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Dice rolling game

Rolling a die (with numbers 1, ...,6).
Chance of getting a 5 =7
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Dice rolling game

Rolling a die (with numbers 1, ...,6).
Chance of getting a 5 =7

1/6

Chance of getting a 5 or 4 =7
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Dice rolling game

Rolling a die (with numbers 1, ...,6).
Chance of getting a 5 =7

1/6

Chance of getting a 5 or 4 =7

2/6
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Events and confidence

Probability =~ a degree of confidence that an outcome or an event
(a number of outcomes) will occur.
Probability space (a.k.a Probability triple) (22, F, P):

@ Sample space or outcome space, denoted Q (read "Omega”) :
the set of all possible outcomes (of the problem that you are
considering).

o roll a die: Q ={1,2,3,4,5,6}. flip a coin: Q = {Head, Tail}.

@ A set of events, a o-Field (read “sigma-field") denoted J:

Each even o € F is a set containing zero or more outcomes
(i.e. subset of Q).

o Event: roll a die to get 1: @ = {1}; to get 1 or 3: o = {1,3}
e Event: roll a die to get an even number: o = {2,4,6}
@ Probability measure P: the assignment of probabilities to the
events; i.e. a function returning an event's probability; i.e. a
function P from events to probabilities
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Probability measure

Probability measure (distribution) P over (€2, J): a function from
F (events) to [0, 1] (range of probabilities), such that,

o Pla)>0forallaed
e P() =1
o Ifa, € Fand anp =1, then P(aUpB) = P(a) + P(5)
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Probability measure

Probability measure (distribution) P over (€2, J): a function from
F (events) to [0, 1] (range of probabilities), such that,

o Pla)>0foralla e F

e P() =1

o Ifa, € Fand anp =1, then P(aUpB) = P(a) + P(5)
\

o P(0)=0

e P(aUp)=P(a)+ P(B) — P(anp)
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Interpretations of Probability

e Frequentist Probability: P(«) = frequencies of the event.
i.e. fraction of times the event occurs if we repeat the
experiment indefinitely.

o A die roll: P(a) =0.5, for a = {2,4,6} means if we
repeatedly roll this die and record the outcome, then the
fraction of times the outcomes in « will occur is 0.5.
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Interpretations of Probability

e Frequentist Probability: P(«) = frequencies of the event.
i.e. fraction of times the event occurs if we repeat the
experiment indefinitely.

o A die roll: P(a) =0.5, for a = {2,4,6} means if we
repeatedly roll this die and record the outcome, then the
fraction of times the outcomes in « will occur is 0.5.

e Problem: non-repeatable event e.g. “it will rain tomorrow
morning” (tmr morning happens exactly once, can't repeat).

@ Subjective Probability: P(«) = one’s own degree of belief
that the event o will occur.
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Conditional probability

Event a: “students with grade A"
Event 5: “students with high intelligence”
Event a N B: “students with grade A and high intelligence”
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Conditional probability

Event a: “students with grade A"
Event 5: “students with high intelligence”
Event a N B: “students with grade A and high intelligence”

Question: how do we update the our beliefs given new evidence?
e.g. suppose we learn that a student has received the grade A,
what does that tell us about the person’s intelligence?

Qinfeng (Javen) Shi Lecture 7: PGM — Representation



Probability space

Probability Introducation Conditional probability
Random Variables and Distributions
Independence and conditional independence

Conditional probability

Event a: “students with grade A"
Event 5: “students with high intelligence”
Event a N B: “students with grade A and high intelligence”

Question: how do we update the our beliefs given new evidence?
e.g. suppose we learn that a student has received the grade A,
what does that tell us about the person’s intelligence?

Answer: Conditional probability.
Conditional probability of 3 given « is defined as
P(an pB)

P(8In) = —pcs
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Chain rule and Bayes' rule

e Chain rule: P(a N B) = P(a)P(f|a)

More generally,

P(Ozl Nn...N ak) = P(al)P(a2|a1) s P(ak|a1 n...N ak_l)
@ Bayes' rule:
P(Bla)P(a)

PlalB) = =5k
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Random Variables

Assigning probabilities to events is intuitive.

