
Hash Kernels and Structured Learning

Qinfeng (Javen) Shi

January 2011

A thesis submitted for the degree of Doctor of Philosophy

of the Australian National University

For my parents, my brother and my girlfriend.

Declaration

The work in this thesis is my own except where otherwise stated.

Qinfeng Shi

Acknowledgements

I am profoundly grateful to my current primal supervisor Tiberio Caetano for his

invariable support and encouragement. It is fair to say that I won’t be who I am

without him.

I would like to thank to my original primal supervisor Alex Smola, from who

I have learnt not only techiniques, but also determination. Unfortunately he left

ANU and NICTA for Yahoo! Research in the 2nd year of my PhD.

Thank to Vishy who taught me Conditional Random Fields in the 1st year of

my PhD. His home dinners gave us not only the food but also a warm welcome.

Thanks to Li Cheng and Richard Hartley. Li taught me how to do a computer

vision paper and Richard taught me graph cut.

A special thank you to Mark Reid whom I see as a dear mentor and collabora-

tor, though he has no formal arrangement with the supervision. Mark’s rigorous

math background, effective communication skill and kindness help me improve

my theoretical skills considerably.

Thank to Leon Bottou from who I learnt a serious research attitude. Thank

to Vladimir Vapnik for his philosophy point of view of research methodology.

I would like to express my appreciation and gratitude to all my collaborators

for their excellent ideas and dedication: Junbin Gao, James Petterson, Hanxi Li,

Chunhua Shen, Gideon Dror, John Langford, Li Wang and Yasemin Altun.

I would also like to thank to my lab mates for their hard work and friendships:

Choonhui Teo, Dmitry Kamenetsky, Jin Yu, Novi Quadrianto, Julian McAuley,

Xinhua Zhang, Chris Webers, Marconi Barbosa, Justin Bedo, Scott Sanner, Ed-

win Bonilla, Hao Shen, Le Song, Owen Thomas, Tao Wang, Matthew Robards,

Shengbo Guo, Fangfang Lu, Tim Sears and so on. I see many traditional merits in

Choonhui and Jin. Thank to Dmitry, Novi, Owen and Marconi who have brought

a lot of fun to our lab. I am impressed with James who is so well organised, which

may explain why he can join so many clubs and still be very productive. Thanks

a lot to Julian for his help with my English writing.

vii

viii

Many thanks to my other friends who have nothing to do with academia. I

will not list all of you here, but my gratitude to you is immense.

Abstract

Vast amounts of data being generated, how to process massive data remains a

challenge for machine learning algorithms. We propose hash kernels to facilitate

efficient kernels which can deal with massive multi-class problems. We show a

principled way to compute the kernel matrix for data streams and sparse feature

spaces. We further generalise it via sampling to graphs. Later we exploit the

connection between hash kernels with compressed sensing, and apply hashing

to face recognition which significantly speeds up over the state-of-the-art with

competitive accuracy. And we give a recovery rate on the sparse representation

and a bounded recognition rate.

As hash kernels can deal with data with structures in the input such as graphs

and face images, the second part of the thesis moves on to an even more chal-

lenging task — dealing with data with structures in the output.

Recent advances in machine learning exploit the dependency among data out-

put, hence dealing with complex, structured data becomes possible. We study the

most popular structured learning algorithms and categorise them into two cat-

egories — probabilistic approaches and Max Margin approaches. We show the

connections of different algorithms, reformulate them in the empirical risk minimi-

sation framework, and compare their advantages and disadvantages, which help

choose suitable algorithms according to the characteristics of the application.

We have made practical and theoretical contributions in this thesis.

We show some real-world applications using structured learning as follows:

a) We propose a novel approach for automatic paragraph segmentation, namely

training Semi-Markov models discriminatively using a Max-Margin method. This

method allows us to model the sequential nature of the problem and to incorpo-

rate features of a whole paragraph, such as paragraph coherence which cannot

be used in previous models. b) We jointly segment and recognise actions in

video sequences with a discriminative semi-Markov model framework, which in-

corporates features that capture the characteristics on boundary frames, action

ix

x

segments and neighbouring action segments. A Viterbi-like algorithm is devised

to help efficiently solve the induced optimisation problem. c) We propose a novel

hybrid loss of Conditional Random Fields (CRFs) and Support Vector Machines

(SVMs). We apply the hybrid loss to various applications such as Text chunking,

Named Entity Recognition and Joint Image Categorisation.

We have made the following theoretical contributions: a) We study the re-

cent advance in PAC-Bayes bounds, and apply it to structured learning. b) We

propose a more refined notion of Fisher consistency, namely Conditional Fisher

Consistency for Classification (CFCC), that conditions on the knowledge of the

true distribution of class labels. c) We show that the hybrid loss has the ad-

vantages of both CRFs and SVMs — it is consistent and has a tight PAC-Bayes

bound which shrinks as the margin increases. d) We also introduce Probabilistic

margins which take the label distribution into account. And we show that many

existing algorithms can be viewed as special cases of the new margin concept

which may help understand existing algorithms as well as design new algorithms.

At last, we discuss some future directions such as tightening PAC-Bayes

bounds, adaptive hybrid losses and graphical model inference via Compressed

Sensing.

Publications arising from this

thesis

1. Qinfeng Shi, Hanxi Li and Chunhua Shen, Rapid Face Recognition Us-

ing Hashing, In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR 10), San Francisco, USA, June 13-18, 2010.

2. Qinfeng Shi, Mark Reid, Tiberio Caetano, Hybrid model of Conditional

Random Field and Support Vector Machine, Workshop at the 23rd Annual

Conference on Neural Information Processing Systems, Canada, Dec. 2009.

3. Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola and

Vishy Vishwanathan, Hash Kernels for Structured Data, Journal of Ma-

chine Learning Research, Nov. 2009.

4. Qinfeng Shi, Li Wang, Li Cheng and Alex Smola, Discriminative Human

Action Segmentation and Recognition using Semi-Markov Model, (long

version cutting plane v.s. Bundle Method), International Journal of Computer

Vision, Accepted under minor revision, First submitted in Dec. 2008. Revised

in 2010.

5. Qinfeng Shi, Li Cheng, Luping Zhou and Dale Schuurmans, Discriminative

Maximum Margin Image Object Categorization with Exact Inference,

The 5th International Conference on Image and Graphics, Xi’an, Sep. 20-23,

2009.

6. Qinfeng Shi, James Petterson,Gideon Dror, John Langford, Alex Smola, Alex

Strehl, and Vishy Vishwanathan, Hash Kernel, Twelfth International Confer-

ence on Artificial Intelligence and Statistics, Florida, April 14-19, 2009.

7. Qinfeng Shi, Li Wang, Li Cheng and Alex Smola, Discriminative Human

Action Segmentation and Recognition using Semi-Markov Model, In

IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion (CVPR 08), Anchorage, Alaska, June 23-28, 2008.

xi

xii

8. Qinfeng Shi, Yasemin Altun , Alex Smola and S.V.N. Vishwanathan, Auto-

matic Paragraph Segmentation via Max-Margin Semi-Markov Models,

EMNLP-CoNLL, Jun, 2007, pp. 640-648.

Contents

Acknowledgements vii

Abstract ix

Publications xi

Notation and Terminology xxiii

I Introduction 1

1 Introduction 3

1.1 Massive Multi-class . 3

1.2 Structured Label . 3

1.2.1 Importance of structured learning 4

1.2.2 Difficulties and Challenges 4

1.3 Contribution . 5

II Hash Kernels 9

2 Efficient Hash Kernels 11

2.1 Introduction . 11

2.1.1 Keeping the Kernel Expansion Small 11

2.1.2 Keeping the Kernel Simple 12

2.1.3 Our Contribution . 12

2.1.4 Outline . 12

2.2 Previous Work and Applications 13

2.2.1 Generic Randomisation . 13

2.2.2 Locally Sensitive Hashing 14

xiii

xiv CONTENTS

2.2.3 Sparsification . 15

2.2.4 Count-Min Sketch . 15

2.2.5 Random Feature Mixing 16

2.2.6 Hash Kernel on Strings . 16

2.3 Hash Kernels . 16

2.3.1 Kernel Approximation . 16

2.3.2 Strings . 17

2.3.3 Multiclass Classification 18

2.3.4 Streams . 18

2.4 Analysis . 19

2.4.1 Information Loss . 19

2.4.2 Rate of Convergence . 20

2.5 Graphlet Kernels . 20

2.5.1 Counting and Sampling 21

2.5.2 Dependent Random Variables 22

2.5.3 Hashing and Subgraph Isomorphism 23

2.6 Experiments . 24

2.6.1 Reuters Articles Categorisation 24

2.6.2 DMOZ Websites Multiclass Classification 27

2.6.3 Biochemistry and Bioinformatics Graph Classification . . . 31

2.7 Conclusion . 33

3 Efficient Face Recognition via Hashing 35

3.1 Related work . 36

3.1.1 Facial features . 36

3.1.2 Compressed sensing . 37

3.1.3 Hash kernels . 37

3.1.4 Connection between hash kernels and compressed sensing . 38

3.2 Hashing for face recognition . 38

3.2.1 Algorithms . 38

3.2.2 Hashing with `1 . 39

3.2.3 Hashing with Orthogonal Matching Pursuit 39

3.2.4 Efficiency of Computation and Memory Usage 40

3.3 Analysis . 41

3.3.1 Restricted isometry property and signal recovery 42

3.3.2 Recovery with hashing . 43

3.3.3 Recognition rates . 44

CONTENTS xv

3.4 Experiments . 44

3.4.1 Comparisons on accuracy and efficiency 45

3.4.2 Predicting via α . 47

3.5 Conclusion . 48

III Structured Learning in Practice 51

4 Structured Learning Background 53

4.1 Structured Label . 53

4.2 Empirical Risk Minimisation . 54

4.3 Probabilistic Approaches . 54

4.3.1 Maximum a Posteriori and Maximum Entropy Principles . 55

4.3.2 Generative Markov Models 55

4.3.3 Conditional Random Fields 56

4.4 Max Margin Approaches . 58

4.4.1 Structured Support Vector Machines 58

4.4.2 Max Margin Markov Network 59

4.4.3 Maximum Entropy Discrimination Markov Networks . . . 61

4.5 Conclusion . 61

5 Automatic Paragraph Segmentation 63

5.1 Modelling Sequence Segmentation 65

5.1.1 Max-Margin Training . 66

5.2 Cost Function . 67

5.3 Feature Representation . 67

5.4 Column Generation on SMMs . 68

5.5 Local Features . 69

5.5.1 Edge Features Φ2 . 71

5.5.2 Feature Rescaling . 71

5.6 Experiments . 72

5.7 Conclusion . 76

6 Action Segmentation and Recognition 77

6.1 Max Margin Approach . 77

6.2 Viterbi-Like Inference . 78

6.3 Feature Representation . 80

6.4 Experiments . 82

xvi CONTENTS

6.4.1 Synthetic dataset . 83

6.4.2 KTH dataset . 83

6.4.3 CMU MoBo dataset . 86

6.4.4 WBD: A Dataset of Continuous Actions 86

6.5 Conclusion . 88

7 Hybrid Models on NLP and Image Categorisation 89

7.1 The Hybrid Loss . 90

7.2 Consistency and Generalisation bound 90

7.3 Applications . 91

7.3.1 Multiclass . 91

7.3.2 Text Chunking . 93

7.3.3 Joint Image Categorisation 95

7.4 Conclusion . 97

IV Structured Learning Theory 99

8 Structured Learning Theory 101

8.1 Fisher Consistency . 101

8.1.1 Losses for Structured Prediction 102

8.1.2 Conditional Fisher Consistency For Classification 103

8.1.3 Conditional Consistency of Hybrid Loss 104

8.2 PAC-Bayes Bounds . 104

8.2.1 PAC-Bayes Bounds on Gibbs Classifiers 105

8.2.2 PAC-Bayes bounds on Average Classifiers 106

8.2.3 PAC-Bayes Margin bounds 106

8.3 Probabilistic Margins . 107

8.3.1 Geometrical Margins . 107

8.3.2 Probabilistic Margins . 108

8.3.3 Losses imply P-Margins 110

8.4 Conclusion . 111

V Conclusions and Future Directions 113

9 Summary and Future Directions 115

9.1 Contribution Summary . 115

9.2 Future Directions . 116

CONTENTS xvii

9.2.1 Tightening PAC-Bayes bounds 116

9.2.2 Adaptive hybrid loss . 116

9.2.3 Compressed Sensing and Graphical model inference 116

A Appendix 119

B Appendix 123

Bibliography 126

List of Tables

2.1 Text data sets for hash kernels . 24

2.2 Runtime and error on RCV1 . 25

2.3 Hash kernel vs. random projections on RCV1. 26

2.4 Influence of collision rates on RCV1 27

2.5 Errors and memory footprint of hashing and baseline methods on

DMOZ . 28

2.6 Accuracy comparison of hashing, KNN and Kmeans 28

2.7 Hash kernel vs. random projections on DMOZ 29

2.8 Accuracy on graph benchmark data sets 32

2.9 With/without feature selection for hash kernel 32

3.1 Accuracies for Hashing-OMP, Random-`1 and Eigen-`1 46

3.2 Running time for Hashing-OMP, Random-`1 and Eigen-`1. 47

3.3 Accuracies with run time constraint for Hashing-OMP and Random-

`1 on AR . 47

3.4 Predicting via α on AR dataset 49

5.1 Number of sentences and accuracy of the baseline classifier on var-

ious datasets . 73

5.2 Test results on ENG and GER data after model selection. 73

5.3 Comparison on different APS datasets on SMM. 74

5.4 Performance on development and test set with offset tuning . . . 74

5.5 Performance on development and test set with offset tuning . . . 75

5.6 Performance of various algorithms on our test corpus. 75

6.1 Action recognition rates on KTH dataset 84

6.2 Confusion matrix of BMRM-SMM on the KTH dataset 85

6.3 Accuracies and F1 scores on CMU MoBo dataset 86

6.4 Action recognition rates on the WBD dataset 86

xix

xx LIST OF TABLES

6.5 Confusion matrix of SVM-SMM on WBD 88

6.6 Confusion matrix of BMRM-SMM on WBD 88

7.1 Accuracy, precision, recall and F1 Score on the CONLL2000 . . . 94

7.2 Accuracy, precision, recall and F1 Score on the baseNP 94

7.3 Image object categorisation on Corel dataset 96

8.1 Loss functions and P-margins . 111

List of Figures

2.1 Comparison of KNN and Kmeans on DMOZ with various sample

sizes. 30

2.2 Error curve and topic histogram on DMOZ 31

3.1 Demo of the procedure of Hash+`1 40

3.2 Demo of a hash matrix . 41

3.3 Exemplars of the procedure of Hashing -`1 and Random-`1 on YaleB 48

3.4 The running time curves on AR 49

5.1 Three models . 64

6.1 Action recognition rates on the synthetic dataset 82

6.2 Sample frames in the KTH dataset. 84

6.3 Sample frames in the CMU MoBo dataset 85

6.4 Codebook clusters on the WBD dataset 87

7.1 Training error curve with various numbers of classes 92

7.2 Accuracy comparisons on Hybrid, Hinge and Log loss 93

7.3 Display of non-dominant classes on CONLL2000 95

7.4 An illustration of the image objects, graph and features 97

8.1 Contours of P-margins feasible sets 109

xxi

xxii LIST OF FIGURES

Notation and Terminology

Notation

N,R natural, real numbers

E expectation

X input space

Y output space

x structured or vectorial input

y scalar output

y structured or vectorial output

y(i) the component of the output y for the i-th node

` loss function

〈x, z〉 inner product of x and z

⊗ tensor product

Φ(x,y) mapping to feature space

Φ(x,y) hashed mapping to feature space

Φ a random matrix via hashing used in compressed sensing

F class of real-valued functions

f(x) real-valued function

w weight vector

xxiii

xxiv NOTATION AND TERMINOLOGY

(x)+ or [x]+ equals x, if x ≥ 0 else 0

h hash function or classification hypothesis

sgn(x) equals 1, if x ≥ 0 else -1

δ confidence or Kronecker delta

γ margin

ξ slack variables

1 identity matrix or indicator function

K kernel matrix

k(x,x′) kernel value of x and x′

K hash kernel matrix

k
h
(x,x′) hash kernel value of x and x′ with hash function h

#A or |A| cardinality of a set A

ln natural logarithm

e base of the natural log

η learning rate

A a base matrix

H a random hashing matrix used in compressed sensing

R a random matrix (such as gaussian random matrix) used in

compressed sensing

Remp empirical risk

R true risk

P,Q prior and posterior distributions over the hyperostosis h or

parameter w

p(· ; w) or Pw modeled probability/density parameterised by w

P or Pr probability or probability density

Part I

Introduction

1

Chapter 1

Introduction

Machine learning seeks a function that gives a good output from y ∈ Y when given

an input x ∈ X. And the input-output pairs (x, y) are assumed I.I.D.(independent

and identically distributed) drawn from a unknown but fixed underlying data

distribution Pr(x, y).

