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Generative Adversarial Networks (GANs)
«  Problems with existing GANs and our approaches
3D Hand pose Estimation
Other divergences (Dudley GANSs)
« Uncertainty in Generation (Uncertainty-aware GAN)
- Density Estimator Adversarial Network
« Imitation Learning

Causality



Generative vs. Discriminative

e Generative models leaws(x, v)
Placing a joint distribution over all dimensions of the
data

o (y|x)
e Discriminative models learn

ming Ey,[l(h(x;60),y)] = [£(h(x;6),y)dp(x,y)
Remember: ),

~ = Zz L E(h(xi50),y:)  (%i,9i) ~ p(X,Y)
p(x,y) = p(y|x)p(x)

and



Generative models for

classification
4 ! )
i
O E 3
|
i
|
:
\_ : Y,
Y|z

)

o (



Generative models for
classification

o | e ( I DO Qe o
i 2 :" %o V8 /'/
N B e B e o0 - 0°8
9 E )L 0:..00‘ y
pe(y‘i‘] . p@(yaaj)



Generative modeling

. Generative models allows to sample from some data distribution
and learn a model that represents that distribution.

. Density estimation:
. Probability for a sample (conditional or marginal)
o Compare probability of examples
e Dimensionality reduction and (latent) representation learning

e Generate samples




Learning to generate

Images
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volcano

Anh et al. 2016



Learning to generate

images M
Speech

van der Oord et al.
2016



Learning to generate

Images
Speech

Handwriting
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Learning to generate

Images
Speech

Handwriting

Language

train?
Is this a modern train ]

[What is the number on the]

- Is the cat looking at the
camera?

Jain et al. 2017



Learning to generate

Images
Speech

Handwriting
Language

Representation




Learning to generate

carsv\fheelchairs

Images
Speech

Handwriting
Language
Representation

Outlier Detection




Simulation, planning, reasoning

(74
Oh et al. 2015



Generation for Simulation

Supports Reinforcement Learning for Robotics:
Make simulations sufficiently realistic that learned policies can readily
transfer to real-world application

Generative model

Photo from IEEE
Spectrum



idea: learn to understand data through
generation



Why generative models?

- Many tasks requirestructured output for complex
data

Eg. Machine translation

English Spanish French Detectlanguage ~ “.. Spanish English Romanian ~

I'm definitely not using Google Translate todo * | Definitivamente no estoy usando Google

my Spanish hcimework.l Translate para hacer mi tarea Espafiol

b Om-~ w0 o< 4

image credit: Adam Geitgey blog (2016) Machine Learning is Fun.



Generative Methods:

Autoregressive models

- Deep NADE, PixelRNN, PixelCNN, WaveNet, Video Pixel Network, etc.




Discriminative model: given n examples (g, ()
eam h: X =Y

Generative model: given n examples 'Y, recover p(x)

Maximum-likelihood objective: Hpg(x) = Z log pg ()
i i

Generation: Sampling from py ()



Attempt 1: learn py(x) directly



Gaussian Mixture Model

po(z)




Attempt 1: learn pg(x) directly
Problem: We need to enforce that/pg(x)dw =1

T

For most models (i.e. neural networks) this integral is
intractable.



Why Images are difficult?




Autoregressive Models

Factorize dimension-wise:

p(x) = p(z1)p(x2|21) . . . p(Tp |21, -y Tpe1)

Build a “next-step prediction” model p(&y,|x1,. .., Tn-1)

If x is discrete, network outputs a probability for each possible value

If X is continuous, network outputs parameters of a simple distribution
(e.g. Gaussian mean and variance)... or just discretize!