Assigning probabilities to attributes (of the outcome) taking
various values might be more convenient.

@ a patient’s attributes such “Age”, “Gender” and “Smoking

history” ...
“Age = 10", “Age = 50", ..., "Gender = male", “Gender =
female”

@ a student’s attributes “Grade”, “Intelligence”, “Gender” ...

P(Grade = A) = the probability that a student gets a grade of A.
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Random Variables

A random variable, such as Grade, is a function that associates
with each outcome in Q a value. e.g. Grade is defined by a
function fgrade that maps each person to his or her grade (say, one
of A, B, Q)

Grade = A is a shorthand for the event {w € Q : fgrage(w) = A}

Intelligence = high a shorthand for the event
{w € flntelligence(w) = high}
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Random Variables

Random Variable can take different types of values (e.g. discrete
or continuous.

@ random variable X, more formally X(w)
e Val(X): the set of values that X can take
e x: a value x € Val(X)

Shorthand notation:
@ P(x) short for P(X = x) shorthand for

P{w € Q: X(w) = x})

® >, P(x) shorthand for 3, ¢y x) P(X = x)

> P(x)=1
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Independence and conditional independence

Joint distribution

P(Grade, Intelligence).
Grade € {A, B, C}

Intelligence € {high, low} Ji”g‘”ﬁ
’ Jow  high

[0.25
0.37
0.38

A [0.07 0.18
P(Grade = B, Intelligence = high) = ? M
P(Grade = B) =7 _[_CT_(“,_?”

0.3
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Marginal and Conditional distribution

Distributions:
e Marginal distribution P(X) = 3" /vy P(X, Y =)
or shorthand as P(x) =3, P(x,y)

e Conditional distribution P(X|Y) = P,(D)((;))/)

Rules for events carry over for random variables:
e Chain rule: P(X,Y) = P(X)P(Y|X)

o Bayes' rule: P(X|Y) = ZY000)

Qinfeng (Javen) Shi Lecture 7: PGM — Representation



Probability space

Probability Introducation Conditional probability
Random Variables and Distributions
Independence and conditional independence

Independence and conditional independence

Independences give factorisation.

@ Independence
XLY<PX,Y)=PX)P(Y)
o Extension: X L Y, Z means X 1L H where H= (Y, Z2).
< P(X,Y,Z)=P(X)P(Y,Z2)
o Conditional Independence
X LY|Z& P(X,Y|Z)=P(X|Z)P(Y|Z)
o Independence: X L Y can be considered as X 1L Y|(}
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Properties

For conditional independence:
e Symmetry: X L Y|Z=Y L X|Z
e Decomposition: X L Y, W|Z= X L Y|Zand X L W|Z
e Weak union: X L Y, W|Z= X LY|Z,W
e Contraction: X L W|Z,Yand X LY|Z=X LY, W|Z
o Intersection:X L Y|W,Zand X L W|Y,Z =X LY, W|Z

For independence: let Z = () e.g.

XLY=YL1lX
XLY W=XLYand X LW
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Marginal and MAP Queries

Given joint distribution P(Y, E), where
@ Y, query random variable(s), unknown

e E, evidence random variable(s), observed i.e. E = e.

Two types of queries:

e Marginal queries (a.k.a. probability queries)
task is to compute P(Y|E = e)

e MAP queries (a.k.a. most probable explanation )
task is to find y* = argmaxcy,(v) P(Y|E = e)

Qinfeng (Javen) Shi Lecture 7: PGM — Representation



Probability space

Probability Introducation Conditional probability
Random Variables and Distributions
Independence and conditional independence

Take a break ...
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History and books

Representations
Probabilistic Graphical Models Factorisation

Independences

Scenario 1

Multiple problems (A, B, ...) affect each other

Joint optimal solution of all # the solutions of individuals
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History and books

Representations
Probabilistic Graphical Models Factorisation

Independences

Scenario 2

Two variables X, Y each taking 10 possible values.
Listing P(X, Y) for each possible value of X, Y requires
specifying/computing 102 many probabilities.
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History and books

Representations
Probabilistic Graphical Models Factorisation

Independences

Scenario 2

Two variables X, Y each taking 10 possible values.
Listing P(X, Y) for each possible value of X, Y requires
specifying/computing 102 many probabilities.