1.1 Massive Multi-class

The output can be a scalar y representing a class I.D. for a given input x. The

problem comes when there is a massive number of classes. For example, there

are 71,000 classes for a website topic categorisation problem shown in Chapter 2.

Traditional methods fail for the huge demand of computation and memory usage

— for example, multi-class SVMs for the above problem need 96.95G memory

just to store the model parameters.

1.2 Structured Label

In many cases, (x, y) are no longer I.I.D. So one often models those correlated ys

as a structured output y with the assumption that (x,y) are I.I.D. drawn from

P(x,y). Here the output y can be any object associated with x. For example,

for an automated paragraph breaking problem, the input x is a document, and

the output y is a sequence whose entries denote the beginning positions of the

paragraphs. For image segmentation, the input x is an n by m image, and the

output y is a 2-D lattice {yi,j}1≤i≤n;1≤j≤m, where yi,j denotes class id of the pixel

xi,j. The learning is called “structured learning” when some interdependency

3

4 CHAPTER 1. INTRODUCTION

structure between different parts of the output is exploited. In this case, the

output y is no longer a scalar.

1.2.1 Importance of structured learning

Structured Learning has gained great success in many fields: bioinformatics, doc-

ument analysis, computer vision, machine learning, sensor network such as Ac-

tivities Daily living (ADLs) (Park and Kautz, 2008) monitoring and so on. The

reason that structured learning outperforms the I.I.D learning, is that the former

is capable of modelling complex dependencies of the entries of the output and the

dependency does exist in real world applications pervasively. For example in im-

age segmentation, we know that neighbouring pixels are most likely to belong to

the same class. Also in human action recognition, we want to predict the current

action (walking, running, jumping, . . .) at every second. Apparently the current

action heavily depends on the predicted action at the previous second, because

the actions at two consecutive seconds are likely to be the same; also there are

some physical constraints on human movement meaning that it is impossible for

a human to immediately switch from a certain action to others. Thus predicting

the actions jointly for a given time period is better than predicting the action at

each second separately.

1.2.2 Difficulties and Challenges

While structured learning brings superior performance than that of I.I.D. learn-

ing, it brings more difficulties and challenges as well.

1. Inference is slow: the inference for structured learning is much more ex-

pensive than that for I.I.D. learning. For example, for an action sequence

with 1000 seconds/frames and 5 actions, there are 51000 possible label val-

ues. It makes it impossible to enumerate all possible outputs y, whereas in

I.I.D. learning, regardless of how many seconds the action lasts, there are

only 5 possible values of y. For a subset of structured learning problems,

when the output structure is a chain or a tree, dynamic programming or

belief propagation (BP) can exactly infer the best possible label efficiently

(linearly in the number of nodes in the structure). For more general struc-

tures like nets, there isn’t a known exact polynomial algorithm for inference.

For example, the complexity of the junction tree algorithm is exponential

in the tree-width. Alternatively, many approximate inference algorithms

1.3. CONTRIBUTION 5

have been developed, such as loopy belief propagation (LBP) and varia-

tional methods. For some very large graphical models, even approximation

methods are too slow. See Lauritzen (1996); Jordan (2008); Wainwright

and Jordan (2003); Bishop (2006) for details.

2. Training is slow and often approximation is needed: during train-

ing, some gradient calculation often requires inference: in max margin ap-

proaches, finding the most violated example is an inference problem (see

Section 4.4); In maximum likelihood approaches (see Section 4.3) such as

conditional random fields, computing the pointwise and pairwise distribu-

tion is also an inference problem. Approximate inference in loopy graphs

results in an approximate gradient, which harms the training (see Lauritzen

(1996); Jordan (2008); Wainwright and Jordan (2003); Bishop (2006)).

3. Existing generalisation bounds are loose: despite good experimental

results of structured learning reported in the literature, there is little known

about the generalisation bound. This is because the output space is so huge

that traditional techniques (such as VC dimension, Rademacher bound,

margin bound, PAC-Bayes bound) yield useless bounds (see Section 8.2):

for example, the bounds are easily bigger than or nearly 1.

4. Fisher Consistency might be too coarse to explain real perfor-

mance of the algorithms: many algorithms that are Fisher consistent in

the I.I.D. binary case are no longer Fisher consistent in the structured out-

put case. Empirical studies on those algorithms are controversial — they

work well in some applications and fail in others. Yet there is little known

about why they behave this way. We argue that this is related to their

Fisher (in)consistency (see Section 8.1). The existing Fisher consistency

for classification (FCC) definition is too restrictive — an algorithm is only

FCC when it is consistent for all data distributions, which is not able to

provide useful insights.

1.3 Contribution

We try to tackle some of the challenges (but not all) as follows:

• In Chapter 2, we propose hash kernels (Shi et al., 2009a,b) to facilitate

efficient kernels which can deal with massive multi-class problems with even

6 CHAPTER 1. INTRODUCTION

more than 7,000 classes, due to its memory footprint independence in the

number of classes. We show a principled way to compute the kernel matrix

for data streams and sparse feature spaces. We further generalise it via

sampling to graphs.

• In Chapter 3, we exploit the connection between hash kernels and com-

pressed sensing, and apply hashing to face recognition (Shi et al., 2010a)

which significantly speeds up the state-of-the-art with competitive accuracy.

And we give a recovery rate on the sparse representation and a bounded

recognition rate.

• In Chapter 4, we categorise the most popular structured learning algorithms

into two categories — probabilistic approaches and Max Margin approaches.

And in fact many structured learning algorithms from both categories can

be viewed in a unified framework, Empirical Risk Minimisation.

• In Chapter 5, we propose a novel approach for automatic paragraph seg-

mentation (Shi et al., 2007) , namely training Semi-Markov models discrim-

inatively using a Max-Margin method. This method allows us to model the

sequential nature of the problem and to incorporate features of a whole

paragraph, such as paragraph coherence which cannot be used in previous

models.

• In Chapter 6, we jointly segment and recognise actions in video sequences

with a discriminative semi-Markov model framework (Shi et al., 2008, 2009d),

which incorporates features that capture the characteristics on boundary

frames, action segments and neighbouring action segments. A Viterbi-like

algorithm is devised to help efficiently solve the induced optimisation prob-

lem.

• In Chapter 7, we propose a novel hybrid loss (Shi et al., 2009c) of Condi-

tional Random Fields (CRFs) and Support Vector Machines (SVMs). The

hybrid loss has advantages of both CRFs and SVMs — it is consistent and

has a tight PAC-Bayes bound which shrinks as the margin increases. We

apply the hybrid loss to various applications (Shi et al., 2010b) such as Text

chunking, Named Entity Recognition and Joint Image Categorisation.

• In Chapter 8, we study the recent advances in PAC-Bayes bounds, and

apply them to structured learning. Moreover, we propose a more refined

1.3. CONTRIBUTION 7

notion of Fisher consistency, namely Conditional Fisher Consistency for

Classification (CFCC) (Shi et al., 2010b), that conditions on the knowledge

of true distribution of class labels. We also introduce Probabilistic margins

which take the label distribution into account. We show that many existing

algorithms can be viewed as special cases of the new margin concept which

may help understand existing algorithms as well as design new algorithms.

8 CHAPTER 1. INTRODUCTION

Part II

Hash Kernels

9

Chapter 2

Efficient Hash Kernels

We propose hashing (Shi et al., 2009a) to facilitate efficient kernels which can deal

with massive multi-class problems. We show a principled way to compute the

kernel matrix for data streams and sparse feature spaces. We further generalise

it via sampling to graphs (Shi et al., 2009b).

2.1 Introduction

In recent years, a number of methods have been proposed to deal with the fact

that kernel methods have slow runtime performance if the number of kernel func-

tions used in the expansion is large. We denote by X the domain of observa-

tions and we assume that H is a Reproducing Kernel Hilbert Space with kernel

k : X×X→ R.

2.1.1 Keeping the Kernel Expansion Small

One line of research (Burges and Schölkopf, 1997) aims to reduce the number of

basis functions needed in the overall function expansion. This led to a number

of reduced set Support Vector algorithms which work as follows: a) solve the full

estimation problem resulting in a kernel expansion, b) use a subset of basis func-

tions to approximate the exact solution, c) use the latter for estimation. While the

approximation of the full function expansion is typically not very accurate, very

good generalisation performance is reported. The big problem in this approach

is that the optimisation of the reduced set of vectors is rather nontrivial.

Work on estimation “on a budget” (Dekel et al., 2006) tries to ensure that

this problem does not arise in the first place by ensuring that the number of

11

12 CHAPTER 2. EFFICIENT HASH KERNELS

kernel functions used in the expansion never exceeds a given budget or by using

an `1 penalty (Mangasarian, 1998). For some algorithms, for example, binary

classification, guarantees are available in the online setting.

2.1.2 Keeping the Kernel Simple

A second line of research uses variants of sampling to achieve a similar goal. That

is, one uses the feature map representation

k(x,x′) = 〈Φ(x),Φ(x′)〉 .

Here Φ maps X into some feature space F. This expansion is approximated by a

mapping Φ : X→ F

k(x,x′) =
〈
Φ(x),Φ(x′)

〉
often Φ(x) = CΦ(x),

where C ∈ R. Here Φ has more desirable computational properties than Φ. For

instance, Φ is finite dimensional (Fine and Scheinberg, 2001; Kontorovich, 2007;

Rahimi and Recht, 2008), or Φ is particularly sparse (Li et al., 2007).

2.1.3 Our Contribution

Firstly, we show that the sampling schemes of Kontorovich (2007) and Rahimi

and Recht (2008) can be applied to a considerably larger class of kernels than

originally suggested—the authors only consider languages and radial basis func-

tions respectively. Secondly, we propose a biased approximation Φ of Φ which

allows efficient computations even on data streams. Our work is inspired by

the count-min sketch of Cormode and Muthukrishnan (2004), which uses hash

functions as a computationally efficient means of randomisation. This affords

storage efficiency (we need not store random vectors) and at the same time they

give performance guarantees comparable to those obtained by means of random

projections.

As an application, we demonstrate computational benefits over suffix array

string kernels in the case of document analysis and we discuss a kernel between

graphs which only becomes computationally feasible by means of a compressed

representation.

2.1.4 Outline

We begin with a description of previous work in Section 2.2 and propose hash

kernels in Section 2.3 which are suitable for data with simple structure such as

2.2. PREVIOUS WORK AND APPLICATIONS 13

strings. Analysis follows in Section 2.4. We propose a graphlet kernel which

generalises hash kernels to data with general structure—graphs—and discuss a

MCMC sampler in Section 2.5. Finally we conclude with experiments in Sec-

tion 2.6.

2.2 Previous Work and Applications

Recently much attention has been given to efficient algorithms with randomisa-

tion or hashing in the machine learning community.

2.2.1 Generic Randomisation

Kontorovich (2007) and Rahimi and Recht (2008) independently propose the

following: denote by c ∈ C a random variable with measure P. Moreover, let

Φc : X→ R be functions indexed by c ∈ C. For kernels of type

k(x,x′) = Ec∼P(c) [Φc(x)Φc(x
′)] (2.1)

an approximation can be obtained by sampling C = {c1, . . . , cn} ∼ P and ex-

panding

k(x,x′) =
1

n

n∑
i=1

Φci(x)Φci(x
′).

In other words, we approximate the feature map Φ(x) by

Φ(x) = n−
1
2 (Φc1(x), . . . ,Φcn(x))

in the sense that their resulting kernel is similar. Assuming that Φc(x)Φc(x
′)

has bounded range, that is, Φc(x)Φc(x
′) ∈ [a, a + R] for all c, x and x′ one may

use Chernoff bounds to give guarantees for large deviations between k(x,x′) and

k(x,x′). For matrices of size m×m one obtains bounds of type O(R2ε−2 logm)

by combining Hoeffding’s theorem with a union bound argument over the O(m2)

different elements of the kernel matrix. The strategy has widespread applications

beyond those of Kontorovich (2007) and Rahimi and Recht (2008):

• Kontorovich (2007) uses it to design kernels on regular languages by sam-

pling from the class of languages.

14 CHAPTER 2. EFFICIENT HASH KERNELS

• The marginalised kernels of Tsuda et al. (2002) use a setting identical to

(2.1) as the basis for comparisons between strings and graphs by defining

a random walk as the feature extractor. Instead of exact computation we

could do sampling.

• The Binet-Cauchy kernels of Vishwanathan et al. (2007b) use this approach

to compare trajectories of dynamical systems. Here c is the (discrete or

continuous) time and P(c) discounts over future events.

• The empirical kernel map of Schölkopf (1997) uses C = X and employs some

kernel function κ to define Φc(x) = κ(c,x). Moreover, P(c) = P(x), that

is, placing our sampling points ci on training data.

• For RBF kernels, Rahimi and Recht (2008) use the fact that k may be ex-

pressed in the system of eigenfunctions which commute with the translation

operator, that is the Fourier basis

k(x,x′) = Ew∼P(w)[e
−i〈w,x〉ei〈w,x

′〉]. (2.2)

Here P(w) is a nonnegative measure which exists for any RBF kernel by

virtue of Bochner’s theorem, hence (2.2) can be recast as a special case

of (2.1). What sets it apart is the fact that the variance of the features

Φw(x) = ei〈w,x〉 is relatively evenly spread. (2.2) extends immediately to

Fourier transformations on other symmetry groups (Berg et al., 1984).

• The conditional independence kernel of Watkins (2000) is one of the first

instances of (2.1). Here X,C are domains of biological sequences, Φc(x) =

P(x |c) denotes the probability of observing x given the ancestor c, and

P(c) denotes a distribution over ancestors.

While in many cases straightforward sampling may suffice, it can prove disastrous

whenever Φc(x) has only a small number of significant terms. For instance, for

the pair-HMM kernel most strings c are unlikely ancestors of x and x′, hence

P(x |c) and P(x′ |c) will be negligible for most c. As a consequence the number

of strings required to obtain a good estimate is prohibitively large—we need to

reduce Φ further.

2.2.2 Locally Sensitive Hashing

The basic idea of randomised projections (Indyk and Motawani, 1998) is that due

to concentration of measures the inner product 〈Φ(x),Φ(x′)〉 can be approximated

2.2. PREVIOUS WORK AND APPLICATIONS 15

by
∑n

i=1 〈vi,Φ(x)〉 〈vi,Φ(x′)〉 efficiently, provided that the distribution generat-

ing the vectors vi satisfies basic regularity conditions. For example, vi ∼ N(0, I)

is sufficient, where I is an identity matrix. This allows one to obtain Chernoff

bounds and O(ε−2 logm) rates of approximation, where m is the number of in-

stances. The main cost is to store vi and perform the O(nm) multiply-adds, thus

rendering this approach too expensive as a preprocessing step in many applica-

tions.

Achlioptas (2003) proposes a random projection approach that uses symmetric

random variables to project the original feature onto a lower dimension feature

space. This operation is simple and fast and the author shows it does not sacrifice

the quality of the embedding. Moreover, it can be directly applied to online

learning tasks. Unfortunately, the projection remains dense resulting in relatively

poor computational and space performance in our experiments.

2.2.3 Sparsification

Li et al. (2007) propose to sparsify Φ(x) by randomisation while retaining the

inner products. One problem with this approach is that when performing optimi-

sation for linear function classes, the weight vector w which linearly parameterises

Φ(xi) remains large and dense, thus obliterating a significant part of the compu-

tational savings gained in sparsifying Φ.

2.2.4 Count-Min Sketch

Cormode and Muthukrishnan (2004) propose an ingenious method for represent-

ing data streams. Denote by I an index set. Moreover, let h : I→ {1, . . . , n} be

a hash function and assume that there exists a distribution over h such that they

are pairwise independent. That is, any pair of h and h′ are independent to each

other.

Assume that we draw d hash functions hi at random and let S ∈ Rn×d be a

sketch matrix. For a stream of symbols s update Shi(s),i ← Shi(s),i + 1 for all 1 ≤
i ≤ d. To retrieve the (approximate) counts for symbol s′ compute mini Shi(s′),i.

(Hence the name count-min sketch). The idea is that by storing counts of s

according to several hash functions we can reduce the probability of collision

with another particularly large symbol. Cormode and Muthukrishnan (2004)

show that only O(ε−1 log 1/δ) storage is required for an ε-good approximation,

where 1− δ is the confidence.

