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• Generative models learn
Placing a joint distribution over all dimensions of the 
data

• Discriminative models learn

Remember: 

and

Generative vs. Discriminative



Generative models for 
classification



Generative models for 
classification



• Generative models allows to sample from some data distribution 
and learn a model that represents that distribution.

• Density estimation:

• Probability for a sample (conditional or marginal)

• Compare probability of examples

• Dimensionality reduction and (latent) representation learning

• Generate samples

Generative modeling



Learning to generate

Images

Anh et al. 2016
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van der Oord et al. 
2016
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Outlier Detection

carswheelchairs

✘✘ ✘

Outlier!



Simulation, planning, reasoning

Oh et al. 2015



Generation for Simulation

Supports Reinforcement Learning for Robotics:
Make simulations sufficiently realistic that learned policies can readily 
transfer to real-world application

5

Photo from IEEE 
Spectrum

Generative model



idea: learn to understand data through 
generation



• Many tasks requirestructured output for complex 
data

- Eg. Machine translation

Why generative models?

image credit: Adam Geitgey blog (2016) Machine Learning is Fun.



Generative Methods:

6

Autoregressive models

• Deep NADE, PixelRNN, PixelCNN, WaveNet, Video Pixel  Network, etc.

Latent variable models

• Variational Auto encoders

• Generative Adversarial Networks

… and Beyond



Setup
Discriminative model: given n examples  
learn

Generative model: given n examples , recover

Maximum-likelihood objective:

Generation: Sampling from



Attempt 1: learn directly





Attempt 1: learn          directly

Problem: We need to enforce that

For most models (i.e. neural networks) this integral is  
intractable.



Why Images are difficult?

...

...

...... ... ...



Factorize dimension-wise:

Build a “next-step prediction” model

If x is discrete, network outputs a probability for each possible value

If x is continuous, network outputs parameters of a simple distribution  
(e.g. Gaussian mean and variance)… or just discretize!

Generation: sample one step at a time, conditioned on all previous steps

Autoregressive Models



RNNs for Autoregressive Modeling

. . .



PixelRNN

Autoregressive RNN  over 
pixels in an image

Models pixels as  
discrete-valued (256-way 
softmax at each  step)

van der Oord et al. 2016



Autoregressive models
• Autoregressive models are powerful density estimators, but:

• Sequential generation can be slow

• Doesn’t closely reflect the “true” generating process 

• Tends to emphasize details over global data

• Not very good for learning representations



Autoencoders

Inputs

Classifier Loss



Autoencoders

Inputs

Classifier Loss



Autoencoders

Inputs Reconstruction

Encoder Decoder

Latent Representation



Autoencoders

Inputs Reconstruction

Encoder Decoder

Latent Representation

bottleneck layer



Autoencoders

Reconstruction loss forces hidden layer to represent  information 
about the input

Bottleneck hidden layer forces network to learn a compressed 
latent representation



Latent Variable Models: 
compression as implicit generative 
modeling



Variational Autoencoders (VAEs)

Generative extension of autoencoders which allow sampling and  estimating 
probabilities
“Latent variables” with fixed prior distribution  

Probabilistic encoder and decoder:

Trained to maximize a lower bound on log-probability:



Variational Autoencoders

Encoder Decoder



Tom White 
2016

Interpolation in the Latent 
Space



Infinite Variational Autoencoders

Encoder Decoder

…



Infinite VAEs

• Infinite dimensional latent space

• Combine potentially infinite number of VAEs

• Infinite dimensional latent space

• Potential to capture all the diversity in the data



Mixture of Autoencoders

If we train our model with dogs, it is uncertain about other images

Mapping the image to the hidden space



Problems with VAEs

● Encoder and decoder’s output distributions are typically  limited 
(diagonal-covariance Gaussian or similar)

● This prevents the model from capturing fine details and leads  to 
blurry generations



Andrej Karpathy 2015



Problems with VAEs

•Encoder and decoder’s output distributions are typically  limited (diagonal-covariance 
Gaussian or similar)

•This prevents the model from capturing fine details and leads  to blurry generations

•Solution: use autoregressive networks in encoder and  decoder





Generative Adversarial networks are a way to make a 
generative model by having two neural networks 
compete with each other 

The discriminator tries to distinguish genuine data 
from forgeries created by the generator.

The generator turns random noise into imitations of 
the data, in an attempt to fool the discriminator

Generative Adversarial Networks 
(GANs)



Problem setup:

       Data Distribution

          Model Distribution

Generative Adversarial Networks 
(GANs)



Generative Adversarial Networks 
(GANs)



Generative Adversarial Networks 
(GANs)



Why GANs?
• Sampling is straightforward
• Robust to overfitting since Generator never sees 

training data
• GANs are good at capturing the modes
• No need for Markov Chain
• No variational bound
• Produce better samples

Generative Adversarial Networks 
(GANs)
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• GANs maximize a “learned score” for the generated samples

• VAEs minimize the KL-divergence between the generated and real 
data

• GANs learn the loss based on the divergence between real/fake 
examples (will discuss)

• VAEs generate data conditioned on the input
• GANs’ generator never sees real data

• VAEs are trained as a single function (neural network)
• GANs are trained as two individual network with their own loss
• (Both follow a symmetric design)



• Convolution for GANs
• Use Batch Normalization

DCGAN







cycleGAN: Adversarial training of 
domain transformations
• CycleGAN learns transformations across domains with unpaired data.