What if we have 1000 variables each taking 10 possible values?
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Representations
Probabilistic Graphical Models Factorisation

Independences

Scenario 2

Two variables X, Y each taking 10 possible values.
Listing P(X, Y) for each possible value of X, Y requires
specifying/computing 102 many probabilities.

What if we have 1000 variables each taking 10 possible values?
= 10199 many probabilities

= Difficult to store, and query naively.
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Representations
listic Graphical Models Factorisation

Independences

Structured Learning, specially Probabilistic Graphical Models
(PGMs).
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History and books
Representations
Probabilistic Graphical Models Factorisation
Independences

PGMs use graphs to represent the complex probabilistic
relationships between random variables.

P(A,B,C,..)

Benefits:
@ compactly represent distributions of variables.

o Relation between variables are intuitive (such as conditional
independences)

@ have fast and general algorithms to query without
enumeration. e.g. ask for P(A|B = b, C = c) or Ep|[f]
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An Example

Difficulty Intelligence

Grade SAT

@ ‘JOb
Happ

Intuitive
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An Example

Difficulty Intelligence
P(D)
P(1)
1] (1]
SAT
Grade PS1I)
P(GID,l)

o o
@

P(H1GJ)

aE:

Compact
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Gibbs (1902) used undirected graphs in particles
Wright (1921,1934) used directed graph in genetics
In economists and social sci (Wold 1954, Blalock, Jr. 1971)

In statistics (Bartlett 1935, Vorobev 1962, Goodman 1970,
Haberman 1974)

In Al, expert system (Bombal et al. 1972, Gorry and Barnett
1968, Warner et al. 1961)

Widely accepted in late 1980s. Prob Reasoning in Intelli Sys
(Pearl 1988), Pathfinder expert system (Heckerman et al.
1992)
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Independences

@ Hot since 2001. Flexible features and principled ways of
learning.
CRFs (Lafferty et al. 2001), SVM struct (Tsochantaridis etal
2004), M3Net (Taskar et al. 2004), DeepBeliefNet (Hinton et
al. 2006)

@ Super-hot since 2010. Winners of a large number of
challenges with big data.
Google, Microsoft, Facebook all open new labs for it.
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Good books

@ Chris Bishop's book “Pattern Recognition and Machine
Learning” (Graphical Models are in chapter 8, which is
available from his webpage) ~ 60 pages

@ Koller and Friedman's “Probabilistic Graphical Models"
> 1000 pages

@ Stephen Lauritzen's “Graphical Models”

@ Michael Jordan’s unpublished book “An Introduction to
Probabilistic Graphical Models”
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Representations

0

(a) Directed graph ) Undirected graph ) Factor graph

@ Nodes represent random variables

@ Edges reflect dependencies between variables

@ Factors explicitly show which variables are used in each factor
ie. (A, B)h(A, C)f(B, C)
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Example — Image Denoising

Denoising’

Denoising
W, x))

/—)%

D(x;, ;)

Original Noisy Corrected

X* = argmaxy P(X|Y)

1This example is from Tiberio Caetano's short course: “Machine Learning
using Graphical Models”
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Example —Human Interaction Recognition
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Factorisation for Bayesian networks

Directed Acyclic Graph (DAG):
Factorisation rule: P(x1,...,xn) = [[/=; P(xi|Pa(x;))
Pa(x;) denotes parent of x;. e.g. (A, B) = Pa(C)

(=)
©

= P(A,B,C) = P(A)P(B|A)P(C|A, B)
Acyclic: no cycle allowed. Replacing edge A — C with C — A will
form a cycle (loop i.e. A— B — C — A), not allowed in DAG.
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Factorisation for Markov Random Fields

Undirected Graph:
Factorisation rule:P(xq, ..., xn) = 3 [T.ce ¥e(Xe),

Z= ZX Hce@ wc(xc),

where ¢ is an index set of a clique (fully connected subgraph), X
is the set of variables indicated by c.