16 CHAPTER 2. EFFICIENT HASH KERNELS

Cormode and Muthukrishnan (2004) discuss approximating inner products

and the extension to signed rather than nonnegative counts. However, the bounds

degrade for real-valued entries. Even worse, for the hashing to work, one needs

to take the minimum over a set of inner product candidates.

2.2.5 Random Feature Mixing

Ganchev and Dredze (2008) provide empirical evidence that using hashing can

eliminate alphabet storage and reduce the number of parameters without severely

impacting model performance. In addition, Langford et al. (2007) released the

“Vowpal Wabbit” fast online learning software which uses a hash representation

similar to the one discussed here.

2.2.6 Hash Kernel on Strings

We propose a hash kernel (Shi et al., 2009a) to deal with the issue of com-

putational efficiency by a very simple algorithm: high-dimensional vectors are

compressed by adding up all coordinates which have the same hash value—one

only needs to perform as many calculations as there are nonzero terms in the vec-

tor. The hash kernel can jointly hash both labels and features, thus the memory

footprint is essentially independent of the number of classes used.

2.3 Hash Kernels

Our goal is to design a possibly biased approximation which a) approximately

preserves the inner product, b) which is generally applicable, c) which can work

on data streams, and d) which increases the density of the feature matrices (the

latter matters for fast linear algebra on CPUs and graphics cards).

2.3.1 Kernel Approximation

As before denote by I an index set and let h : I→ {1, . . . , n} be a hash function

that maps J to {1, . . . , n} uniformly. Finally, assume that Φ(x) is indexed by I

and that we may compute Φi(x) for all nonzero terms efficiently. In this case we

define the hash kernel as follows:

k(x,x′) =
〈
Φ(x),Φ(x′)

〉
with Φj(x) =

∑
i∈I;h(i)=j

Φi(x) (2.3)

2.3. HASH KERNELS 17

We are accumulating all coordinates i of Φ(x) for which h(i) generates the same

value j into coordinate Φj(x). Our claim is that hashing preserves information as

well as randomised projections with significantly less computation. Before pro-

viding an analysis let us discuss two key applications: efficient hashing of kernels

on strings and cases where the number of classes is very high, such as categori-

sation in an ontology. In (2.3) it seems that Φ(x) needs to be pre-computed as

some feature vector such as term frequency (Jones, 1972). However, in practice

we no longer need to build up vocabulary nor to compute Φ(x) explicitly as it

will be clear in Section 2.6.1. The implementation of hash we used is Murmur

Hash (Appleby, 2008). However, as long as the hash is good in the sense that

the hash maps uniformly, it does not matter which one you use. It is just like in

sampling technique, it does not matter what random number generator you use.

2.3.2 Strings

Denote by X = I the domain of strings on some alphabet. Moreover, assume

that Φi(x) := λi#i(x) denotes the number of times the substring i occurs in x,

weighted by some coefficient λi ≥ 0. This allows us to compute a large family of

kernels via

k(x,x′) =
∑
i∈I

λ2
i#i(x)#i(x

′). (2.4)

Teo and Vishwanathan (2006) propose a storage efficient O(|x | + |x′ |) time

algorithm for computing k for a given pair of strings x,x′. Here |x | denotes

the length of the string. Moreover, a weighted combination
∑

i αik(xi,x) can be

computed in O(|x |) time after O(
∑

i |xi |) preprocessing.

The big drawback with string kernels using suffix arrays/trees is that they

require large amounts of working memory. Approximately a factor of 50 addi-

tional storage is required for processing and analysis. Moreover, updates to a

weighted combination are costly. This makes it virtually impossible to apply

(2.4) to millions of documents. Even for modest document lengths this would

require Terabytes of RAM.

Hashing allows us to reduce the dimensionality. Since for every document

x only a relatively small number of terms #i(x) will have nonzero values—at

most O(|x |2) but in practice we will restrict ourselves to substrings of a bounded

length l leading to a cost of O(|x | · l)—this can be done efficiently in a single pass

over x. Moreover, we can compute Φ(x) as a pre-processing step and discard x

altogether.

18 CHAPTER 2. EFFICIENT HASH KERNELS

Note that this process spreads out the features available in a document evenly

over the coordinates of Φ(x). Moreover, note that a similar procedure can be

used to obtain good estimates for a TF/IDF reweighting (Jones, 1972) of the

counts obtained, thus rendering preprocessing as memory efficient as the actual

computation of the kernel.

2.3.3 Multiclass Classification

Classification can sometimes lead to a very high dimensional feature vector even

if the underlying feature map x → Φ(x) may be acceptable. For instance, for a

bag-of-words representation (Lewis, 1998) of documents with 104 unique words

and 103 classes this involves up to 107 coefficients to store the parameter vector

directly when Φ(x, y) = ey ⊗ Φ(x), where ⊗ is the tensor product and ey is a

vector whose y-th entry is 1 and the rest are zero. The dimensionality of ey is

the number of classes.

Note that in the above case Φ(x, y) corresponds to a sparse vector which has

nonzero terms only in the part corresponding to ey. That is, by using the joint

index (i, y) with Φ(x, y)(i,y′) = Φi(x)δy,y′ we may simply apply (2.3) to the joint

index to obtain hashed versions of multiclass vectors. We have

Φj(x, y) =
∑

i∈I;h(i,y)=j

Φi(x).

In some cases it may be desirable to compute a compressed version of Φ(x), that

is, Φ(x) first and subsequently expand terms with y. In particular for strings

this can be useful since it means that we need not parse x for every potential

value of y. While this deteriorates the approximation in an additive fashion it

can offer significant computational savings since all we need to do is permute a

given feature vector as opposed to performing any summations.

2.3.4 Streams

Some features of observations arrive as a stream. For instance, when performing

estimation on graphs, we may obtain properties of the graph by using an MCMC

sampler. The advantage is that we need not store the entire data stream but

rather just use summary statistics obtained by hashing.

2.4. ANALYSIS 19

2.4 Analysis

We show that the penalty we incur from using hashing to compress the number

of coordinates only grows logarithmically with the number of observations m and

with the number of classes M , which will be shown in Theorem 3. While we are

unable to obtain the excellent O(ε−1) rates offered by the count-min sketch, our

approach retains the inner product property thus making hashing accessible to

linear estimation.

2.4.1 Information Loss

One of the key fears of using hashing in machine learning is that hash collisions

harm performance. When a collision occurs, information is lost, which may reduce

the achievable performance for a predictor.

Definition 1 (Information Loss) A hash function h causes information loss on a

distribution D with a loss function L if the expected minimum loss before hashing

is less than the expected minimum loss after hashing:

min
f

E(x,y)∼D [L(f(x), y))] < min
g

E(x,y)∼D [L(g(h(x)), y))] .

Redundancy in features is very helpful in avoiding information loss. The

redundancy can be explicit or systemic such as might be expected with a bag-

of-words or substring representation. In the following we analyse explicit redun-

dancy where a feature is mapped to two or more values in the space of size n.

This can be implemented with a hash function by (for example) appending the

string i ∈ {1, . . . , c} to feature f and then computing the hash of f ◦ i for the

i-th duplicate.

The essential observation is that the information in a feature is only lost if all

duplicates of the feature collide with other features. Given this observation, it’s

unsurprising that increasing the size of n by a constant multiple c and duplicating

features c times makes collisions with all features unlikely. It’s perhaps more

surprising that when keeping the size of n constant and duplicating features, the

probability of information loss can go down.

Theorem 2 For a random function mapping l features duplicated c times into

a space of size n, for all loss functions L and distributions D on n features, the

probability (over the random function) of no information loss is at least:

1− l[1− (1− c/n)c + (lc/n)c].

20 CHAPTER 2. EFFICIENT HASH KERNELS

For the proof see Appendix A.

To see the implications consider l = 105 and n = 108. Without duplication, a

birthday paradox collision is virtually certain. However, if c = 2, the probability

of information loss is bounded by about 0.404, and for c = 3 it drops to about

0.0117.

2.4.2 Rate of Convergence

As a first step note that any convergence bound only depends logarithmically on

the size of the kernel matrix as follows.

Theorem 3 Assume that the probability of deviation between the hash kernel and

its expected value is bounded by an exponential inequality via

P
[∣∣∣kh(x,x′)− Eh

[
k
h
(x,x′)

]∣∣∣ > ε
]
≤ c exp(−c′ε2n)

for some constants c, c′ depending on the size of the hash and the kernel used. In

this case the error ε arising from ensuring the above inequality, with probability

at least 1− δ, for m observations and M classes for a joint feature map Φ(x, y),

is bounded by

ε ≤
√

(2 log(m+ 1) + 2 log(M + 1)− log δ + log c− 2 log 2)/nc′.

For the proof see Appendix A.

2.5 Graphlet Kernels

Denote by G a graph with vertices V (G) and edges E(G). Several methods have

been proposed to perform classification on such graphs. Most recently, Przulj

(2007) proposed to use the distribution over graphlets, that is, subgraphs, as a

characteristic property of the graph. Unfortunately, brute force evaluation does

not allow calculation of the statistics for graphlets of size more than 5, since the

cost for exact computation scales exponentially in the graphlet size.

In the following we show that sampling and hashing can be used to make the

analysis of larger subgraphs tractable in practice. For this denote by S ⊆ G an

induced subgraph of G, obtained by restricting ourselves to only V (S) ⊆ V (G)

vertices of G and let #S(G) be the number of times S occurs in G. This suggests

that the feature map G → Φ(G), where ΦS(G) = #S(G) will induce a useful

kernel: adding or removing an edge (i, j) only changes the properties of the

subgraphs using the pair (i, j) as part of their vertices.

2.5. GRAPHLET KERNELS 21

2.5.1 Counting and Sampling

Depending on the application, the distribution over the counts of subgraphs may

be significantly skewed. For instance, in sparse graphs we expect the fully discon-

nected subgraphs to be considerably overrepresented. Likewise, whenever we are

dealing with almost complete graphs, the distribution may be skewed towards the

other end (i.e., most subgraphs will be complete). To deal with this, we impose

weights β(k) on subgraphs containing k edges |E(S)|.
To deal with the computational complexity issue together with the issue of

reweighting the graphs S we simply replace explicit counting with sampling from

the distribution

P(S|G) = c(G)β(|E(S)|) (2.5)

where c(G) is a normalisation constant. Samples from P(S|G) can be obtained

by a Markov-Chain Monte Carlo approach.

Lemma 4 The following MCMC sampling procedure has the stationary distribu-

tion (2.5).

1. Choose a random vertex, say i ∈ V (S) uniformly.

2. Add a vertex j from G\Si to Si with probability c(Si, G)β(|E(Sij)|).

Here Si denotes the subgraph obtained by removing vertex i from S, and Sij is the

result of adding vertex j to Si.

Note that sampling over j is easy: all vertices of G which do not share an edge

with Si occur with the same probability. All others depend only on the number

of joining edges. This allows for easy computation of the normalisation constant

c(Si, G).

Proof We may encode the sampling rule via

T (Sij|S,G) =
1

k
c(Si, G)β(|E(Sij)|)

where c(Si, G) is a suitable normalisation constant. Next we show that T satisfies

the detailed balance equations (Gilks et al., 1995) and therefore can be used as a

proposal distribution with acceptance probability 1.

T (Sij|S,G) P(S)

T (S|Sij, G) P(Sij)
=

k−1c(Si, G)β(|E(Sij)|)c(G)β(|E(S)|)
k−1c(Sij,j, G)β(|E(Sij,ji)|)c(G)β(|E(Sij)|)

= 1.

22 CHAPTER 2. EFFICIENT HASH KERNELS

This follows since Sij,j = Si and likewise Sij,ji = S. That is, adding and removing

the same vertex leaves a graph unchanged.

In summary, we obtain an algorithm that will readily draw samples S from

P(S|G) to characterise G.

2.5.2 Dependent Random Variables

The problem with sampling from a MCMC procedure is that the random vari-

ables are dependent on each other. This means that we cannot simply appeal

to Chernoff bounds when it comes to averaging. Before discussing hashing we

briefly discuss averages of dependent random variables:

Definition 5 (Bernoulli Mixing) Denote by Z a stochastic process indexed by

t ∈ Z with probability measure P and let Σn be the σ-algebra on Zt with t ∈
Z\1, . . . , n− 1. Moreover, denote by P− and P+ the probability measures on the

negative and positive indices t respectively. The mixing coefficient β is

β(n,PX) := sup
A∈Σn

∣∣∣P(A)−P−×P+(A)
∣∣∣.

If limn→∞β(n,Pz) = 0 we say that Z is β-mixing.

That is, β(n,PX) measures how much dependence a sequence has when cutting

out a segment of length n. Nobel and Dembo (1993) show how such mixing

processes can be related to iid observations.

Theorem 6 Assume that P is β-mixing. Denote by P∗ the product measure ob-

tained from . . .Pt×Pt+1 . . . Moreover, denote by Σl,n the σ-algebra on Zn, Z2n, . . . , Zln.

Then the following holds:

sup
A∈Σl,n

|P(A)−P∗(A)| ≤ lβ(n,P).

This allows us to obtain bounds for expectations of variables drawn from P rather

than P∗.

Theorem 7 Let P be a distribution over a domain X and denote by Φ : X→ H

a feature map into a Hilbert Space with 〈Φ(x),Φ(x′)〉 ∈ [0, 1]. Moreover, assume

that there is a β-mixing MCMC sampler of P with distribution PMC from which

we draw l observations xin with an interleave of n rather than sampling from P

2.5. GRAPHLET KERNELS 23

directly. Averages with respect to PMC satisfy the following with probability at

least 1− δ:

∥∥∥ E
x∼P(x)

[Φ(x)]− 1

l

l∑
i=1

Φ(xin)
∥∥∥ ≤ lβ(n,PMC) +

2 +
√

log 2
δ√

l
.

Proof Theorem 6, the bound on ‖Φ(x)‖, and the triangle inequality imply that

the expectations with respect to PMC and P∗ only differ by lβ. This establishes

the first term of the bound. The second term is given by a uniform convergence

result in Hilbert Spaces from Altun and Smola (2006).

Hence, sampling from a MCMC sampler for the purpose of approximating inner

products is sound, provided that we only take sufficiently independent samples

(i.e., a large enough n) into account. The translation of Theorem 7 into bounds

on inner products is straightforward, since

| 〈x, y〉 − 〈x′, y′〉 | ≤ ‖x−x′‖ ‖y‖+ ‖y − y′‖ ‖x‖+ ‖x−x′‖ ‖y − y′‖ .

2.5.3 Hashing and Subgraph Isomorphism

Sampling from the distribution over subgraphs S ∈ G has two serious problems

in practice which we will address in the following: firstly, there are several graphs

which are isomorphic to each other. This needs to be addressed with a graph

isomorphism tester, such as Nauty (McKay, 1984). For graphs up to size 12 this

is a very effective method. Nauty works by constructing a lookup table to match

isomorphic objects.

However, even after the graph isomorphism mapping we are still left with a

sizeable number of distinct objects. This is where a hash map on data streams

comes in handy. It obviates the need to store any intermediate results, such as

the graphs S or their unique representations obtained from Nauty. Finally, we

combine the convergence bounds from Theorem 7 with the guarantees available

for hash kernels to obtain the approximate graph kernel.

Note that the two randomisations have very different purposes: the sampling

over graphlets is done as a way to approximate the extraction of features whereas

the compression via hashing is carried out to ensure that the representation is

computationally efficient.

24 CHAPTER 2. EFFICIENT HASH KERNELS

Data Sets #Train #Test #Labels

RCV1 781,265 23,149 2

DMOZ L2 4,466,703 138,146 575

DMOZ L3 4,460,273 137,924 7,100

Table 2.1: Text data sets. #X denotes the number of observations in X.

2.6 Experiments

To test the efficacy of our approach we applied hashing to the following prob-

lems: first we used it for classification on the Reuters RCV1 data set (Lewis

et al., 2004) as it has a relatively large feature dimensionality. Secondly, we ap-

plied it to the DMOZ ontology (see Section 2.6.2) of topics of webpages∗ where

the number of topics is high. The third experiment—Biochemistry and Bioin-

formatics Graph Classification uses our hashing scheme, which makes comparing

all possible subgraph pairs tractable, to compare graphs (Vishwanathan et al.,

2007a). On publicly available data sets like MUTAG and PTC as well as on

the biologically inspired data set DD used by Vishwanathan et al. (2007a), our

method achieves the best known accuracy.