Generation: sample one step at a time, conditioned on all previous steps



RNNSs for Autoregressive Modeling

p(z1)  p(x2|z1) p(T3]T12) P(T4|21:3)
A A A

A
| | | |



Autoregressive RNN over
pixels in an image

Models pixels as
discrete-valued (256-way
softmax at each step)

van der Oord et al. 2016



Autoregressive models

» Autoregressive models are powerful density estimators, but:

Sequential generation can be slow
Doesn’t closely reflect the “true” generating process
Tends to emphasize details over global data

Not very good for learning representations



Autoencoders

Classifier Loss
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Autoencoders
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Autoencoders

Encoder Decoder

Latent Representation




Autoencoders

Encoder Decoder

Latent Representation

bottleneck layer [l —> N

v

t v

Inputs Reconstruction

L= (z—1)



Autoencoders

Reconstruction loss forces hidden layer to represent information
about the input

Bottleneck hidden layer forces network to learn a compressed
latent representation



Latent Variable Models:
compression as implicit generative
modeling



Variational Autoencoders (VAEs)

Generative extension of autoencoders which allow sampling and estimating
probabilities

“Latent variables” with fixed prior distribution p(z)

Probabilistic encoder and decoder: Q(Z| ;c) , p($ | Z)

Trained to maximize a lower bound on log-probability:

logp(z) > E.g(|) log p(z|2) + log p(2) — log g(2)]



Variational Autoencoders

Encoder M_i% Decoder

v

t v
] ]
logp(a:) > IEzqu(z|:1:) [logp(:c|z) + logp(z) — log Q(z)]



Interpolation in the Latent
Space

Tom White
2016



Infinite Variational Autoencoders

Encoder Decoder

—p [

v

t v

L
1
]E% (z|xi) [log Pe., (Xi’ zCi) E log q¢ (Zci |X¢)] ~ E Z log Pe., (X,‘, Zf:‘_) - log q¢ (Zﬁi IX,-)
=1



Infinite VAEs

- Infinite dimensional latent space
- Combine potentially infinite number of VAEs
- Infinite dimensional latent space

- Potential to capture all the diversity in the data




Mixture of Autoencoders

If we train our model with dogs, it is uncertain about other images

Mapping the image to the hidden space

22




Problems with VAEs

e Encoder and decoder’s output distributions are typically limited
(diagonal-covariance Gaussian or similar)

e This prevents the model from capturing fine details and leads to
blurry generations



Andrej Karpathy 2015



Problems with VAEs

-Encoder and decoder’s output distributions are typically limited (diagonal-covariance
Gaussian or similar)

-This prevents the model from capturing fine details and leads to blurry generations

-Solution: use autoregressive networks in encoder and decoder






Generative Adversarial Networks
(GANSs)

Generative Adversarial networks are a way to make a
generative model by having two neural networks
compete with each other

The discriminator tries to distinguish genuine data
from forgeries created by the generator. (Xreas data))  ( Xfake )

The generator turns random noise into imitations of
the data, in an attempt to fool the discriminator




Generative Adversarial Networks
(GANSs)

Problem setup:

fake

mén max Eynpx [log D(z)] + E,np, [log(l — D(G(2))]

Px Data Distribution

(Xreal (data)) [ X fake J
Ps(z) Model Distribution A

( Z (noise) J




Generative Adversarial Networks
(GANSs)

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior py ().

e Sample minibatch of m examples {(V),...,2(™} from data generating distribution

Pdata ().

e Update the discriminator by ascending its stochastic gradient:

m

5 ’ :
B (@) - (¥
Vedm Z; [logD (:1: ) + log (1 D (G (z )))] ;
end for

e Sample minibatch of m noise samples {z(!), ..., z(™} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, 28 (10 (6())).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




Generative Adversarial Networks
(GANSs)
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Generative Adversarial Networks
(GANSs)

Why GANs?

« Sampling is straightforward

» Robust to overfitting since Generator never sees
training data

» GANs are good at capturing the modes

» No need for Markov Chain

« No variational bound

» Produce better samples




vs VAEs

GANs




vs VAEs

GANSs

VAEs maximize a lower bound on the likelihood of the data
GANs maximize a “learned score” for the generated samples

VAEs minimize the KL-divergence between the generated and real
data

GANs learn the loss based on the divergence between real/fake
examples (will discuss)

VAEs generate data conditioned on the input
GANs’ generator never sees real data

VAEs are trained as a single function (neural network)
GANs are trained as two individual network with their own loss
(Both follow a symmetric design)



e Convolution for GANs
 Use Batch Normalization

1002{ =’

Project and reshape

3
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cycleGAN: Adversarial training of
domain transformations

- CycleGAN learns transformations across domains with unpaired data.

