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Support Vectors

Primal

A more popular version is (still a primal form)

min
w,b,ξ

1

2
‖w ‖2 + C

n∑
i=1

ξi ,

s.t. yi (〈xi ,w〉+ b) ≥ 1− ξi , ξi ≥ 0, i = 1, · · · , n,

This is equivalent to the previous form and γ = 1/‖w ‖.

View in in ERM hinge loss `H(x, y ,w) = max{0, 1− y(〈x,w〉+b)},
and Ω(w) = 1

2‖w ‖
2 with a proper λ.

It is often solved by using Lagrange multipliers and duality.
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Lagrangian function

L(w, b, ξ, α, β) =
1

2
‖w ‖2 + C

n∑
i=1

ξi

+
n∑

i=1

αi [1− ξi − yi (〈xi ,w〉+ b)] +
n∑

i=1

βi (−ξi )
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Optimise Lagrangian function — 1st order condition

To get infw,b,ξ{L(w, b, ξ, α, β)}, by 1st order condition

∂L(w, b, ξ, α, β)

∂w
= 0⇒ w∗−

n∑
i=1

αiyixi = 0 (1)

∂L(w, b, ξ, α, β)

∂ξi
= 0⇒ C − αi − βi = 0 (2)

∂L(w, b, ξ, α, β)

∂b
= 0⇒

n∑
i=1

αiyi = 0 (3)
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Optimise Lagrangian function — Complementarity
conditions

Complementarity conditions

αi [1− ξi − yi (〈xi ,w〉+ b)] = 0,∀i (4)

βiξi = 0,∀i (5)
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Dual

L(w∗, b∗, ξ∗, α, β)

=
1

2
〈w∗,w∗〉+

n∑
i=1

αi −
n∑

i=1

αiyi 〈xi ,w∗〉

+
n∑

i=1

ξ∗i (C − αi − βi ) + b(
n∑

i=1

αiyi )

=
1

2
〈w∗,w∗〉+

n∑
i=1

αi −
n∑

i=1

αiyi 〈xi ,w∗〉 via eq(2) and eq(3)

=
1

2

∑
i,j

αiαjyiyj 〈xi , xj〉+
n∑

i=1

αi −
∑
i,j

αiαjyiyj 〈xi , xj〉 via eq(1)

=
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyj 〈xi , xj〉
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Dual

maxα infw,b,ξ{L(w, b, ξ, α, β)} gives the dual form:

max
α

n∑
i=1

αi −
1

2

∑
i ,j

αiαjyiyj 〈xi , xj〉

s.t. 0 ≤ αi ≤ C , i = 1, · · · , n, (via eq(2))
n∑

i=1

αiyi = 0

Let α∗ be the solution.
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From dual to primal variables

How to compute w∗, b∗ from α∗?
Via eq(1), we have

w∗ =
n∑

i=1

α∗
i yixi . (6)

Via comp condition eq(4), we have αi [1− ξi − yi (〈xi ,w〉+ b)] = 0,∀i .
When αi > 0, we know 1− ξi − yi (〈xi ,w〉+ b) = 0. It will be great if
ξi = 0 too. When will it happen? βi > 0⇒ ξi = 0 because of comp
condition eq(5). Since C − αi − βi = 0 (2), βi > 0 means α < C .
For any i , s.t. 0 < αi < C , 1− yi (〈xi ,w〉+ b) = 0, so (multiple yi on
both sides, and the fact that y2

i = 1)

b∗ = yi − 〈xi ,w∗〉 (7)

Numerically wiser to take the average over all such training points
(Burges tutorial).
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Support Vectors

y∗ = sign(〈x,w∗〉+ b∗) = sign(
∑n

i=1 α
∗
i yi 〈xi , x〉+ b∗).

It turns out many α∗i = 0. Those xj with α∗j > 0 are called support
vectors. Let S = {j : α∗j > 0}

y∗ = sign(
∑
j∈S

α∗j yj 〈xj , x〉+ b∗)

Note now y can be predicted without explicitly expressing w as
long as the support vectors are stored.
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Support Vectors

<w,x>+b = -1

<w,x>+b = +1

<w,x>+b = 0

Class -1

Class +1

Margin SVs

Non-margin SVs (correctly classified)

Non-margin SVs (mis-classified)

Non-margin SVs (on the 
decision boundary)

Decision 
boundary

Two types of SVs:

Margin SVs: 0 < αi < C (ξi = 0, on the dash lines)

Non-margin SVs: αi = C (ξi > 0, thus violating the margin. More specifically, when 1 > ξi > 0,
correctly classified; when ξi > 1, it’s mis-classified; when ξi = 1, on the decision boundary)
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Dual

All derivation holds if one replaces xj with φ(xj) and let kernel
function κ(x, x′) = 〈φ(x), φ(x′)〉. This gives

max
α

n∑
i=1

αi −
1

2

∑
i ,j

αiαjyiyjκ(xi , xj)

s.t. 0 ≤ αi ≤ C , i = 1, · · · , n
n∑

i=1

αiyi = 0

y∗ = sign[
∑
j∈S

α∗j yjκ(xj , x) + b∗].