In both RCV1 and DMOZ, we use linear kernel SVM with stochastic gra-

dient descent (SGD) as the workhorse. We apply our hash kernels and ran-

dom projection (Achlioptas, 2003) to the SGD linear SVM. We don’t apply the

approach in Rahimi and Recht (2008) since it requires a shift-invariant kernel

k(x,x′) = k(x−x′), such as a RBF kernel, which is not applicable in this case.

In the third experiment, existing randomisation approaches are not applicable

since enumerating all possible subgraphs is intractable. Instead we compare hash

kernels with existing graph kernels: random walk kernel, shortest path kernel and

graphlet kernel (see Borgwardt et al. 2007).

2.6.1 Reuters Articles Categorisation

We use the Reuters RCV1 binary classification data set (Lewis et al., 2004).

781,265 articles are used for training by stochastic gradient descent (SGD) and

23,149 articles are used for testing. Conventionally one would build a bag of

words representation first and calculate exact term frequency / inverse document

frequency (TF/IDF) counts from the contents of each article as features. The

∗DMOZ L2 denotes non-parent topic data in the top 2 levels of the topic tree and DMOZ

L3 denotes non-parent topic data in the top 3 levels of the topic tree.

2.6. EXPERIMENTS 25

Algorithm Pre TrainTest Error %

BSGD 303.60s 10.38s 6.02

VW 303.60s 87.63s 5.39

VWC 303.60s 5.15s 5.39

HK 0s 25.16s 5.60

Table 2.2: Runtime and error on RCV1. BSGD: Bottou’s SGD. VW: Vowpal

Wabbit without cache. VWC: Vowpal Wabbit using cache file. HK: hash kernel

with feature dimension 220. Pre: preprocessing time. TrainTest: time to load

data, train and test the model. Error: misclassification rate. Apart from the

efficacy of the hashing operation itself, the gain in speed is also due to a multi-

core implementation—hash kernel uses 4-cores to access the disc for online hash

feature generation. For learning and testing evaluation, all algorithms use single-

core.

problem is that the TF calculation needs to maintain a very large dictionary

throughout the whole process. Moreover, it is impossible to extract features on-

line since the entire vocabulary dictionary is usually unobserved during training.

Another disadvantage is that calculating exact IDF requires us to preprocess all

articles in a first pass. This is not possible as articles such as news may vary

daily.

However, it suffices to compute TF and IDF approximately as follows: using

hash features, we no longer require building the bag of words. Every word pro-

duces a hash key which is the new dimension index of the word. The frequency

is recorded in the dimension index of its hash key. Therefore, every article has

a frequency count vector as TF. This TF is a much denser vector which requires

no knowledge of the vocabulary. IDF can be approximated by scanning a smaller

part of the training set.

We compare the hash kernel with Leon Bottou’s Stochastic Gradient Descent

SVM† (BSGD), Vowpal Wabbit (Langford et al., 2007) (VW) and Random Pro-

jections (RP) (Achlioptas, 2003). Our hash scheme is generating features online.

BSGD is generating features offline and learning them online. VW uses BSGD’s

preprocessed features and creates further features online. Caching speeds up VW

considerably. However, it requires one run of the original VW code for this pur-

pose. RP uses BSGD’s preprocessed features and then creates the new projected

†Code can be found at http://leon.bottou.org/projects/sgd.

26 CHAPTER 2. EFFICIENT HASH KERNELS

Alg. Dim Pre TrainTest orgTrainSize newTrainSize Error %

28 748.30s 210.23s 423.29Mb 1393.65Mb 29.35%

RP 29 1079.30s 393.46s 423.29Mb 2862.90Mb 25.08%

210 1717.30s 860.95s 423.29Mb 5858.48Mb 19.86%

28 0s 22.82s N/A N/A 17.00%

HK 29 0s 24.19s N/A N/A 12.32%

210 0s 24.41s N/A N/A 9.93%

Table 2.3: Hash kernel vs. random projections with various feature dimensional-

ities on RCV1. RP: random projections in Achlioptas (2003). HK: hash kernel.

Dim: dimension of the new features. Pre: preprocessing time. TrainTest: time to

load data, train and test the model. orgTrainSize: compressed original training

feature file size. newTrainSize: compressed new training feature file size. Error:

misclassification rate. N/A: not applicable. In hash kernel there is no prepro-

cessing step, so there are no original/new feature files. Features for hash kernel

are built up online via accessing the string on disc. The disc access time is taken

into account in TrainTest. Note that the TrainTest for random projection time

increases as the new feature dimension increases, whereas for hash kernel the

TrainTest is almost independent of the feature dimensionality.

lower dimension features. Then it uses BSGD for learning and testing. We com-

pare these algorithms on RCV1 in Table 2.2. RP is not included in this table

because it would be intractable to run it with the same feature dimensionality as

HK for a fair comparison. As can be seen, the preprocessing time of BSGD and

VW is considerably longer compared to the time for training and testing, due to

the TF-IDF calculation which is carried out offline. For a fair comparison, we

measure the time for feature loading, training and testing together. It can also

be seen that the speed of online feature generation is considerable compared to

disk access. Table 2.2 shows that the test errors for hash kernel, BSGD and VW

are competitive.

In table 2.3 we compare hash kernels to RP with different feature dimensions.

As we can see, the error reduces as the new feature dimension increases. However,

the error of hash kernel is always much smaller (by about 10%) than RP given

the same new dimension. An interesting thing is that the new feature file created

after applying RP is much bigger than the original one. This is because the

projection maps the original sparse feature to a dense feature. For example, when

the feature dimensionality is 210, the compressed new feature file size is already

5.8G. Hash kernels are much more efficient than RP in terms of speed, since to

2.6. EXPERIMENTS 27

Dim #Unique Collision % Error %

224 285614 0.82 5.586

222 278238 3.38 5.655

220 251910 12.52 5.594

218 174776 39.31 5.655

216 64758 77.51 5.763

214 16383 94.31 6.096

Table 2.4: Influence of new dimension on Reuters (RCV1) on collision rates

(reported for both training and test set combined) and error rates. Note that

there is no noticeable performance degradation even for a 40% collision rate.

compute a hash feature one requires only O(dnz) hashing operations, where dnz

is the number of non-zero entries. To compute a RP feature one requires O(dn)

operations, where d is the original feature dimension and and n is the new feature

dimension. With RP the new feature is always dense even when n is big, which

further increases the learning and testing runtime. When dnz � d such as in text

processing, the difference is significant. This is verified in our experiment (see

Table 2.3). For example, a hash kernel (including Pre and TrainTest) with 210

feature size is over 100 times faster than RP.

Furthermore, we investigate the influence of the new feature dimension on the

misclassification rate. As can be seen in Table 2.4, when the feature dimension

decreases, the collision and the error rate increase. In particular, a 224 dimen-

sion causes almost no collisions. Nonetheless, a 218 dimension which has almost

40% collisions performs equally well on the same problem. This leads to rather

memory-efficient implementations.

2.6.2 DMOZ Websites Multiclass Classification

In a second experiment we perform topic categorisation using the DMOZ topic

ontology. The task is to recognise the topic of websites given the short descriptions

provided on the webpages. To simplify things we categorise only the leaf nodes

(Top two levels: L2 or Top three levels: L3) as a flat classifier (the hierarchy

could easily be taken into account by adding hashed features for each part of the

path in the tree). This leaves us with 575 leaf topics on L2 and with 7100 leaf

topics on L3.

Conventionally, assuming M classes and l features, training M different pa-

28 CHAPTER 2. EFFICIENT HASH KERNELS

HLF (228) HLF (224) HF no hash U base P base

error mem error mem error mem mem error error

L2 30.12 2G 30.71 0.125G 31.28 2.25G (219) 7.85G 99.83 85.05

L3 52.10 2G 53.36 0.125G 51.47 1.73G (215) 96.95G 99.99 86.83

Table 2.5: Misclassification and memory footprint of hashing and baseline meth-

ods on DMOZ. HLF: joint hashing of labels and features. HF: hash features only.

no hash: direct model (not implemented as it is too large, hence only memory

estimates—we have 1,832,704 unique words). U base: baseline of uniform classi-

fier. P base: baseline of majority vote. mem: memory used for the model. Note:

the memory footprint in HLF is essentially independent of the number of classes

used.

HLF KNN Kmeans

228 224 S= 3% 6% 9% S= 3% 6% 9%

L2 69.88 69.29 50.23 52.59 53.81 42.29 42.96 42.76

L3 47.90 46.64 30.93 32.67 33.71 31.63 31.56 31.53

Table 2.6: Accuracy comparison of hashing, KNN and Kmeans. HLF: joint

hashing of labels and features. KNN: apply K Nearest Neighbor on sampled

training set as search set. Kmeans: apply Kmeans on sampled training set to do

clustering and then take its majority class as predicted class. S is the sample size

which is the percentage of the entire training set.

rameter vectors w requires O(Ml) storage. This is infeasible for massively mul-

ticlass applications. However, by hashing data and labels jointly we are able to

obtain an efficient joint representation which makes the implementation compu-

tationally possible.

As can be seen in Table 2.5 joint hashing of features and labels is very at-

tractive in items of memory usage and in many cases is necessary to make large

multiclass categorisation computationally feasible at all (naive online SVM ran

out of memory). In particular, hashing features only produces worse results than

joint hashing of labels and features. This is likely due to the increased collision

rate: we need to use a smaller feature dimension to store the class dependent

weight vectors explicitly.

Next we compare hash kernel with K Nearest Neighbour (KNN) and Kmeans.

Running the naive KNN on the entire training set is very slow‡. Hence we in-

‡In fact the complexity of KNN is O(N ×T), where N and T are the size of the training set

2.6. EXPERIMENTS 29

Data Algorithm Dim Pre TrainTest Error %

L2

RP 27 779.98s 1258.12s 82.06%

RP 28 1496.22s 3121.66s 72.66%

RP 29 2914.85s 8734.25s 62.75%

HK 27 0s 165.13s 62.28%

HK 28 0s 165.63s 55.96%

HK 29 0s 174.83s 50.98%

L3

RP 27 794.23s 18054.93s 89.46%

RP 28 1483.71s 38613.51s 84.06%

RP 29 2887.55s 163734.13s 77.25%

HK 27 0s 1573.46s 76.31%

HK 28 0s 1726.67s 71.93%

HK 29 0s 1812.98s 67.18%

Table 2.7: Hash kernel vs. random projections with various feature dimensional-

ities on DMOZ. RP: random projections in Achlioptas (2003). HK: hash kernel.

Dim: dimension of the new features. Pre: preprocessing time—generation of

the random projected features. TrainTest: time to load data, train and test the

model. Error: misclassification rate. Note that the TrainTest time for random

projections increases as the new feature dimension increases, whereas for hash

kernel the TrainTest is almost independent of the feature dimensionality. Mov-

ing the dimension from 28 to 29 the increase in processing time of RP is not

linear—we suspect this is because with 28 the RP model has 256×7100×8 bytes

≈ 14MB, which is small enough to fit in the CPU cache (we are using a 4-cores

cpu with a total cache size of 16MB), while with 29 the model has nearly 28MB,

no longer fitting in the cache.

troduce sampling to KNN. We first sample a subset from the entire training set

as search set and then do KNN classification. To match the scheme of KNN, we

use sampling in Kmeans too. Again we sample from the entire training set to

do clustering. The number of clusters is the minimal number of classes which

have at least 90% of the documents. Each test example is assigned to one of the

clusters, and we take the majority class of the cluster as the predicted label of

the test example. The accuracy plot in Figure 2.1 shows that in both DMOZ L2

and L3, KNN and Kmeans with various sample sizes get test accuracies of 30% to

and the testing set. We estimate the running time for the original KNN, in a batch processing

manner ignoring the data loading time, is roughly 44 days on a PC with a 3.2GHz cpu.

30 CHAPTER 2. EFFICIENT HASH KERNELS

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

Sample Size %

A
cc

ur
ac

y
%

Kmeans
KNN
HashKernel

0 2 4 6 8 10
0

10

20

30

40

50

60

Sample Size %

A
cc

ur
ac

y
%

Kmeans
KNN
HashKernel

Figure 2.1: Test accuracy comparison of KNN and Kmeans on DMOZ with var-

ious sample sizes. Left: results on L2. Right: results on L3. Hash kernel (228)

result is used as an upper bound.

20% less than the upper bound accuracy achieved by hash kernel. The trend of

the KNN and Kmeans accuracy curve suggests that the bigger the sample size is,

the less accuracy increment can be achieved by increasing it. A numerical result

with selected sample sizes is reported in Table 2.6.

We also compare hash kernel with RP with various feature dimensionalities

on DMOZ. Here RP generates the random projected feature first and then does

online learning and testing. It uses the same 4-cores implementation as hash

kernel does. The numerical result with selected dimensionalities is in Table 2.7.

It can be seen that hash kernel is not only much faster but also has much smaller

error than RP given the same feature dimension. Note that both hash kernel

and RP reduce the error as they increase the feature dimension. However, RP

can’t achieve a competitive error compared to what hash kernel has in Table 2.5,

simply because with large feature dimension RP is too slow—the estimated run

time for RP with dimension 219 on DMOZ L3 is 2000 days.

Furthermore we investigate whether such a good misclassification rate is ob-

tained by predicting well only on a few dominant topics. We reorder the topic his-

togram in accordance to ascending error rate. Figure 2.2 shows that hash kernel

does very well on the first one hundred topics. They correspond to easy categories

such as language related sets ”World/Italiano”,”World/Japanese”,”World/Deutsch”.

2.6. EXPERIMENTS 31

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

topics

lo
g

co
un

ts

0 2000 4000 6000 8000
0

2

4

6

8

10

12

14

topics

lo
g

co
un

ts

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

topics

lo
g

co
un

ts

Histogram
Error curve

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

topics

lo
g

co
un

ts

Histogram
Error curve

Figure 2.2: Left: results on L2. Right: results on L3. Top: frequency counts

for topics as reported on the training set (the test set distribution is virtually

identical). We see an exponential decay in counts. Bottom: log-counts and error

probabilities on the test set. Note that the error is reasonably evenly distributed

among the size of the classes (besides a number of near empty classes which are

learned perfectly).

2.6.3 Biochemistry and Bioinformatics Graph Classifica-

tion

For the final experiment we work with graphs. The benchmark data sets we

used here contain three real-world data sets: two molecular compounds data

sets, Debnath et al. (1991) and PTC (Toivonen et al., 2003), and a data set for

protein function prediction task (DD) from Dobson and Doig (2003). In this work

we used the unlabeled version of these graphs, see, for example, Borgwardt et al.

(2007).

All these data sets are made of sparse graphs. To capture the structure of

the graphs, we sampled connected subgraphs with varying number of nodes, from

n = 4 to n = 9. We used graph isomorphism techniques, implemented in Nauty

32 CHAPTER 2. EFFICIENT HASH KERNELS

Data Sets RW SP GKS GK HK HKF

MUTAG 0.719 0.813 0.819 0.822 0.855 0.865

PTC 0.554 0.554 0.594 0.597 0.606 0.635

DD >24h >24h 0.745 >24h 0.799 0.841

Table 2.8: Classification accuracy on graph benchmark data sets. RW: random

walk kernel, SP: shortest path kernel, GKS = graphlet kernel sampling 8497

graphlets, GK: graphlet kernel enumerating all graphlets exhaustively, HK: hash

kernel, HKF: hash kernel with feature selection. ’>24h’ means computation did

not finish within 24 hours.

Feature All Selection

STATS ACC AUC ACC AUC

MUTAG 0.855 0.93 0.865 0.912

PTC 0.606 0.627 0.635 0.670

DD 0.799 0.81 0.841 0.918

Table 2.9: Non feature selection vs feature selection for hash kernel. All: all

features. Selection: feature selection; ACC: accuracy; AUC: Area under ROC.

(McKay, 1984) to obtain a canonically-labeled isomorph of each sampled sub-

graph. The feature vector of each example (graph) is composed of the number

of times each canonical isomorph was sampled. Each graph was sampled 10000

times for each of n = 4, 5 . . . 9. Note that the number of connected unlabeled

graphs grows exponentially with the number of nodes, so the sampling is ex-

tremely sparse for large values of n. For this reason we normalised the counts so

that for each data set each feature of Φ(x) satisfies 1 ≥ Φ(x) ≥ 0.

We compare the proposed hash kernel (with/without feature selection) with

random walk kernel, shortest path kernel and graphlet kernel on the benchmark

data sets. From Table 2.8 we can see that the hash kernel even without fea-

ture selection still significantly outperforms the other three kernels in terms of

classification accuracy over all three benchmark data sets.