- Combines GAN loss with “cycle-consistency loss”: L1 reconstruction.

¢ T G
T s " : - I e ~
Dx Dy [® YN A 2] [Y X g
: G P F F
X /\ Y o Y X X Y cycle-consistency
\/ cycle-consistency \ ‘.\S‘ loss
F loss - ‘/.

Zhu et al 2017.



CycleGAN for unpaired data

Monet T Photos Zebras T Horses Summer % Winter

horse —» zebra

Photograph Van Gogh Cezanne




Various Architectures

Vanilla GAN

Vanilla GAN
(Goodfellow, et al., 2014)

Discriminator Looks at Latent Variables

Conditional GAN
(Mirza & Osindero, 2014)

% i ? D
(Xrew @ata)  ( Xyare ) (Krea data)) | (( Xpake )
:
[c (class)] (Z (noise)) [ Z (latent)

Bidirectional GAN
(Donahue, et al, 2016; Dumoulin, et al., 2016)

Discriminator Predicts Latent Variables

Semi-Supervised GAN
(Odena, 2016; Salimans, et al., 2016)

real c=1
real c=2

real -
fake

B

InfoGAN
(Chen, et al., 2016)

G
P

[X,-m; (data))

(Xreal (data))

( Xrake )

A

(C (class) ] ( Z (noise) J

Auxiliary Classifier GAN
(Odena, et al., 2016)

(=1
real ) (c=2)
&=

[Xreal (data)) ( X fake ]

Chris Olah,

2016



Representation learning

(a) Varying c; on InfoGAN (Digit type)

(c) Varying co from —2 to 2 on InfoGAN (Rotation)

(d) Varying c3 from —2 to 2 on InfoGAN (Width)

Sgnderby et al. 2016

Chen et al.
2016



High dimensional faces using GANSs

« Samples of 1024 * 1024



http://www.youtube.com/watch?v=XOxxPcy5Gr4

Fake videos
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http://www.youtube.com/watch?v=jI6H-0YWkSc

Fake videos



http://www.youtube.com/watch?v=dkoi7sZvWiU

Fake videos



http://www.youtube.com/watch?v=ttGUiwfTYvg

Text to Image

a small yellow and a small bird with blue
black bird with red crown, back and white
beak belly

a red and white bird a yellow and black bird
with a small beak with long beak

This flower has small, round violet This flower has small, round violet
petals with a dark purple center i petals with a dark purple center

Discriminator Network

Figure 2 in the original paper.



Generating Implausible Scenes from
Gaptions

TEY® FyE BEED T
Fa®= §.-"" OO0E 7 2 57

A stop sign is flying in A herd of elephants fly- A toilet seat sits open in A person skiing on sand
blue skies. ing in the blue skies. the grass field. clad vast desert.

Mansimov et al. 2015



GANSs for art: GANGogh




GANSs for Games: Fully computer
Generated Game

Al-Rendered Video



http://www.youtube.com/watch?v=ayPqjPekn7g

We have many orders of magnitude more data than labels;
unsupervised learning is important.



H ]
3D Hand pose estimation
E, G, s

IDC
»
-

e e TF
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» VAEs and GANs can be combined to learn a better latent space

» Hand pose from the depth images
« Combination of synthetic and real depth images

* From unpaired images
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Taxonomy of Generative

models

Direct

el

Explicit density

il

[ Max1mum leehhood
GAN

Imphclt density

=

Tractable dens1ty‘ Approximate den81ty

1 Markov Chain

-Fully visible belief nets GSN
_NADE : / et ‘

_MADE Variational Markov Chain
-Pixel RNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)



Problems with GANSs

® non-convergence:
o it might not converge to the Nash Equilibrium
(e.g. minmax xy)

e Mode collapse ;
Target . -

Expected - ”

