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This appendix contains two parts. In Section 1, we present the full proof of
Proposition 1, Theorem 1 and Corollary 1, which are appeared in main body of
paper. We show more experimental results in Section 2. Furthermore, we report
all visual results in demonstration videos?.

1 Proofs

Lemma 1 (Reservoir Mean Preservation). For any function g : Z — R at
any iteration t, and if Ry C Z with weights (w1,wa, - ,w), where Z§=1 w; =1
and w; > 0 is a weighted reservoir in [1], the following holds

Eg, {ﬁ Z g(z)} = izi;wig(zi).

zER:

Proof. Since the randomness of the R; is the randomness of the its elements, we
have

Br, [ X 9@)] = 7 3 Ealo(a)] = Ealo(e)

zER: zER;

We know from [1] that Vi < ¢,Pr(z; € R;) = w;, thus

E,[g(z)] = Z wig(zi)-

Proposition 1 (Expected Reservoir Risk). Minimising

i=1
1s equivalent to minimising
CZ,
W Eg,, | Z U(w,z)] + 2(w), (2)
m z€ER,,

3 For clarity, we only show the result of five trackers in demonstration video, where
these methods have better performance than others. The videos can be found on
youtube: http://www.youtube.com/woltrackeri2.
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where Ry, is a weighted reservoir with weights (A1, A2, -+, Am) as in [1] and
Zm =Y it A
Proof. Let Py(Z = z;) = 275\7)\ and apply Lemma 1 , we have
J=17J

m

Z/\fwzz

Multiply C'Z,, on both side and add the £2(w) yields the proposition.

Theorem 1 (Weighted Regret Bound). At each iteration i, performing
OLaRank on each b;; € R;,1 < j < N. Assume that for each update, the
dual increase after seeing the example by; is at least Cu(f(wij, bsj)), with

wlz) = %min(m, C)(z — %min(m, ),

then, we have for any w,

m

1¢~/1 ¢ 0 c
7ZNERZ[Z€WU’ zg]Saz<§ZAj£(w,zj))+%+§,
1]:1

=1

where Z; = 22:1 Aj
Proof. Via Theorem 1 in [2] and Theorem 3 in [3], we have

1 1 1 -1 n C
N [waw w}fazﬁ[szbij)}*cmvj\)ﬁ? @
1= J i=1

Take expectation on both side, we have
1 1 2 C

72 N bij {ZE Wij, bij } < EZNEbU- I:ZE(W,bij>:| + C’min + 5
(

By Lemma 1, we have
m i

B[] < L X (g D). @

where Z; = 22:1 A;. Plugging (6) into (5) yields the theorem.
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Corollary 1 (Tracking Bound). Assume that for each update in Algorithm 1,
the dual increase after seeing the example b;; € R; is at least Cpu(l(w;;,bij)),
then we have for any w,

jViERi[if(wm» 2]} %Z( Jil)\ Zéjo’yj7le))+ 2Q](VW)’

i=1 j=1 i=1

IN

where Z; = 23:1 An

Proof. Apply Theorem 1 to the data stream ((x;,y;,¥;;))1<i<t,1<j<n; With weight
Ai for all ((Xlayzayzj))1§j§n77 we have

+ N t 7
%Z%Em[ Uwij, 1]} <%Z( Z/\ Zg X7’y3’y3l))
i=1 J=1 =1 =1 =1
2(w C
Tow Ty )

Letting C' = /202(w)/tN yields the result.

2 Quantitative and Qualitative Results

In this section, we show more results of our tracking algorithm. Fig. 1 shows
the frame-by-frame centre location errors (pixel) of tracking result obtained by
the nine trackers on the twelve video sequences. As we can see from Fig. 1, our
tracker indicates a robust performance, the CLE of our result is always lower
than others for the most part. Fig. 2 — Fig. 13 show the visual result over some
representative frames. For clarity, we only show the result of five trackers. These
sequences contain various scenes and a variety of object motion events. The rep-
resentative frame shown in Fig. 2 — Fig. 13 contains challenging lighting(sequence
shaking,singerl, etc.), large variation in pose and scale(sequence basketball,bird,
etc.), frequent half or full occlusions(sequence coke,tigerl,tiger?, etc.), fast mo-
tion(sequence walk,tigerl, etc.), shape deformation and distortion(sequence bas-
ketball,iceball, etc.), and similar interference(sequence basketall,iceball, etc.). Our
tracker can keep track of object in these situations, and achieves robust results.
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Fig. 1. Quantitative evaluation of different trackers in centre location error plots on
twelve sequences.
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Fig. 2. Sequence basketball: The tracking results of different tracking approaches over
representative frames.

Struck ML Frag

Fig. 3. Sequence bird: The tracking results of different tracking approaches over rep-
resentative frames.
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Fig. 4. Sequence board: The tracking results of different tracking approaches over rep-
resentative frames.
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Fig. 5. Sequence coke: The tracking results of different tracking approaches over rep-
resentative frames.
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Fig. 6. Sequence boz: The tracking results of different tracking approaches over repre-
sentative frames.

Fig. 7. Sequence iceball: The tracking results of different tracking approaches over
representative frames.
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Fig. 8. Sequence shaking: The tracking results of different tracking approaches over
representative frames.
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Fig. 9. Sequence tiger2: The tracking results of different tracking approaches over
representative frames.
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Fig. 10. Sequence sylv: The tracking results of different tracking approaches over rep-
resentative frames.
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Fig. 11. Sequence singerl: The tracking results of different tracking approaches over
representative frames.
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Fig. 12. Sequence tigerl: The tracking results of different tracking approaches over
representative frames.
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Fig. 13. Sequence walk: The tracking results of different tracking approaches over
representative frames.