The dimensionality of the canonical isomorph representation is quite high

and many features are extremely sparse, a feature selection step was taken that

removed features suspected as non-informative. To this end, each feature was

scored by the absolute vale of its correlation with the target. Only features with

scores above the median were retained. As can be seen in Table 2.9 feature

selection on hash kernel can furthermore improve the test accuracy and area

2.7. CONCLUSION 33

under ROC.

2.7 Conclusion

In this chapter we showed that hashing is a computationally attractive tech-

nique which allows one to approximate kernels for very high dimensional settings

efficiently by means of a sparse projection into a lower dimensional space. In

particular for multiclass categorisation this makes all the difference in terms of

being able to implement problems with thousands of classes in practice on large

amounts of data and features.

34 CHAPTER 2. EFFICIENT HASH KERNELS

Chapter 3

Efficient Face Recognition via

Hashing

Face recognition often suffers from high dimensionality of the images as well as

the large amount of training data. Typically, face images/features are mapped to

a much lower dimensional space (e.g., via down-sampling, or linear projection),

in which the important information is hopefully preserved. Classification models

are then trained on those low-dimensional features. Recently, Wright et al. (2008)

propose a random `1 minimisation approach on sparse representations, which ex-

ploits the fact that the sparse representation of the training image index space

helps classification and is robust to noise and occlusions. However, the `1 min-

imisation in Wright et al. (2008) has computational complexity O(d2n3/2), where

d is the number of measurements and n is the size of the training image set.

This makes computation expensive for large-scale datasets. Moreover, a large

dense random matrix with size of d by n has to be generated beforehand and

stored during the entire processing period. We propose hashing to facilitate face

recognition, which has complexity of only O(dn). Evaluated on the YaleB dataset

(Georghiades et al., 2001), the proposed method is up to 150 times faster than

the method in Wright et al. (2008). We further show an efficient way to compute

the hashing matrix implicitly, so that the procedure is potentially applicable to

online computing, parallel computing and embedded hardware.

In summary, our main contributions include:

• We discover the connection between hashing kernels and compressed sens-

ing. Existing works on hash kernels (Shi et al., 2009a,b; Weinberger et al.,

2009) use hashing to perform feature reduction with theoretical guaran-

tees that learning in the reduced feature space gains much computational

35

36 CHAPTER 3. EFFICIENT FACE RECOGNITION VIA HASHING

power without any noticeable loss of accuracy. The deviation bound and

Rademacher margin bound are independent to the line of compressed sens-

ing. Whereas we show the other side of the coin—hashing can actually

be viewed as a measurement matrix in compressed sensing, which explains

why there is asymptotically no information loss. Also we provide both a

theoretical guarantee and empirical evidence that recovering the original

signal is possible.

• We apply hashing in the context of compressed sensing to rapid face recogni-

tion due to sparse signal recovery. Our experiments show that the proposed

method achieves competitive accuracies compared with (if not better than)

the state-of-the-art in Wright et al. (2008); Yang et al. (2007). Yet the

proposed hashing with orthogonal matching pursuit is much faster (up to

150 times) than Wright et al. (2008); Yang et al. (2007).

• We further present bounds on hashing signal recovery rates and face recog-

nition rates for the proposed algorithms.

We briefly review the related work in Section 3.1, and then introduce two

variants of hashing methods for face recognition in Section 3.2. The theoretical

analysis in Section 3.3 gives justification to our methods, and experimental results

in Section 3.4 demonstrate the excellence of the proposed methods in practice.

3.1 Related work

Given the abundant literature on face recognition, we only review the work closest

to ours.

3.1.1 Facial features

Inspired by the seminal work of Eigenface (Turk and Pentland, 1991) using prin-

cipal component analysis (PCA), learning a meaningful distance metric has been

extensively studied for face recognition. These methods try to answer the ques-

tion that which features of faces are the most informative or discriminative for

identifying a face from another. Eigenface using PCA, Fisherface using linear

discriminant analysis (LDA), Laplacianface using locality preserving projection

(LPP) (He et al., 2005) and nonnegative matrix factorization all belong to this

category. These methods project the high-dimensional image data into a low-

dimensional feature space. The main justification is that typically the face space

3.1. RELATED WORK 37

has a much lower dimension than the image space (represented by the number of

pixels in an image). The task of recognizing faces can be performed in the lower-

dimensional face space. These methods are equivalent to learn a Mahalanobis

distance as discussed in Weinberger and Saul (2009). Therefore algorithms such

as large-margin nearest neighbor (LMNN) (Weinberger and Saul, 2009) can also

be applied. Kernelised subspace methods such as kernel PCA and kernel LDA

have also been applied for better performances.

3.1.2 Compressed sensing

Compressive sensing (CS) (Donoho, 2006; Candés et al., 2006) addresses that if a

signal can be compressible in the sense that it has a sparse representation in some

basis, then the signal can be reconstructed from a limited number of measure-

ments. Several reconstruction approaches have been successfully presented. The

typical algorithm in Candés et al. (2006) is to use the so-called `1 minimisation

for an approximation to the ideal non-convex `0 minimisation. Yang et al. (2007);

Wright et al. (2008) apply CS to face recognition, that is, randomly mapping the

down-sampled training face images to a low dimensional space and then using `1

minimisation to reconstruct the sparse representation. The person identity can

then be predicted via the minimal residual among all candidates. Unfortunately,

`1 minimisation for large matrices is expensive, which restricts the size of the

dataset and the dimensionality of the features.

3.1.3 Hash kernels

Ganchev and Dredze (2008) provide empirical evidence that using hashing can

eliminate alphabet storage and reduce the number of parameters without severely

deteriorating the performance. In addition, Langford et al. (2007) release the

Vowpal Wabbit fast online learning software which uses a hash representation

similar to the one discussed here. We propose a hash kernel (Shi et al., 2009a) to

deal with the issue of computational efficiency by a very simple algorithm: high-

dimensional vectors are compressed by adding up all coordinates which have the

same hash value—one only needs to perform as many calculations as there are

nonzero terms in the vector. The hash kernel can jointly hash both label and

features, thus the memory footprint is essentially independent of the number of

classes used. Shi et al. (2009b) further extend this approach to structured data.

Weinberger et al. (2009) propose an unbiased hash kernel which is applied to a

38 CHAPTER 3. EFFICIENT FACE RECOGNITION VIA HASHING

large scale application of mass personalised spam filtering.

3.1.4 Connection between hash kernels and compressed

sensing

Previous works on hash kernels use hashing to perform feature reduction with

a theoretical guarantee that learning in the reduced features space gains much

computational power without any noticeable loss of accuracy. The deviation

bound and the Rademacher bound show that hash kernels have no information

loss asymptotically due to the internal feature redundancy.

Alternatively, we can view hashing as a measurement matrix (see Section 3.3.2)

in compressed sensing. We provide both theoretical guarantees in Section 3.3 and

empirical results in Section 3.4 to show that recovering the original signal is pos-

sible. Thus hash kernels compress the original signal/feature in a recoverable

way. This explains why it works well asymptotically in the context of Shi et al.

(2009a,b); Weinberger et al. (2009).

3.2 Hashing for face recognition

We show in this section that hashing can be applied to face recognition.

3.2.1 Algorithms

Consider face recognition with n frontal training face images collected fromK ∈ N
subjects. Let nk denote the number of training images (xi, ci) with ci = k, thus

the total number of training images n =
∑K

k=1 nk. Without loss of generality, we

assume that all the data have been sorted according to their labels and then we

collect all the vectors in a single matrix A with m rows and n columns, given by

A = [x1, ...,xn1 , ...,xn] ∈ Rm,n. (3.1)

As in Yang et al. (2007); Wright et al. (2008), we assume that any test image

lies in the subspace spanned by the training images belonging to the same person.

That is for any test image x, without knowing its label information, we assume

that there exists α = (α1, α2, ..., αn) such that

x = Aα. (3.2)

3.2. HASHING FOR FACE RECOGNITION 39

It is easy to see that if each subject has the same number of images in the dataset,

then the α for each subject has maximally 1/K portion of nonzero entries. In

practice, α is more sparse since often only a small subset of images from the same

subjects have nonzero coefficients.

Yang et al. (2007) and Wright et al. (2008) use a random matrix R ∈ Rd,m to

map Aα, where d� m, and seek α by following `1 minimisation:

min
α∈Rn

‖x̃− Ãα‖2
`2

+ λ‖α‖`1 , (3.3)

where Ã := RA, x̃ := Rx and λ is the regulariser controlling the sparsity of α.

However, they did not provide a theoretical result on the reconstruction rate and

the face recognition rate. We show both of our algorithms in Section 3.3.

3.2.2 Hashing with `1

Computing R directly can be inefficient, therefore we propose hashing to fa-

cilitate face recognition (see Figure 3.1). Denote by hs(j, d) a hash function

hs : N → {1, . . . , d} uniformly, where s ∈ {1, . . . , S} is the seed. Different seeds

give different hash functions.

Given hs(j, d), the hash matrix H = (Hij) is defined as

Hij :=

{
2hs(j, 2)− 3, hs(j, d) = i, ∀s ∈ {1, . . . , S}

0, otherwise.
(3.4)

Apparently, Hij ∈ {0,±1}. Equally likely ±1 result in an unbiased estimator (see

Weinberger et al. (2009)). Let Φ := H A = (Φij) ∈ Rd,n. We look for α by

min ‖α‖`1 subject to ‖x̃−Φα‖`2 ≤ ε, (3.5)

where x̃ = H x. Hashing with `1 is illustrated in Algorithm 1.

3.2.3 Hashing with Orthogonal Matching Pursuit

Tropp and Gilbert (2007) propose Orthogonal Matching Pursuit (OMP) which

is faster than `1 minimisation but requires more measurements than does `1 for

achieving the same precision. Equipped with hashing, OMP (see Algorithm 2)

is much faster than random-`1, random-OMP, and hashing-`1 without significant

loss of accuracy. It is known that OMP has complexity O(dn). Hashing-OMP is

faster than random-OMP due to the sparsity of the hash matrix H (see a sparse

H in Figure 3.2).

40 CHAPTER 3. EFFICIENT FACE RECOGNITION VIA HASHING

Algorithm 1 Hashing-`1

Input: a image matrix A for K subjects, a test image x ∈ Rm and an error

tolerance ε.

Compute x̃ and Φ.

Solve the convex optimisation problem

min ‖α‖`1 subject to ‖x̃−Φα‖`2 ≤ ε. (3.6)

Compute the residuals rk(x) = ||x̃ −Φαk(x)||`2 for k = 1, . . . , K, where αk is

the subvector consisting of the components of α corresponding to the basis of

class k.

Output: identity c∗ = argmink rk(x).

(a)

0.54706 0.22354 0.1071 0.061928 0.041049

0.036729 0.033833 0.026724 0.022192 0.020428

(b)

Figure 3.1: Demonstration of the recognition procedure of Hashface+`1. (a) is

the test face; (b) is the training faces corresponding to the 10 largest weighted

entries in α, the absolute values of their weights are shown on the images in red.

3.2.4 Efficiency of Computation and Memory Usage

For random-`1, the random matrix R needs to be computed beforehand and

stored throughout the entire routine. When the training set is large or the feature

dimensionality is high, computing and storing R are expensive especially for

dense R. We will show now with hashing, H no longer needs to be computed

beforehand explicitly. For example Φ and x̃ can be directly computed as follows

without computing H.

∀i = 1, . . . , d, j = 1, . . . , n

Φij =
∑

1≤s≤S

(∑
1≤t≤m;hs(t,d)=i

Ajtξst

)
, (3.8)

3.3. ANALYSIS 41

50 100 150 200 250 300

10

20

30

40

50

60

70

80

90

100

Figure 3.2: Demonstration of a hash matrix. The area with green color means the

entry’s value is 0, brown indicates value −1 while blue indicates 1. Best viewed

in color.

Algorithm 2 Hashing-OMP

Input: a image matrix A for K subjects, a test image x ∈ Rm.

Compute x̃ and Φ.

Get α via OMP procedure

α = OMP(x̃,Φ) (3.7)

Compute the residuals rk(x) = ||x̃ −Φαk(x)||`2 for k = 1, . . . , K, where αk is

the subvector consisting of the components of α corresponding to the basis of

class k.

Output: identity c∗ = argmink rk(x).

where

ξst =

{
1, hs(t, 2) = 2

−1, otherwise.

∀i = 1, . . . , d x̃i =
∑

1≤s≤S

(∑
1≤j≤m;hs(j,d)=i

yjξsj

)
. (3.9)

It means for even very large image set, hashing with OMP (hashing-OMP) can

still be implemented on hardware with very limited memory.

3.3 Analysis

In this section, we show that hashing can be used for signal recovery, which is

the principle behind the application to face recognition. We further give a lower

42 CHAPTER 3. EFFICIENT FACE RECOGNITION VIA HASHING

bound on its face recognition rate under some mild assumptions.

3.3.1 Restricted isometry property and signal recovery

A n-dimensional real valued signal is called η-sparse if it has at most η many

nonzero components. The following Restricted Isometry Property (RIP) (Candes

and Tao, 2005; Candés, 2008) provides a guarantee for embedding a high dimen-

sional signal into a lower dimensional space without suffering a great distortion.

Definition 8 (Restricted Isometry Property) Let Φ be an m×n matrix and

let η < n be an integer. Suppose that there exists a constant β such that, for every

m× η submatrix Φη of Φ and for every vector x,

(1− ε)‖x‖2
`2
≤ ‖Φηx‖2

`2
≤ (1 + ε)‖x‖2

`2
. (3.10)

Then, the matrix Φ is said to satisfy the η-restricted isometry property with re-

stricted isometry constant ε.

Baraniuk et al. (2007) proves that the RIP holds with high probability for some

random matrices by the well-known Johnson-Lindenstrauss Lemma (see Bara-

niuk et al. (2007) for detail). The main difference is that Johnson-Lindenstrauss

Lemma concerns finite many points whereas RIP concerns all (infinite many)

points. With RIP, it is possible to reconstruct the original sparse signal by ran-

domly combining the entries by the following theorem (Tropp and Gilbert, 2007;

Candes and Tao, 2005; Rudelson and Veshynin, 2005).

Theorem 9 (Recovery via Random Map) For any η-sparse signal α ∈ Rn

and two constants z1, z2 > 0, let m ≥ z1η log(n/η), and draw m row vectors

r1, . . . , rm independently from the standard Gaussian distribution on Rn. Denote

the stacked vectors {ri}mi=1 as the matrix R ∈ Rm,n and take m measurements

xi = 〈ri,α〉 , i = 1, . . . ,m , i.e., x = Rα. Then with probability at least 1−e−z2m,

the signal α can be recovered via

α∗ = argmin
α∈Rn

‖x−Rα‖2
`2

+ λ‖α‖`1 . (3.11)

The condition on m in the theorem above comes from the RIP condition. This

immediately leads to following corollary when recovery is on a specific basis A.

3.3. ANALYSIS 43

Corollary 10 (Recovery on a Specific Basis) For any η-sparse signal α ∈
Rn and two constants z1, z2 > 0, let d ≥ z1η log(n/η), and draw d row vectors

r1, . . . , rd independently from the standard Gaussian distribution on Rm. Denote

the stacked vectors {ri}di=1 as the matrix R ∈ Rd,m. For any matrix A ∈ Rm,n

with unit length columns, with probability at least 1 − e−z2d, the signal α can be

recovered via

α∗ = argmin
α∈Rn

‖R x− (R A)α‖2
`2

+ λ‖α‖`1 . (3.12)

For the proof see Appendix A.

3.3.2 Recovery with hashing

Can one reconstruct the signal via hashing rather than Gaussian random map-

ping? The answer is affirmative. Achlioptas (2003) constructs an embedding

with the property that all elements of the projection matrix U belong in {±1, 0}
and shows that such an embedding has a Johnson-Lindenstrauss Lemma type

of distance preservation property. Due to uniformity, a hashing matrix H with

S = d is such a projection matrix U ignoring scaling. Since the distance preser-

vation property implies RIP (Baraniuk et al., 2007), signal recovery still holds by

replacing the gaussian matrix with U, and it leads to the corollary below.

Corollary 11 (Hashing `1 Recovery) For any η-sparse signal α ∈ Rn and

two constants z1, z2 > 0 depending on ε, given hash matrix H, let d ≥ z1η log(n/η),

for any matrix A ∈ Rm,n, with probability at least 1 − eO(−z2d), the signal α can

be recovered via

α∗ = argmin
α∈Rn

‖H x− (H A)α‖2
`2

+ λ‖α‖`1 . (3.13)

Here the big O notation is to take scaling into account.