Step 15k Step 20k Step 25k

- -
Output - - -



Problems with GANSs

* In Vanilla GAN:
* The divergence measure used is not always continuous
* The discriminator may not provide sufficient gradients
* For the optimal discriminator, the gradient is zero for generator

* Generator collapses too many values to the same sample (mode-
collapse)



Divergences in GANSs

Remember:
mGin ma V(D,G) = Egnpyu(2)[l0g D(@)] + Eznp, () [log(1 — D(G(2)))]

Then, C(G) =maxV (G, D)

C(G) = —log(4) +2- JSD (paua [Pg)

In practice, however,

ming maxp V(Da G) = Ex~pdum(,) [log D(J:)] - EZ~Pz(z) [log D(G(Z))]



Divergences in GANSs

Discriminator measures the divergence between the two distributions

A general class of divergences

D;Pl@) = |

X
which is the upper bound for

sup (Ez~p [T(z)] — Ez~g [ (T(2))])
TeT

and
F(0,w) = Eonp (97 (Voo (2))] + Eaong, [ (97 (Ve ()))]



Divergences in GANSs

Name Output activation g dom; - Conjugate f*(t) (1)
Total variation 5 tanh(v) —3<t<i ¢ 0
Kullback-Leibler (KL) v R exp(t — 1) 1
Reverse KL —exp(v) R_ —1 — log(—t) -1
Pearson x? v R 2+t 0
Neyman x? 1 — exp(v) t<1 2—-2/1-1t 0
Squared Hellinger 1 — exp(v) t<1 s 0
Jeffrey v R W(el™) + =y +t—2 0
Jensen-Shannon log(2) — log(1 + exp(—v)) t < log(2) — log(2 — expét)) 0
Jensen-Shannon-weighted —mlogm — log(1 + exp(—v)) t< —mwlogm (1 — m)log ﬁ 0
GAN —log(1 + exp(—v)) R_ —log(1 — exp(t)) —log(2)
a-div. (@ < 1, a # 0) = — log(1 + exp(—v)) t< o Lt@—1)+ 1)1 — 1 0
a-div. (o > 1) v R lta-1)+1)a=1 -1 0

(o3




Divergences in GANSs

To solve vanishing gradient we use other divergences:

We use Integral Probability Measure (IPM):

P (pa 99) — sup
fw€F

/X Fudp— [ fudao

- Where fis the critic function (a deep neural net)

« Function fis chosen from a class of functions F
Distribution of real data p

Distribution of fake data q (it is learnt)



Dudley GAN

« We propose to use |z < 1where
IfwllBe = llfwllo + llfwllz

]z ==sup { FGa) = PO o v, o € x}

|x1 — X2

[ fwlloo = Suﬁ{lfw(X)I :x € X}

« Bounded: Limits the critic’s values AR

- Lipschitz: Limits the rate of change in the critic’s
compared to the change in the input

- How to define Lipschitz neural networks?



Lipschitz Neural Nets

- We can mathematically prove certain operations are Lipschitz:
- Convolutional operations with normalized weights
- Linear operations with normalized weights

- Certain activation functions: sigmoid, relu, linear, tanh.

- We can then regularize the function to remain bounded



f-divergence vs IPM




What can we Do?

Generate Random real looking samples
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What can we Do?

Analyze latent space

10 A




Adversarially Learned Inference

e Learn inference network
« Consider the following joint distribution

q(x,z) = Q(.X') CI(Zl.X') encoder distribution

p(X, Z) — P(Z) p(xIZ) generator distribution



Adversarially Learned Inference

 Learn inference network
 Consider the following joint distribution

Encoder/Inference Network Generator Network

Figure 1 in the original paper.

o . mGin max Eqe) [log(D(x, & (x))] + Eux [log(l - D(Gx(z),z))]
Nash Equilibrium is
p(X,Z) o q(xl Z)

p(x) ~ q(x) and p(2)~ q(z)
p(x|z) ~ q(x|2) and p(z|x) ~ q(z|x)