This leads to non-linear SVM and more generally kernel methods
(will be covered in later lectures).
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Theoretical justification

An example of generalisation bounds is below (just to give you an
intuition, no need to fully understand it for now).

Theorem (VC bound)

Denote h as the VC dimension, for all n ≥ h, for any δ ∈ (0, 1),
with probability at least 1− δ, ∀g ∈ G

R(g) ≤ Rn(g) + 2

√
2
h log 2en

h + log( 2
δ )

n
.

Margin γ = 1/‖w ‖, h ≤ min{D, d4R2

γ2 e}, where the radius

R2 = maxni=1 〈Φ(xi ),Φ(xi )〉 (assuming data are already centered)
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Theoretical justification

Other tighter bounds such as Rademacher bounds, PAC-Bayes
bounds etc..
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1-Class SVM by Scholkopf etal (a.k.a. ν-SVM)
1-Class SVM by Tax and Duin

Novelty detection

Motivation: data from one class are easy to collect, and data from
the rest class(es) are hard (or disastrous ) to collect, or too few to
be statistical meaningful.

Example:

Operational status of a nuclear plant as “normal”

Seeing a baby elephant ⇒ elephants are small?
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Motivation: data from one class are easy to collect, and data from
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Novelty detection

Motivation: data from one class are easy to collect, and data from
the rest class(es) are hard (or disastrous ) to collect, or too few to
be statistical meaningful.

Example:

Operational status of a nuclear plant as “normal”
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1-Class SVM by Scholkopf etal (a.k.a. ν-SVM)
1-Class SVM by Tax and Duin

Novelty detection

Only ”normal data” in your training dataset (thus seen all as
1-class).

for a testing data point, to predict if it’s ”normal” (i.e. belong
to that class or not).
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Novelty detection

Only ”normal data” in your training dataset (thus seen all as
1-class).

for a testing data point, to predict if it’s ”normal” (i.e. belong
to that class or not).
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1-Class SVM by Scholkopf etal (a.k.a. ν-SVM)
1-Class SVM by Tax and Duin

Novelty detection

Q: Since belonging to one class or not, why not a binary
classification problem?

A: In novelty detection there are no “abnormal” data (i.e. 2nd
class data) in the training dataset for you to train on.

Other names: one-class classification, unary classification, outlier
detection, anomaly detection
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Novelty detection

Q: Since belonging to one class or not, why not a binary
classification problem?

A: In novelty detection there are no “abnormal” data (i.e. 2nd
class data) in the training dataset for you to train on.
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1-Class SVM

One-Class SVM by Scholkopf etal (NIPS 2000)

One-Class SVM by Tax and Duin (J.ML 2004)
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One-Class SVM by Scholkopf etal (a.k.a. ν-SVM)
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Primal

` is the number of training examples. ν is a hyper-parameter
(often chosen by human).

ν is an upper bound on the fraction of outliers

ν is a lower bound on the number of training examples used
as Support Vector

Also known as ν-SVM.
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Dual
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Decision function (predication)
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Toy results
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Primal
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Decision function
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Multi-class SVM

min
w,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi (8a)

s.t. ∀i , y , 〈w,Φ(xi , yi )− Φ(xi , y)〉 ≥ 1− ξi . (8b)

Using whiteboard for derivation.
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SVM-struct

In order to allow some outliers, they use slack variables ξi and
maximise the minimum margin, F (xi , yi )−maxy∈Y− yi F (xi , y),
across training instances i . Equivalently,

min
w,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi (9a)

s.t. ∀i , y, 〈w,Φ(xi , yi )− Φ(xi , y)〉 ≥ ∆(yi , y)− ξi , ξi ≥ 0.
(9b)

How many constraints here for each i?

Reduce to only one constraint per i — finding the most
violating constraint (a MAP inference problem).

Using whiteboard for derivation.
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That’s all

Thanks!
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