Tropp and Gilbert (2007) show that the OMP recovery theorem holds for

all admissible measurement matrices such as Gaussian random matrices and

Bernoulli random matrices. Applying OMP to the hashing matrix H, we get

the following theorem:

Theorem 12 (Hashing OMP Recovery) For any η-sparse signal α ∈ Rn

and confidence δ > 0, given hash matrix H, let d ≥ 16η2 log(n/δ), for any ma-

trix A ∈ Rm,n, take the measurements such that H x = (H A)α. Then with

probability at least 1− δ, the signal α can be recovered via Algorithm 2.

For the proof see Appendix A.

44 CHAPTER 3. EFFICIENT FACE RECOGNITION VIA HASHING

3.3.3 Recognition rates

A commonly used assumption is that any test face image can be represented as a

weighted sum of face images belonging to the same person, which has been used

in Wright et al. (2008); Yang et al. (2007). Ideally, once we achieve the exact

weights, the classification should be perfect. However, because the similarity of

human face appearance and noise, it is no longer true. So we propose a weakened

assumption below.

Assumption 13 There exists a high dimensional representation in the training

face images index space, in which the classification can be conducted with recog-

nition rate at least q.

The following theorem provides bounds on the recognition rate for any test

image via hashing.

Theorem 14 (Recognition Rate via Hashing) The recognition rates via Al-

gorithm 1 and 2 are, at least (1 − eO(−z2d))q, and (1 − δ)q, respectively, under

Assumption 13.

Proof We know that with probability at least 1 − eO(−z2d), the signal can be

recovered via Corollary 11. With Assumption 13, we know that even the eO(−z2d)

portion of not-perfectly-recovered signals are all misclassified, the classification

accuracy is still greater than or equal to (1−eO(−z2d))q. Similarly for Algorithm 2.

Note that the bound in the above theorem is possible to further tighten by

salvaging the portion of not-perfectly-recovered signals for classification. Indeed,

predictions on those signals are usually not completely wrong.

3.4 Experiments

To compare the proposed hashing approaches with random-`1 (Yang et al., 2007;

Wright et al., 2008), we use the same databases, namely, the Extended YaleB and

AR as used in Wright et al. (2008). The Extended YaleB database (Georghiades

et al., 2001) contains 2, 414 frontal-face images from 38 individuals. The cropped

and normalised 192 × 168 face images were captured under various laboratory-

controlled lighting conditions. Each subject has 62 to 64 images. Thus we ran-

domly select 32, 15, 15 of them (no repetition) as the training, validation and

3.4. EXPERIMENTS 45

testing sets. The AR database consists of over 4, 000 front images for 126 individ-

uals. Each individual has 26 images. The pictures of each individual were taken

in two different days (Martinez and Benavente, 1998). Unlike Extended YaleB,

the faces in AR contain more variations such as illumination change, expressions

and facial disguises. 100 subjects (50 male and 50 female) are selected randomly.

And for each individual, 13, 7 and 6 images (since there are 26 images in total for

each individual) are chosen as training, validation and testing set respectively.

3.4.1 Comparisons on accuracy and efficiency

We run the experiment 10 times on each method and report the average accuracy

with the standard deviations (STD) as well as the running time. In each round we

run the experiment, the databases are split according to above scheme and differ-

ent algorithms are performed on the same training, validation and test data set.

The number of hash functions L is tuned via model selection assessed on the val-

idation set. Given a feature dimension Dim in the reduced feature space, L is the

rounded up integer of u× Dim. For hashing-`1 u ∈ {0.02, 0.04, 0.06, ...0.38, 0.40}
and for hashing-OMP u ∈ {0.05, 0.10, 0.15, ...0.95, 1.00}. The error tolerance ε

for random-`1 is fixed to 0.05 which is identical to the value adopted in Yang

et al. (2007).

We evaluate our methods and the state-of-the-arts on the YaleB and AR

databases shown in Table 3.1. The best accuracies are highlighted in bold. As we

can see, when Dim = 300, hashing-`1 gets the best accuracies on both datasets.

An example is given in Figure 3.3. Figure 3.3 (d) (e) show that the hashing-`1

weight vector is more sparse than random-`1. We conjecture that the sparsity is

a distinct pattern for classification, which may help to improve the performance

as observed in Shi et al. (2009b). Overall, hashing has competitive accuracy with

random-`1.

Hashing-OMP is significantly faster than random-`1 (from 30 to 150 times

shown in Table 3.2). This is further verified in Figure 3.4, which shows that as

the feature dimensionality increases, the running time of hashing-OMP is almost

constant whereas that of random-`1 increases dramatically. In real world appli-

cations, the speed of the algorithms is a big issue. Hence we further compare

hashing-OMP with random-`1 by restricting their running time to the same level.

This way, hashing-OMP gets much better accuracies than random-`1 shown in

Table 3.3. In fact, one may further improve the hashing-OMP accuracy by in-

creasing the feature dimensionality, for Figure 3.4 suggests that the running time

46 CHAPTER 3. EFFICIENT FACE RECOGNITION VIA HASHING

Dim-50 Dim-100 Dim-200 Dim-300

AR

Hash-OMP 0.658± 0.063 0.778± 0.066 0.937± 0.032 0.969± 0.019

Random-OMP 0.689± 0.077 0.784± 0.060 0.835± 0.036 0.908± 0.034

Eigen-OMP 0.449± 0.131 0.449± 0.112 0.606± 0.068 0.671± 0.040

Hash-`1 0.727± 0.064 0.915± 0.037 0.961± 0.029 0.985± 0.013

Random-`1 0.855± 0.047 0.915± 0.042 0.929± 0.028 0.958± 0.016

Eigen-`1 0.705± 0.094 0.751± 0.061 0.758± 0.035 0.806± 0.050

Eigen-KNN 0.500± 0.102 0.537± 0.101 0.555± 0.097 0.558± 0.096

Fisher-KNN 0.740± 0.045 0.920± 0.026 0.977± 0.011 0.981± 0.011

Eigen-SVM 0.903± 0.048 0.959± 0.021 0.976± 0.017 0.979± 0.011

Fisher-SVM 0.896± 0.043 0.953± 0.020 0.979± 0.013 0.980± 0.012

YaleB

Hash-OMP 0.806± 0.057 0.856± 0.050 0.939± 0.022 0.964± 0.016

Random-OMP 0.821± 0.059 0.908± 0.039 0.945± 0.033 0.944± 0.029

Eigen-OMP 0.289± 0.075 0.669± 0.078 0.882± 0.053 0.911± 0.048

Hash-`1 0.899± 0.030 0.951± 0.021 0.977± 0.017 0.982± 0.013

Random-`1 0.928± 0.036 0.966± 0.018 0.980± 0.017 0.979± 0.016

Eigen-`1 0.822± 0.072 0.911± 0.049 0.936± 0.037 0.945± 0.036

Eigen-KNN 0.589± 0.101 0.662± 0.109 0.702± 0.100 0.714± 0.096

Fisher-KNN 0.891± 0.050 0.920± 0.038 0.948± 0.029 0.954± 0.030

Eigen-SVM 0.890± 0.063 0.919± 0.041 0.940± 0.036 0.953± 0.029

Fisher-SVM 0.880± 0.068 0.913± 0.040 0.939± 0.035 0.948± 0.031

Table 3.1: Comparison on accuracy for Hashing-OMP, Random-`1 and Eigen-`1

(using Eigenface). On both datasets, Hashing-`1 achieves the best classification

accuracy for Dim = 300. When the dimensionality is low, sparse representation

based algorithms do not perform as well as SVM.

3.4. EXPERIMENTS 47

Dim-50 Dim-100 Dim-200 Dim-300

AR

Hash-OMP 11.55± 0.22 24.8± 0.17 78.25± 0.41 101.15± 1.34

Random-OMP 12.05± 0.23 80.25± 0.93 812.55± 0.74 1323.45± 2.00

Eigen-OMP 12.45± 0.24 77.25± 0.32 299.55± 1.54 422.1± 2.03

Hash-`1 714.55± 2.96 1740.5± 12.69 6125.85± 99.22 15718.9± 290.25

Random-`1 814.35± 5.44 2276.95± 10.28 11266± 73.18 31731± 292.63

Eigen-`1 751.95± 7.10 2637.9± 37.68 8758.3± 132.26 19632.9± 477.55

YaleB

Hash-OMP 10.05± 0.02 67.4± 0.80 61.45± 0.34 138.05± 0.24

Random-OMP 10.75± 0.18 74.3± 0.11 944.25± 0.53 2944.45± 2.90

Eigen-OMP 10.8± 0.19 75± 0.30 190.65± 0.49 291.35± 0.78

Hash-`1 724.45± 2.53 1713.3± 14.69 5191.9± 120.27 9536.8± 311.48

Random-`1 823.25± 5.63 2401± 19.56 8655.6± 71.23 21887.8± 164.97

Eigen-`1 742.55± 5.42 2006.6± 38.53 4621.65± 143.30 8444.65± 273.76

Table 3.2: Comparison on the running time(ms) for Hashing-OMP, Random-`1

and Eigen-`1. Hashing-OMP is faster than other methods.

Runtime(ms)

Hash-OMP 10.05± 0.020 46.65± 2.394 85.4± 3.891 340.95± 4.080

Random-`1 N/A 58.35± 1.152 97.15± 7.926 329.4± 2.480

Accuracy

Hash-OMP 0.658± 0.063 0.687± 0.060 0.835± 0.037 0.998± 0.034

Random-`1 N/A 0.0571± 0.010 0.2± 0.047 0.653± 0.068

Dimension

Hash-OMP 50 85 180 1000

Random-`1 N/A 5 10 25

Table 3.3: Comparison on accuracies given running time constraints for Hashing-

OMP and Random-`1 on AR. “Dimension” shows the dimensionality under which

the two approaches could achieve similar running speed. “Running time” shows

the real running times that should be similar to each other for a certain running

speed. N/A means that it was impossible to achieve that speed.

curve for hashing-OMP is almost flat.

3.4.2 Predicting via α

Algorithm 1 uses the residuals to predict the label. Alternatively we can learn

a classifier on the sparse α directly. To investigate this, we estimated α via

Algorithm 1 (i.e., `1 minimisation) on the test set and the validation set of the

AR dataset. Then we split the union of the two sets into 10 folds. We ran 10 fold

cross-validation (8 for training, 1 for testing, and 1 for validation) with SVM.

We used both the original α and the normalised one denoted as α[0,1], which

48 CHAPTER 3. EFFICIENT FACE RECOGNITION VIA HASHING

(a)

0.56246 0.26967 0.054939 0.025325 0.024567

0.023567 0.022669 0.020438 0.019944 0.018474

(b)

0.54452 0.18816 0.088323 0.063312 0.051093

0.048531 0.010421 0.00061722 1.6239e−06 1.0512e−07

(c)

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d)

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(e)

Figure 3.3: The comparison of the recognition procedure of Hashing -`1 and

Random-`1 on YaleB. (a) is the test face; (b) and (c) are the top 10 weighted

training faces for random-`1 and hashing-`1 respectively. The absolute value of

the weights are shown in red (view in color); (d) and (e) are the bar charts

corresponding to the absolute value of top 100 largest weighted entries in the

weight α for random-`1 and hashing-`1 respectively.

is normalised to [0, 1]. Because α has both positive and negative entries, the

normalisation step introduces many nonzero entries to α[0,1]. As we can see in

Table 3.4 and Table 3.1, when Dim = 50, SVM on α or α[0,1] gets better results

than hashing-OMP and hashing-`1. When Dim ≥ 100 hashing-OMP and `1 beat

SVM. The experiment suggests that when the feature dimensionality is low (e.g.

≤ 50), predicting via α is a good idea; when the feature dimensionality is high,

predicting via residuals is better.

3.5 Conclusion

We have proposed a new face recognition methodology with hashing, which speeds

up the state-of-the-art in Wright et al. (2008) by up to 150 times, with comparable

recognition rates. Both theoretical analysis and experiments justify the excellence

3.5. CONCLUSION 49

0 100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5

2

2.5

3
x 10

4

Randomface+L1
Hashface+OMP

Figure 3.4: The running time curves of Hashing-OMP and Random-`1 on AR.

The horizontal axis represents the dimensionality and the vertical axis is the

running time in ms.

Dim 50 Dim 100 Dim 200 Dim 300

Accuracy on α 0.865 ± 0.006 0.876 ±0.010 0.875 ± 0.007 0.835 ± 0.009

Accuracy on α[0,1] 0.853 ± 0.006 0.877 ± 0,011 0.878± 0.007 0.849 ± 0.010

Table 3.4: Test accuracy via predicting on α on AR dataset with 10 fold cross-

validation.

of the proposed method.

As hashing can deal with data with structures in the input such as graphs

and face images, the next part of the thesis moves on to an even more challenging

task — dealing with data with structures in the output.

50 CHAPTER 3. EFFICIENT FACE RECOGNITION VIA HASHING

Part III

Structured Learning in Practice

51

Chapter 4

Structured Learning Background

In this chapter, we will explain the background of structured learning including

some basic notions and some popular existing methods. And the methods here

are not our contributions.

4.1 Structured Label

Previous chapters assume that (x, y) are I.I.D. However, in many cases, (x, y)

are no longer I.I.D. Structured labels are used to deal with these cases. One

often models those correlated ys in a structured output y with the assumption

that (x,y) are I.I.D. drawn from P(x,y). Here the output y can be any object

associated with x. For example, for automated paragraph breaking problem, the

input x is a document, and the output y is a sequence whose the entries denote

the beginning positions of the paragraphs. For image segmentation, the input x

is an n by m image, and the output y is a 2-D lattice {yi,j}1≤i≤n;1≤j≤m, where

yi,j denotes class id of the pixel xi,j. The learning is called “structured learning”

when some interdependency structure between different parts of the output is

exploited. In this case, the output y is no longer a scalar.

The dependencies within y are often modelled as directed graphs, undirected

graphs and factor graphs. In this thesis, we mainly focus on undirected graphi-

cal models for their rich representations of potentials and features — potentials

do not need to be normalised locally. And we categorise the most popular struc-

tured learning algorithms into two categories — probabilistic approaches and Max

Margin approaches. The probabilistic approaches estimate the underlying data

distribution, hence require an expensive normalisation step or computing an ex-

pectation of features. And the Max Margin approaches estimate a discriminative

53

54 CHAPTER 4. STRUCTURED LEARNING BACKGROUND

function directly, often requiring only an argmax operation which is commonly

done via dynamic programming. The two types of approach have their own ad-

vantages and disadvantages which we will discuss for each algorithm. It will be

seen that many algorithms from both categories can be viewed in a unified frame-

work, Empirical Risk Minimisation (ERM) (Guyon et al., 1992; Shawe-Taylor

et al., 1996).

4.2 Empirical Risk Minimisation

Many machine learning algorithms are essentially minimising a regularised em-

pirical risk functional. That is, one would like to solve

min
w

J(w) := λΩ(w) +Remp(w),

where Remp(w) :=
1

m

m∑
i=1

l(xi,yi,w)

is the empirical risk and (x1,y1), . . . , (xm,ym) ∈ X×Y is the training sample

of input-output pairs and w is a parameter vector. The model complexity is

controlled by regulariser λΩ(w) (with λ > 0), which usually is (piecewise) differ-

entiable and cheap to compute. For instance, let the regulariser Ω(w) = 1
2
||w ||2,

and the loss `(xi, yi,w) be the binary hinge loss, [1− y 〈w,xi〉]+, we recover the

soft margin linear SVM.

Solving the ERM problem, we learn a discriminant function F ∈ F : X → Y

over input-output pairs from which we can derive a prediction by maximising F

over the response variable y for a given input x. That is,

H(x; w) = argmax
y∈Y

F (x,y; w).

Throughout the thesis, we assume the problem we are dealing with has structured

output y ∈ Y, of which the binary class and multiclass are just special cases.

4.3 Probabilistic Approaches

Among probabilistic approaches, two principles are most commonly used — Max-

imum a Posteriori (MAP) principle and Maximum Entropy (ME) principles. As

we shall see, many probabilistic approaches adopt one of the two principles with

some additional assumptions and constraints.

4.3. PROBABILISTIC APPROACHES 55

4.3.1 Maximum a Posteriori and Maximum Entropy Prin-

ciples

Maximum a Posteriori A likelihood function L(w) is the modelled probabil-

ity or density for the occurrence of a sample configuration (x1,y1), . . . , (xm,ym)

given the probability density Pw parameterised by w. That is,

L(w) = Pw

(
(x1,y1), . . . , (xm,ym)

)
.

Maximum a Posteriori (MAP) estimates w by maximising L(w) times a prior

P (w). That is,

w∗ = argmax
w

L(w)P (w). (4.1)

Assuming {(xi,yi)}1≤i≤m are I.I.D. samples from Pw(x,y), (4.1) becomes

w∗ = argmax
w

∏
1≤i≤m

Pw(xi,yi)P (w)

= argmin
w

∑
1≤i≤m

− ln Pw(xi,yi)− lnP (w).