Uncertainty-aware GAN

- GANs are generated from a function evaluation
- We don’t know if the sample generated

- Is mapped to a good quality sample

- Is from the dense region or not

- Let’s treat generator and discriminator as “random functions”



Uncertainty-aware GAN

Real Data

A
A

A,

y ey

- fa

_expected

Generator

(X, y) f D
0
(x',9)
Discriminator

similarity



Uncertainty-aware GAN

« We perform a Monte Carlo estimate to the expected sample/score
- Training is more stable, due to averaging

- We can compute the uncertainty in the discriminator score



« Generative models
«  Why using Deep Generative models?
Generative vs. Discriminative models
- Existing Methods:
Autoregressive Methods
Latent Variable Models

Variational Autoencoders (VAEs)

Generative Adversarial Networks (GANSs)
« Problems with existing GANs and our approaches
3D Hand pose Estimation
Other divergences (Dudley GANSs)
Uncertainty in Generation (Uncertainty-aware GAN)
« Density Estimator Adversarial Network
Imitation Learning

Causality



Generative Adversarial Density
estimator

- GANSs are likelihood-free, we don’t have a density function

- We can’t evaluate probability of a sample in GANs

« Let’s consider a likelihood model

s = e —aw,  |dy=es ( / exp(wT¢(x))dx)




Generative Adversarial Density
estimator

- We can find approximate this normalizer as

Ajw) =sup, { / wT¢(x)q(x|0)dx+Hx<q>}

- Introducing a generator, we have

Afw) =wup, { f WT¢(909(Z))€1(909(z))Pz(zlez)dz+Hz(Q)}



Generative Adversarial Density
estimator

Aw) =sup, {][ W olao, (@)alse, @))p. (2. s} () | EXPECTALION OF
Generated samples
Expectation of

/ W 6(x)q(x|6)dx Real samples

The expectation of the data and the generated samples should match
in our density model (Moment matching property)



Generative Adversarial Density
estimator

Aw) =swp, { [ W olao, (®)alse, @))p. (26.)da | ()]
Entropy of

» the latent space (e.g. larger variance),
» the curvature of the generator

22
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Applications

Visual dialog: a sequence of question-answers about an image

Q: is the train old? Q: is this in color ?

A: 1 think so A: yes

Sample A: yes (0.03 £ 0.2) Sample A: yes (0.1 & 0.05)

Q: is the train moving? Q: how old does the boy look?
A: no but it does have some steam A: he is not facing me, but maybe
coming Sample A: 3 (0.1 £0.4)

Sample A: no (0.02 £+ 0.1)

= s

[

-

Q: what vegetables are there?

A: carrots, cauliflower, broccoli
Sample A: carrots . carrots , and cu-
cumbers (0.1 = 0.01)

Q: what color is the table ?

A: dark brown

Sample A: white (0.1 £+ 0.02)




Imitation learning and Inverse
Reinforcement Learning

- Reinforcement learning requires a “reward function”

Expert Learning

Demonstration Algorithm

- An expert drives a car and an autonomous car imitates
- Sampling trajectories to simulate the expert’s behavior



Imitation learning and Inverse
Reinforcement Learning




Gausality

Rather than p(y|:€%s the conditional distribution

We consider the causal expression p(y|do(x))

p(y|do(z)) represents the intervention expression
E;"’ fa Es E; ~E&
X1 = fi(Er)
E1->f1 ‘F@ ﬁz :ﬁzgﬁhgzg
Ez - fz E4—> fa %@ Xa = fa(Ea)

X5 = f5(X3, Xa, Es)

Goudet et al. 2018



e Generative models explain the data, likelihood of samples

e Thereis a simpler hidden space where complex data may be generated from
e If we create something, we understand it

e Capturing the uncertainty in the model and data

e Deep generative models can be used for

Data generation (generate various samples of road)

o

O

Human imitation (use them instead of real drivers)

Environment simulation

O

Use of unlabeled data (rather than expensive, often unavailable real one)

O



