” stage
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Langevin Dynamics

There would be a lot more networks from the low loss regions

Training involves a “warm-up” stage
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Why not

● Is desirable for smaller dimensional problems

● Sampling methods are computationally demanding

● Sometimes requires a large sample size to perform well

● Theoretically unbiased estimates, however in practice is biased



Approximate Inference

Computing            is difficult. We can use

● Approximate with an alternative simpler distribution

Then the predictive distribution is 

Integrate out the parameters; otherwise sample



Approximate Inference to optimize alternative 
distribution

Computing            is difficult. We can use

● Minimize the divergence with respect to ω

● Identical to minimizing 

The inference is now cast to an optimization problem.

PriorEntropy of the data



Approximate Inference to optimize alternative 
distribution

● Using Monte Carlo sampling, we can rewrite the integration

As an unbiased estimate of the integral (for one sample)



Approximate Inference for Bayesian NNs

For Neural networks, it is hard to find the posterior. We need a 
distribution for each weight.



Approximate Inference for Bayesian NNs

For Neural networks, it is hard to find the posterior.

One possible solution is to use the following alternative distribution q

● Assume all the parameters in layers are independent

● The alternative distribution is a mixture model

For k’s component of the i’th layer 



Approximate Inference for Bayesian NNs

Now, minimising the variational loss,

is equal to dropping units in the network



Dropout

Set 50% of the activations to zero randomly.

● Force other parts of the network to learn redundant representations.

● Sounds crazy, but works great.



Dropout

In test time, we take “samples” from the network and average the output

The variance of the outputs is the confidence in prediction



Dropout

The alternative distribution is a set of Bernoulli (cheap multi-modality) 

It is cheap to evaluate

Easy to implement and requires minimum change to the network structure



Dropout for Bayesian NN



Alternative

Assume the weights are Gaussian ... 

Again use gradient with respect to parameters to update



Stein Variational Inference

Keep particles (small sample size of parameters)

Start from initial point 

Update in parallel with interactions 



WHY SHOULD WE CARE?

Calibrated model and prediction uncertainty: getting  systems 
that know when they don’t know.

Automatic model complexity control and structure learning
(Bayesian Occam’s Razor)

Figure from Yarin Gal’s thesis “Uncertainty in 
Deep Learning” (2016)



Bayesian ...

● It is self-regularized (there is the average of parameters involved)

● We have a distribution of the parameters

● Uncertainty is estimated for free

● Both uncertainty types are handled

● Prior knowledge is easily incorporated



However ...

● It is computationally demanding

● The integrals are intractable

● Parameters are high dimensional



GAUSSIAN PROCESSES
Consider the problem of nonlinear regression: You want to  
learn a function  f with error bars from data D = {X, y}

x

y

A Gaussian process defines a distribution over functions p(f ) which  can 
be used for Bayesian regression:

p(f )p(D|f )
p(f |D) = p(D)

Definition: p(f ) is a Gaussian process if for any finite subset
{x1, . . . , xn} ⊂ X , the marginal distribution over that subset p(f) is
multivariate Gaussian.

GPs can be used for regression, classification, ranking, dim. reduct...



A PICTURE: GPS, LINEAR AND LOGISTIC  REGRESSION, 
AND SVMS

Logistic  
Regression

Linear  
Regression

Kernel  
Regression

Bayesian  
Linear  

Regression

GP
Classification

Bayesian  
Logistic  

Regression

Kernel  
Classification

GP
Regression

Classification

Bayesian
Kernel

Zoubin Ghahramani
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NEURAL NETWORKS AND GAUSSIAN PROCESSES

inputs

outputs
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weights

Bayesian neural network

x
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x
A neural network with one hidden layer, infinitely many 
hidden units and Gaussian priors on the weights is a 
Gaussian process (Neal, 1994)



What else?

Laplace approximation
Bayesian Information Criterion (BIC)
Variational approximations
Expectation Propagation (EP)
Markov chain Monte Carlo methods (MCMC)
Sequential Monte Carlo (SMC)
Exact Sampling



CONCLUSIONS

Probabilistic modelling offers a general framework for  building 
systems that learn from data

Advantages include better estimates of uncertainty, automatic  ways 
of learning structure and avoiding overfitting, and a  principled 
foundation.

Disadvantages include higher computational cost, depending on  the 
approximate inference algorithm

Bayesian neural networks have a long history and are  undergoing 
a tremendous wave of revival.