Maximum Likelihood (ML) is a special case of MAP when P (w) is uniform. Al-

ternatively, one can replace the joint distribution Pw(x,y) by the conditional

distribution Pw(y |x) that gives a discriminative model called Conditional Ran-

dom Fields (CRFs) which will be introduced in Section 4.3.3.

Maximum Entropy ME estimates w by maximising the entropy. That is,

w∗ = argmax
w

∑
x∈X,y∈Y

−Pw(x,y) ln Pw(x,y).

It is well-known that the dual of maximum likelihood is maximum entropy (Altun

and Smola, 2006), subject to moment matching constraints on the expectations of

features taken with respect to the distribution. An example is Maximum Entropy

Discrimination Markov Networks (Zhu and Xing, 2009), which belongs to both

categories. We will introduce it in Section 4.4.3 after introducing the margin

concept.

4.3.2 Generative Markov Models

Generative markov models are usually modelled as directed graphs, thought they

can also be modelled as undirected graphs such as Markov Random Fields. The

56 CHAPTER 4. STRUCTURED LEARNING BACKGROUND

arrow of an edge points from a parent node to its child node. The joint prob-

ability (or density) of a graph with children nodes xC and parent nodes xP is

then decomposed to Pw(xC |xP)Pw(xP). The model is estimated via maximising

the joint likelihood given observations. The advantage of this method is that

the overall probability is always a valid probability since local ones are readily

normalised. Incorporating new nodes or variables into existing models can be

easily done by simply multiplying the probability of the new variables, for the

product of the probabilities is always a valid joint probability as well. Also, for

a learnt model, the probability for any subset of variables is readily computed

which gives nice interpretation on the importance of each variable. However, the

normalised potentials in each node raise a bias problem observed in Lafferty et al.

(2001). Furthermore, the potentials and features (which are crucial in structured

estimation) are not as rich as those in the undirected graphical models.

4.3.3 Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et al., 2001) assume the conditional

distribution over Y |X has a form of exponential families, i.e.,

P(y |x; w) =
exp(〈w,Φ(x,y)〉)

Z(w |x)
,

where

Z(w |x) =
∑
y′∈Y

exp(〈w,Φ(x,y′)〉), (4.2)

and

Φ(x,y) =
∑
i∈V

Φ1(x,y(i)) +
∑

(ij)∈E

Φ2(x,y(ij)). (4.3)

via the Hammersley – Clifford theorem if only node and edge features are con-

sidered. More generally speaking, the global feature can be decomposed into

local features on cliques (fully connected subgraphs). Denote (x1, . . . ,xm) as X,

(y1, . . . ,ym) as Y. The classical approach is to maximise the conditional likeli-

hood of Y on X, incorporating a prior on the parameters. This is a Maximum a

Posteriori (MAP) estimator, which consists of maximising

P(w |X,Y) ∝ P (w) P(Y |X; w).

4.3. PROBABILISTIC APPROACHES 57

From the i.i.d. assumption we have

P(Y |X; w) =
m∏
i=1

P(yi |xi; w),

and we impose a Gaussian prior on w

P (w) ∝ exp

(
−||w ||2

2σ2

)
.

Risk Maximising the posterior distribution can also be seen as minimising the

negative log-posterior, which becomes our risk function `(w |X,Y)

`(w |X,Y) = − ln(P (w) P(Y |X; w)) + c

=
||w ||2

2σ2
−

m∑
i=1

(〈Φ(xi,yi),w〉)− ln(Z(w |xi))︸ ︷︷ ︸
:=`

L

+c,

where c is a constant and `
L

denotes the negative log-likelihood. Now learning is

equivalent to

w∗ = argmin
w

`(w |X,Y).

Gradient Above is a convex optimisation problem on w since lnZ(w |x) is

a convex function of w (Wainwright and Jordan, 2003). The solution can be

obtained by gradient descent since lnZ(w |x) is also differentiable. We have

∇w`L(w |X,Y) = −
m∑
i=1

(Φ(xi,yi)−∇w ln(Z(w |xi)).

It follows from direct computation that

∇w lnZ(w |x) = Ey∼P(y |x;w)[Φ(x,y)],

Since our sufficient statistics Φ(x,y) are decomposed over nodes and edges (eq. 4.3),

it is straightforward to show that the expectation also decomposes into expecta-

tions on nodes V and edges E

Ey∼P(y |x;w)[Φ(x,y)] =∑
i∈V

Ey(i)∼P(y(i) |x;w)[Φ1(x,y(i))] +
∑

(ij)∈E

Ey(ij)∼P(y(ij) |x;w)[Φ2(x,y(ij))],

where the node and edge expectations can be computed either exactly by variable

elimination or approximately using for example loopy belief propagation. This

is the main computational problem with MAP estimation, which in Galleguillos

et al. (2008) is circumvented through sampling.

58 CHAPTER 4. STRUCTURED LEARNING BACKGROUND

4.4 Max Margin Approaches

4.4.1 Structured Support Vector Machines

Tsochantaridis et al. (2004, 2005) provide a general framework for structured

output using maximum margin. They look for a hyperplane that separates the

correct labelling yi of each observation xi in the training set from all the incorrect

labellings Y−yi with some margin that depends on the label cost ∆ additively∗.

In order to allow some outliers, they use slack variables ξi and maximise the

minimum margin, F (xi,yi) − maxy∈Y−yi
F (xi,y), across training instances i.

Equivalently,

min
w,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi s.t. (4.4a)

∀i,y 〈w,Φ(xi,yi)− Φ(xi,y)〉 ≥ ∆(yi,y)− ξi. (4.4b)

To solve this optimisation problem efficiently, one can investigate its dual

given by†

min
α

1

2

∑
i,j,y,y′

αiyαj y′ 〈Φ(xi,y),Φ(xj,y
′)〉 (4.5)

−
∑
i,y

∆(yi,y)αiy

∀i,y
∑
y

αiy ≤ C, αiy ≥ 0.

Here, there exists one parameter αiy for each training instance xi and its possible

labelling y ∈ Y. Solving this optimisation problem presents a formidable chal-

lenge since Y generally scales exponentially with the number of variables within

each variable y. This essentially makes it impossible to find an optimal solu-

tion via enumeration. Instead, one may use a column generation algorithm (see

Tsochantaridis et al., 2005) to find an approximate solution in polynomial time.

The key idea is to find the most violated constraints (4.4b) for the current set of

parameters and satisfy them up to some precision. In order to do this, one needs

∗There is an alternative formulation that is multiplicative in ∆. For details see Tsochan-

taridis et al. (2005).
†Note that one can express the optimisation and estimation problem in terms of kernels

k((x,y), (x′,y′)) := 〈Φ(x,y),Φ(x′,y′)〉. We refer the reader to Tsochantaridis et al. (2005) for

details

4.4. MAX MARGIN APPROACHES 59

Algorithm 3 Max-Margin Training Algorithm

Input: data xi, labels yi, sample size m, tolerance ε

Initialise Si = ∅ for all i, and w = 0.

repeat

for i = 1 to m do

w =
∑

i

∑
y∈Si

αiyΦ(xi,y)

y = argmaxy∈Y 〈w,Φ(xi,y)〉+ ∆(yi,y)

ξ = [maxy∈Si
〈w,Φ(xi,y)〉]+ + ∆(yi,y))

if 〈w,Φ(xi,y)〉+ ∆(yi,y) > ξ + ε then

Increase constraint set Si ← Si ∪ y

Optimise (4.5) wrt αiy, ∀y ∈ Si.
end if

end for

until S has not changed in this iteration

to find

yi = argmax
y∈Y

∆(yi,y) + 〈w,Φ(xi,y)〉 , (4.6)

which can usually be done via dynamic programming due to the decomposition

of ∆ and Φ such as in (4.3). For the training procedure see Algorithm 3.

4.4.2 Max Margin Markov Network

Max Margin Markov Network (M3N) (Taskar et al., 2004) essentially shares the

same primal (4.4) and dual (4.5) with structured SVMs except using Linear Pro-

gramming (LP) for inference to find the most-violated yi in (4.6). The dual

formula in (4.5) can be transformed into (see Taskar, 2004, Chapter 5)

max
α
− 1

2
‖
∑
i,y

αiy[Φ(xi,yi)− Φ(xi,y)]‖2 +
∑
i,y

∆(yi,y)αiy

∀i,y
∑
y

αiy = C, αiy ≥ 0.

Taskar et al. (2004) discover that the dual variable
αiy

C
can be viewed as a distri-

bution over y given x. Thus the dual object becomes

max
α
− 1

2
‖
∑
i

Ey∼αiy
[Φ(xi,yi)− Φ(xi,y)]‖2 +

∑
i

Ey∼αiy
∆(yi,y) (4.7)

∀i,y
∑
y

αiy
C

= 1, αiy ≥ 0.

60 CHAPTER 4. STRUCTURED LEARNING BACKGROUND

Denote y ∼ y(a) as the value of the component y(a) is consistent with that in y.

Decomposing global features into local node and edge features as (4.3), we get

Ey∼αiy
Φ(xi,y)

=
∑
y

αiyΦ(xi,y)

=
∑
y

αiy
∑
a∈V

Φ1(xi,y
(a)) +

∑
(ab)∈E

Φ2(xi,y
(ab))

=
∑
a∈V

∑
y:y∼y(a)

αiy(y)Φ1(xi,y
(a))

+
∑

(ab)∈E

∑
y:y∼y(ab)

αiy(y)Φ2(xi,y
(ab))

=
∑
a∈V

∑
y(a)

µxi
(y(a))Φ1(xi,y

(a))

+
∑

(ab)∈E

∑
y(ab)

µxi
(y(ab))Φ2(xi,y

(ab)),

where marginals

µxi
(y(a)) =

∑
y:y∼y(a)

αiy(y)

µxi
(y(ab)) =

∑
y:y∼y(ab)

αiy(y).

Similarly if ∆(yi,y) =
∑

a∈V ∆(yi,y
(a)), then

Ey∼αiy
∆(yi,y) =

∑
a∈V

µxi
(y(a))∆(yi,y

(a)).

Thus we only need to know the marginals µxi
(y(a)), µxi

(y(ab)) over nodes and

edges to compute the dual in (4.7) instead of the entire joint distribution αiy. To

ensure the marginals resulting from a valid distribution αiy(y), one must ensure

following consistency constraint∑
y(b)

µxi
(y(ab)) = µxi

(y(a)), ∀(a, b) ∼ E,∀i.

For graphical models with higher order features, higher order consistency are

required.

The inference can also be done by marginals of Pw(y |x) over nodes and edges

(see Sontag et al., 2008). Again consistency constraints are needed. This way

4.5. CONCLUSION 61

of marginalization was originally proposed for CRFs; however, it is applicable to

M3N as well. The objectives in both CRFs and M3N become a LP problem.

The major drawback for M3N or more generally any LP based approach,

is that existing LP solvers (even commercial ones) can not handle millions of

variables.

4.4.3 Maximum Entropy Discrimination Markov Networks

Jaakkola et al. (2000) propose a Maximum Entropy Discrimination (MED) scheme

that maximises the entropy — or minimises the KL divergence KL(Q(w)||P (w)) =∫
ln Q(w)

P (w)
dQ(w) between the posterior Q and the prior P — with a constraint that

the expected margin with respect to the posterior Q(w) over model parameter

w is not less than certain threshold (that is a weighted max margin constraint

or weighted hinge loss via the posterior) for binary classification. Zhu and Xing

(2009) later extend it to the structured case, called Maximum Entropy Discrim-

ination Markov Networks (MEDN) as follows:

min
w,ξ

KL(Q(w)||P (w)) + C
m∑
i=1

ξi s.t.

∀i,y
∫ [
〈w,Φ(xi,yi)− Φ(xi,y)〉 −∆(yi,y)

]
dQ(w) ≥ −ξi.

Again y can be replaced by the most-violated yi. Apparently letting y be scalar

y, MEDN recovers MED. Zhu and Xing (2009) show that letting P (w) be a zero

mean, identity variance gaussian over w, MEDN recovers M3N.

4.5 Conclusion

Here we have categorised the most popular structured learning algorithms into

probabilistic approaches and Max Margin approaches. Two types of approaches

have their own advantages and disadvantages as we discussed. In fact, many

algorithms from both categories can be viewed in a unified framework, Empirical

Risk Minimisation.

62 CHAPTER 4. STRUCTURED LEARNING BACKGROUND

Chapter 5

Automatic Paragraph

Segmentation

Automatic paragraph segmentation (APS) is closely related to some well known

problems such as text segmentation, discourse parsing, topic shift detection and

is relevant for various important applications in speech-to-text and text-to-text

tasks.

In speech-to-text applications, the output of a speech recognition system,

such as the output of systems creating memos and documents for the Parliament

House, is usually raw text without any punctuation or paragraph breaks. Clearly,

such text requires paragraph segmentations. In text-to-text processing, such as

summarisation, the output text does not necessarily retain the correct paragraph

structure and may require post-processing. There is psycholinguistic evidence as

cited by Sporleder and Lapata (2006) showing that insertion of paragraph breaks

improves readability. Moreover, it has been shown that different languages may

have cross-linguistic variations in paragraph boundary placement (Zhu, 1999),

which indicates that machine translation can also benefit from APS. APS can

also recover the paragraph breaks that are often lost in OCR applications.

There has been growing interest within the NLP community for APS in re-

cent years. Previous methods such as Sporleder and Lapata (2006); Genzel (2005)

treat the problem as a binary classification task, where each sentence is labeled

as the beginning of a paragraph or not. They focus on the use of features of the

sentence itself, such as surface features, language modelling features and syntactic

features. The effectiveness of features is investigated across languages and/or do-

mains. However, these approaches ignore the inherent sequential nature of APS.

Clearly, consecutive sentences within the same paragraph depend on each other.

63

64 CHAPTER 5. AUTOMATIC PARAGRAPH SEGMENTATION

Figure 5.1: Top: sequence (horizontal line) with segment boundaries (vertical

lines). This corresponds to a model where we estimate each segment bound-

ary independently of all other boundaries. Middle: simple semi-Markov struc-

ture. The position of the segment boundaries only depends on the position of

its neighbours, as denoted by the (red) dash arcs. Bottom: a more sophisti-

cated semi-Markov structure, where each boundary depends on the position of

two of its neighbours. This may occur, e.g., when the decision of where to place

a boundary depends on the content of two adjacent segments. The longer range

interaction is represented by the additional (blue) arcs.

Moreover, paragraphs should exhibit certain properties such as coherence, which

should be explored within an APS system. One cannot incorporate such proper-

ties/features when APS is treated as a binary classification problem. To overcome

this limitation, we cast APS as a sequence prediction problem, where the perfor-

mance can be significantly improved by optimising the choice of labelling over a

whole sequence of sentences, rather than individual sentences.

Sequence prediction is one of the most prominent examples of structured pre-

diction. This problem is generally formalised such that there exists one variable

for each observation in the sequence and the variables form a Markov chain such

as a Hidden Markov Model (HMM). Segmentation of a sequence has been stud-

ied as a class of sequence prediction problems with common applications such

as protein secondary structure prediction, Named Entity Recognition and seg-

mentation of FAQ’s. The exceptions to this approach are Sarawagi and Cohen

(2004); Raetsch and Sonnenburg (2006), which show that Semi-Markov models

(SMMs) (Janssen and Limnios, 1999), which are a variation of Markov models,

are a natural formulation for sequence segmentation. The advantage of these

5.1. MODELLING SEQUENCE SEGMENTATION 65

models, depicted in Figure 5.1, is their ability to encode features that capture

properties of a segment as a whole, which is not possible in an HMM model. In

particular, these features can encode similarities between two sequence segments

of arbitrary lengths, which can be very useful in tasks such as APS.

In this chapter, we present a Semi-Markov model for APS and propose a

max-margin training procedure on these methods. This training method is a

generalisation of the Max-Margin methods for Hidden Markov Models (HMMs)

(Altun et al., 2003) to SMMs. It follows the recent literature on discriminative

learning of structured prediction (Lafferty et al., 2001; Collins, 2002; Taskar et al.,

2004). Our method inherits the advantages of discriminative techniques, namely

the ability to encode arbitrary (overlapping) features and not making implausible

conditional independence assumptions. It also has advantages of SMM models,

namely the ability to encode features at segment level. We present a linear time

inference algorithm for SMMs and outline the learning method. Experimental

evaluation on datasets used previously on this task (Sporleder and Lapata, 2006)

shows improvement over the state-of-the art methods on APS.