• Combines GAN loss with “cycle-consistency loss”: L1 reconstruction.

Zhu et al 2017.



CycleGAN for unpaired data



Various Architectures

Chris Olah, 
2016



Representation learning

Sønderby et al. 2016
Chen et al. 
2016



High dimensional faces using GANs
• Samples of 1024 * 1024 

http://www.youtube.com/watch?v=XOxxPcy5Gr4


Fake videos

http://www.youtube.com/watch?v=jI6H-0YWkSc


Fake videos

http://www.youtube.com/watch?v=dkoi7sZvWiU


Fake videos

http://www.youtube.com/watch?v=ttGUiwfTYvg


Text to Image



Generating Implausible Scenes from 
Captions

Mansimov et al. 2015



GANs for art: GANGogh



GANs for Games: Fully computer 
Generated Game

http://www.youtube.com/watch?v=ayPqjPekn7g


We have many orders of magnitude more data than labels;
unsupervised learning is important.



3D Hand pose estimation

• VAEs and GANs can be combined to learn a better latent space
• Hand pose from the depth images
• Combination of synthetic and real depth images
• From unpaired images



3D Hand pose estimation



Taxonomy of Generative 
models



Problems with GANs
● non-convergence: 

○ it might not converge to the Nash Equilibrium 
(e.g. minmax xy)

● Mode collapse



Problems with GANs

• In Vanilla GAN:

• The divergence measure used is not always continuous 

• The discriminator may not provide sufficient gradients 

• For the optimal discriminator, the gradient is zero for generator

• Generator collapses too many values to the same sample (mode- 
collapse)



Divergences in GANs

Remember:

Then,

In practice, however,



Divergences in GANs

Discriminator measures the divergence between the two distributions 

A general class of divergences

which is the upper bound for

and



Divergences in GANs



Divergences in GANs

To solve vanishing gradient we use other divergences:

We use Integral Probability Measure (IPM):

• Where f is the critic function (a deep neural net)

• Function f is chosen from a class of functions F

• Distribution of real data p

• Distribution of fake data q (it is learnt)



Dudley GAN
• We propose to use                  where

• Bounded: Limits the critic’s values

• Lipschitz: Limits the rate of change in the critic’s 
compared to the change in the input

• How to define Lipschitz neural networks? 



Lipschitz Neural Nets
• We can mathematically prove certain operations are Lipschitz:

• Convolutional operations with normalized weights

• Linear operations with normalized weights

• Certain activation functions: sigmoid, relu, linear, tanh.

• We can then regularize the function to remain bounded



f-divergence vs IPM

IPM f-divergence

Total Variation



What can we Do?

Generate Random real looking samples



What can we Do?

Analyze latent space



Adversarially Learned Inference
• Learn inference network
• Consider the following joint distribution



Adversarially Learned Inference
• Learn inference network
• Consider the following joint distribution

Nash Equilibrium is 



Uncertainty-aware GAN

• GANs are generated from a function evaluation

• We don’t know if the sample generated 

• Is mapped to a good quality sample

• Is from the dense region or not

• Let’s treat generator and discriminator as “random functions”



Uncertainty-aware GAN



Uncertainty-aware GAN

• We perform a Monte Carlo estimate to the expected sample/score

• Training is more stable, due to averaging

• We can compute the uncertainty in the discriminator score
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Generative Adversarial Density 
estimator
• GANs are likelihood-free, we don’t have a density function

• We can’t evaluate probability of a sample in GANs

• Let’s consider a likelihood model



Generative Adversarial Density 
estimator
• We can find approximate this normalizer as

• Introducing a generator, we have



Generative Adversarial Density 
estimator

The expectation of the data and the generated samples should match 
in our density model (Moment matching property)

Expectation of 
Generated samples

Expectation of 
Real samples



Generative Adversarial Density 
estimator

Entropy of 
• the latent space (e.g. larger variance), 
• the curvature of the generator



Applications
Visual dialog: a sequence of question-answers about an image  



Imitation learning and Inverse 
Reinforcement Learning
• Reinforcement learning requires a “reward function”

• An expert drives a car and an autonomous car imitates

• Sampling trajectories to simulate the expert’s behavior

Expert 
Demonstration

Policy
Learning 
Algorithm



Imitation learning and Inverse 
Reinforcement Learning



Causality

Rather than              as the conditional distribution

We consider the causal expression

represents the intervention expression

Goudet et al. 2018



Conclusion
● Generative models explain the data, likelihood of samples

● There is a simpler hidden space where complex data may be generated from

● If we create something, we understand it

● Capturing the uncertainty in the model and data

● Deep generative models can be used for 

○ Data generation (generate various samples of road)

○ Human imitation (use them instead of real drivers)

○ Environment simulation 

○ Use of unlabeled data (rather than expensive, often unavailable real one)