Consider X, = {A, B}, X, = {A, C}, X, = {B, C}
= P(A7 B7 C) = %1/1c1 (A) B)wCQ(Au C)wC;;(B? C)

Consider Xc = {A, B, C} = P(A, B, C) = Ly(A, B, C),
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Factorisation for Markov Random Fields

Factor Graph:
Factorisation rule:P(xy, ..., xp) = [T, i(X;), Z = >« I1; fi(X)

= P(A,B,C) = 1A (A B)Hh(A C)f(B,C)
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Independences

@ Independence
Al B« P(A B)=P(A)P(B)
o Conditional Independence
AL B|C < P(A,B|C) = P(A|C)P(B|C)
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From Graph to Independences

Case 1:

Head '@\

Tail (o)

Question: B I C?

Qinfeng (Javen) Shi Lecture 7: PGM — Representation



History and books

Representations
Probabilistic Graphical Models Factorisation

Independences

From Graph to Independences

Case 1:

Head '@\

Tail (o)

Question: B I C?
Answer: No.

P(B,C)=> P(AB,C)
A
=Y P(BIA)P(C|A)P(A)
A

# P(B)P(C) in general
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From Graph to Independences

Case 2:

@ ©

Question: B L C|A?
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Independences

From Graph to Independences

Case 2:

/Q\

@ ©

Question: B L C|A?
Answer: Yes.

P(A, B, C)
P(A)
P(B|A)P(C|A)P(A)
- P(A)
= P(B|A)P(C|A)

P(B,C|A) =
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From graphs to independences

Case 3:

o &

Question: B L C, B L C|A?
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Independences

From graphs to independences

(») =
® %
Question: B L C, B L C|A?
P(A, B, C) = P(B)P(C)P(A\B, C),

C)= ZP(A,B,C)
_ZP P(A|B, C)

= P(B)P(C)

Case 3:
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Parameters for bayesian networks

For bayesian networks, P(x1,...,x,) = [[/-; P(xi|Pa(xi)).
Parameters: P(x;|Pa(x;)).

Difficulty Intelligence
P(D)
P(1)
1] 1]
SAT
Grade PS1I)
P(G 1D,

SN A==

G)/@ b

P(H I G,J)

aE:
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Probabilistic Graphical Models

Parameters for MRFs

For MRFs, let 'V be the set of nodes, and € be the set of clusters c.
exp(D_cee Oec(xc))

P(x;0) = 1

(X, ) Z(e) Y ( )

where normaliser Z(0) = >, exp{>_oce Ocr (X))}
Parameters: {6.}cce.

Inference:

o MAP inference x* = argmax, » e 0c(xc)
log P(x) o Zce@ Oc(xc)
e Marginal inference P(x.) = ZXWC P(x)

Learning (parameter estimation): learn 6 and the graph structure.
e Often assume 0.(xc) = (w, P(xc)).
@ 6 <+ empirical risk minimisation (ERM).

Qinfeng (Javen) Shi Lecture 7: PGM — Representation



History and books

Representations
Prol tic Graphical Models Factorisation

Independences

Inference - variable elimination

()
&)

What is P(A), or argmaxy g, c P(A, B, C)?

P(4) = >~ P(B)P(C)P(A|B, C)

B,C
=>"P B)ZP YP(A|B, C)
B
= Z (B)my1(A, B) (C eliminated)
B

= my(A) (B eliminated)
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Inference - variable elimination

P(x1,x2,x3) = %df(XL x2)Y(x1, x3) Y (x1)Y(x2)(x3)

POa) = 2 3 vl )l )bl ) v ()
X2,X3

= 2 0b0) 3 (v, )02)) 3 (o x0)00))

x2 x3

= %w(xl)mZHI(Xl)m?:ﬂl(xl)
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Inference - variable elimination

Pla) = 2 0) 3 (vl 2)oba) S 20)t)])
X1 X3
=~ ) 3w )l )ms 1)
X1

_ 1
= Ew(xz)mlaz(xz)
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Inference - Message Passing

In general,

P(s) = 200x) T[T myosi)

jeNe(i)

mjei(Xi)ZZ@()ﬁ)w(Xwg) 11 mkaj(Xj))
Xj keNe()H\{i}
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That's all

Thanks!
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