5.1 Modelling Sequence Segmentation

In sequence segmentation, our goal is to solve the estimation problem of finding

a segmentation y ∈ Y, given an observation sequence x ∈ X. For example,

in APS x can be a book which is a sequence of sentences. In a Semi-Markov

model, there exists one variable for each subsequence of observations (i. e. multiple

observations) and these variables form a Markov chain. This is opposed to an

HMM where there exists one variable for each observation. More formally, in

SMMs, y ∈ Y is a sequence of segment labellings si = (bi, li) where bi is a non-

negative integer denoting the beginning of the ith segment which ends at position

bi+1−1 and whose label is given by li (Sarawagi and Cohen, 2004). Since in APS

the label of the segments is irrelevant, we represent each segment simply by the

beginning position y := {bi}L−1
i=0 with the convention that b0 = 0 and bL = N

where N is the number of observations in x. Here, L denotes the number of

segments in y. So the first segment is [0, b1), and the last segment is [bL−1, N),

where [a, b) denotes all the sentences from a to b including a but excluding b.

We cast this estimation problem as finding a discriminant function F (x,y)

such that for an observation sequence x we assign the segmentation that receives

66 CHAPTER 5. AUTOMATIC PARAGRAPH SEGMENTATION

the best score with respect to F ,

y∗(x) := argmax
y∈Y

F (x,y). (5.1)

As in many learning methods, we consider functions that are linear in some

feature representation Φ,

F (x,y; w) = 〈w,Φ(x,y)〉. (5.2)

Here, Φ(x,y) is a feature map defined over the joint input/output space as de-

tailed in Section 5.3.

5.1.1 Max-Margin Training

We now present a maximum margin training procedure for predicting structured

output variables, of which sequence segmentation is an instance. One of the

advantages of this method is its ability to incorporate the cost function that the

classifier is evaluated with. Let ∆(y, ȳ) be the cost of predicting ȳ instead of

y. For instance, ∆ is usually the 0-1 loss for binary and multiclass classification.

However, in segmentation, this may be a more sophisticated function such as

the symmetric difference of y and ȳ as discussed in Section 5.2. Then, one can

argue that optimising a loss function that incorporates this cost can lead to better

generalisation properties∗.

We follow the general framework of Tsochantaridis et al. (2004) and look

for a hyperplane that separates the correct labelling yi of each observation se-

quence xi in our training set from all the incorrect labellings Y−yi with some

margin that depends additively on ∆ as in (4.4)†. In order to allow for some

outliers, we use slack variables ξi and maximise the minimum margin, F (xi,yi)−
maxy∈Y−yi

F (xi,y), across training instances i. For the dual form see (4.5). In

order to find the most violated constraint in (4.4b), we propose an extension of

the Viterbi algorithm in Section 5.4 for Semi Markov models.

To adapt the Structured SVMs framework to the segmentation setting, we

need to address three issues: a) we need to specify a loss function ∆ for segmen-

tation, b) we need a suitable feature map Φ as defined in Section 5.3, and c) we

need to find an algorithm to solve (4.6) efficiently. The max-margin training of

SMMs was also presented in Raetsch and Sonnenburg (2006)

∗For a theoretical analysis of this approach see Tsochantaridis et al. (2004).
†There is an alternative formulation that is multiplicative in ∆. We prefer 4.4 due to

computational issues.

5.2. COST FUNCTION 67

5.2 Cost Function

To measure the discrepancy between y and some alternative sequence segmen-

tation y′, we simply count the number of segment boundaries that have a) been

missed and b) been wrongly added. Note that this definition allows for errors

exceeding 100% - for instance, if we were to place considerably more boundaries

than can actually be found in a sequence.

The number of errors is given by the symmetric difference between y and y′,

when segmentations are viewed as sets. This can be written as

∆(y,y′) = |y |+ |y′ | − 2|y∩y′ |

= |y |+
l′∑
i=1

[1− 2 {b′i ∈ y}] . (5.3)

Here | · | denotes the cardinality of the set. (5.3) plays a vital role in solving

(4.6), since it allows us to decompose the loss in y′ into a constant and functions

depending on the segment boundaries b′i only. Note that in the case where we

want to segment and label, we simply would need to check that the positions are

accurate and that the labels of the segments match.

5.3 Feature Representation

SMMs can extract three kinds of features from the input/output pairs: a) node

features, i. e. features that encode interactions between attributes of the ob-

servation sequence and the (label of a) segment (rather than the label of each

observation as in HMMs), b) features that encode interactions between neigh-

bouring labels along the sequence and c) edge features, i.e., features that encode

properties of segments. The first two types of features are commonly used in

other sequence models, such as HMMs and CRFs. The third feature type is spe-

cific to Semi-Markov models. In particular, these features can encode properties

of a whole segment or similarities between two sequence segments of arbitrary

lengths. The cost of this expressibility is simply a constant factor of the complex-

ity of Markov models, if the maximum length of a segment is bounded. These

types of features are particularly useful in the face of sparse data.

As in HMMs, we assume stationarity in our model and sum over the features

of each segment to get Φ(x,y). Then, Φ corresponding to models of the middle

68 CHAPTER 5. AUTOMATIC PARAGRAPH SEGMENTATION

structure given in Figure 5.1 are given by

Φ(x, ȳ) := (Φ0,
l̄−1∑
i=1

Φ1(n̄i,x),
l̄∑

i=1

Φ2(b̄i−1, b̄i,x)).

We let Φ0 = l̄ − 1, the number of segments. The node features Φ1 capture the

dependency of the current segment boundary to the observations, whereas the

edge features Φ2 represent the dependency of the current segment to the observa-

tions. To model the bottom structure in Figure 5.1, one can design features that

represent the dependency of the current segment to its adjacent segments as well

as the observations, Φ3(x, bi−2, bi−1, bi). The specific choices of the feature map

Φ are presented in Section 5.5.

5.4 Column Generation on SMMs

Tractability of Algorithm 3 depends on the existence of an efficient algorithm

that finds the most violated constraint (4.4b) via (4.6). Both the cost function of

Section 5.2 and the feature representation of Section 5.3 are defined over a short

sequence of segment boundaries. Therefore, using the Markovian property, one

can perform the above maximisation step efficiently via a dynamic programming

algorithm. This is a simple extension of the Viterbi algorithm. The inference

given by (5.1) can be performed using the same algorithm, setting ∆ to a constant

function.

We first state the dynamic programming recursion for F + ∆ in its generality.

We then give the pseudocode for Φ3 = ∅.
Denote by T (t−, t+;x) the largest value of ∆(y, p) + F (x, p) for any partial

segmentation p that starts at position 0 and which ends with the segment [t−, t+).

Moreover, let M be a upper bound on the length of a segment. The recursive

step of the dynamic program is given by

T (t−, t+; x) = max
max(0,t−−M)≤k<t−

T (k, t−; x) + g(k, t−, t+)

where we defined the increment g(k, t−, t+) as

〈Φ0(x),Φ1(x, t+),Φ2(x, t−, t+),Φ3(x, k, t−, t+),w〉+ 1− 2 {(t−, t+) ∈ y}

where by convention T (i, i′) = −∞ if i < 0 for all labels. Since T needs to be

computed for all values of t+−M ≤ t− < t+, we need to computeO(|x |M) values,

each of which requires an optimisation over M possible values. That is, storage

5.5. LOCAL FEATURES 69

Algorithm 4 Column Generation

Input: sequence x, segmentation y, max-length of a segment M

Output: score s, segment boundaries y′

Initialise vectors T ∈ Rm and R ∈ Ym to 0

for i = 1 to l do

Ri = argmax
max(0,i−M)≤j<i

Tj + g(j, i)

Ti = TRi
+ g(Ri, i)

end for

s = Tm + |y |
y′ = {m}
repeat

i = y′first

y′ ← {Ri,y
′}

until i = 0

requirements are O(|x |M), whereas the computation scales with O(|x |M2). If

we have a good bound on the maximal sequence length, this can be dealt with

efficiently. Finally, the recursion is set up by T (0, 0,x) = |y |.
See Algorithm 4 for a pseudocode, when Φ3 = ∅. The segmentation corre-

sponding to (4.6) is found by constructing the path traversed by the argument of

the max operation generating T .

5.5 Local Features

We now specify the features described in Section 5.3 for APS. Note that the

second type of features do not exist for APS since we ignore the labellings of

segments.

Node Features Φ1

Node features Φ1(bj,x) represent the information of the current segment bound-

ary and some attributes of the observations around it (which we define as the

current, preceding and successive sentences). These are sentence level features,

which we adapt from Genzel (2005) and Sporleder and Lapata (2006)‡. For the

bjth sentence, x(bj), we use the following features

‡Due to space limitations, we omit the motivations for these features and refer the reader

to the literature cited above.

70 CHAPTER 5. AUTOMATIC PARAGRAPH SEGMENTATION

• Length of x(bj).

• Relative Position of x(bj).

• Final punctuation of x(bj).

• Number of capitalised words in x(bj).

• Word Overlap of x(bj) with the next one

Wover(x(bj),x(bj + 1)) =

2 | x(bj) ∩ x(bj + 1) |
| x(bj) | + | x(bj + 1) |

.

• First word of x(bj).

• Bag Of Words (BOW) features: Let the bag of words of a set of sentences

S be

B(S) = (c0, c1, ..., ci, ..., cN−1),

where N is the size of the dictionary and ci is the frequency of word i in S.

– BOW of x(bj), B({x(bj)})

– BOW of x(bj) and the previous sentence B({x(bj − 1),x(bj)})

– BOW of x(bj) and the succeeding sentence B({x(bj),x(bj + 1)})

– The inner product of the two items above

• Cosine Similarity of x(bj) and the previous sentence

CS(x(bj − 1),x(bj))

=
〈B(x(bj − 1)), B(x(bj))〉

| B(x(bj − 1)) | × | B(x(bj)) |

• Shannon’s Entropy of x(bj) computed by using a language model as de-

scribed in Genzel and Charniak (2003).

• Quotes(Qp, Qc, Qi). Qp and Qc are the number of pairs of quotes in the

previous(Nump) and current sentence (Numc), Qp = 0.5 × Nump and

Qc = 0.5×Numc.

5.5. LOCAL FEATURES 71

5.5.1 Edge Features Φ2

Below is the set of features Φ2(bj, bj+1,x) encoding information about the current

segment. These features represent the power of the Semi-Markov models. Note

that Φ3 features also belong to edge features category. In this chapter, we did

not use Φ3 feature due to computational issues.

• Length of The Paragraph: This feature expresses the assumption that one

would want to have a balance across the lengths of the paragraphs assigned

to a text. Very long and very short paragraphs should be uncommon.

• Cosine Similarity of the current paragraph and neighbouring sentences:

Ideally, one would like to measure the similarity of two consecutive para-

graphs and search for a segmentation that assigns low similarity scores (in

order to facilitate changes in the content). This can be encoded using

Φ3(x, bj−1, bj, bj+1) features. When such features are computationally ex-

pensive, one can measure the similarity of the current paragraph with the

preceding sentence as

CS(P,x(bj − 1))

=
〈BOW (P), BOW (x(bj − 1))〉

| BOW (P) | × | BOW (x(bj − 1)) |

where P is the set of sentences in the current paragraph, [bj, bj+1). A similar

feature is used for CS(P,x(bj+1)).

• Shannon’s Entropy of the Paragraph: The motivation for including features

encoding the entropy of the sentences is the observation that the entropies

of a paragraph’s initial sentences are lower than the others (Genzel and

Charniak, 2003). The motivation for including features encoding the en-

tropy of the paragraphs, on the other hand, is that the entropy rate should

remain more or less constant across paragraphs, especially for long texts

like books. We ignore the sentence boundaries and use the same technique

that we use to compute the entropy of a sentence.

5.5.2 Feature Rescaling

Most of the features described above are binary. There are also some features

such as the entropy whose value could be very large. We rescale all the non-binary

72 CHAPTER 5. AUTOMATIC PARAGRAPH SEGMENTATION

valued features so that they do not override the effect of the binary features. The

scaling is performed as follows:

unew =
u−min(u)

max(u)−min(u)

where unew is the new feature and u is the old feature. min(u) is the minimum

of u, and max(u) is the maximum of u. An exception to this is the rescaling of

BOW features which is given by

B(x(bj))new = B(x(bj))/〈B(x(bj)), B(x(bj))〉.

5.6 Experiments

We collected four sets of data for our experiments. The first corpus, which we call

SB, consists of manually annotated text from the same book The Adventures of

Bruce-Partington Plans by Arthur Conan-Doyle. The second corpus, which we

call SA, again consists of manually annotated text but from 10 different books by

the same author Conan-Doyle. Our third corpus consists of German (GER) and

English (ENG) texts. The German data consisting of 12 German novels was used

by Sporleder and Lapata (2006). This data uses automatically assigned paragraph

boundaries, with the labelling error expected to be around 10%. The English data

contains 12 well known English books from Project Gutenberg (http://www.

gutenberg.org/wiki/Main_Page). For this dataset the paragraph boundaries

were marked manually.

All corpora were approximately split into training (72%), validation (21%),

and test set (7%) (see Table 5.1). The table also reports the accuracy of the

baseline classifier, denoted as BASE, which either labels all sentences as para-

graph boundaries or non-boundaries, choosing whichever scheme yields a better

accuracy.

We evaluate our system using accuracy, precision, recall, and the F1-score

given by (2×Precision×Recall)/(Precision+Recall) and compare our results to

Sporleder and Lapata (2006) who used BoosTexter (Schapire and Singer, 2000) as

a learning algorithm. To the best of our knowledge, BoosTexter (henceforth called

BT) is the leading method published for this task so far. In order to evaluate

the importance of the edge features and the resultant large-margin constraint, we

also compare against a standard binary Support Vector Machine (SVM) which

uses node features alone to predict whether each sentence is the beginning of a

5.6. EXPERIMENTS 73

total train dev test base

SB 59,870 43,678 12,174 3,839 53.70

SA 69,369 50,680 14,204 4,485 58.62

Eng 123,261 88,808 25,864 8,589 63.41

Ger 370,990 340,416 98,610 31,964 62.10

Table 5.1: Number of sentences and % accuracy of the baseline classifier (BASE)

on various datasets used in our experiments.

dataset Algo. Acc. Rec. Prec. F1

Eng SMM 75.61 46.67 77.78 58.33

SVM 58.54 26.67 40.00 32.00

BT 65.85 33.33 55.56 41.67

Ger SMM 70.56 46.81 65.67 54.66

SVM 39.92 100.00 38.68 55.79

BT 72.58 54.26 67.11 60.00

Table 5.2: Test results on ENG and GER data after model selection.

paragraph or not. For a fair comparison, all classifiers used the linear kernel and

the same set of node features.

We perform model selection for all three algorithms by choosing the parameter

values that achieve the best F1-score on the development set. For both the SVM

as well as our algorithm, SMM, we tune the parameter C (see (4.4a)) which

measures the trade-off between training error and margin. For BT, we tune the

number of Boosting iterations, denoted by N .

In our first experiment, we compare the performance of our algorithm, SMM,

on the English and German corpus to a standard SVM and BoosTexter. As can

be seen in Table 5.2, our algorithm outperforms both SVM and BT on the ENG

corpus and performs very competitively on the GER corpus, achieving accuracies

close to those of BT. The SVM does not take into account edge features and

hence does not perform well on this task.

We observed a large discrepancy between the performance of our algorithm

on the development and the test datasets. The situation is similar for both SVM

and BT. For instance, BT when trained on the ENG corpora, achieves an optimal

F1-score of 18.67% after N = 100 iterations. For the same N value, the test

performance is 41.67%. We conjecture that this discrepancy is because the books

74 CHAPTER 5. AUTOMATIC PARAGRAPH SEGMENTATION

that we use for training and test are written by different authors. While there

is some generic information about when to insert a paragraph break, it is often

subjective and part of the authors style. To test this hypothesis, we performed

experiments on the SA and SB corpus, and present results in Table 5.3. Indeed,

the F1-scores obtained on the development and test corpus closely match for text

drawn from the same book (whilst exhibiting better overall performance), differs

slightly for text drawn from different books by the same author, and has a large

deviation for the GER and ENG corpus.

dataset Acc. Rec. Prec. F1-score

SB (dev) 92.81 86.44 92.73 89.47

SB (test) 96.30 96.00 96.00 96.00

SA (dev) 82.24 61.11 82.38 70.17

SA (test) 81.03 79.17 76.00 77.55

Eng (dev) 69.84 18.46 78.63 29.90

Eng (test) 75.61 46.67 77.78 58.33

Ger (dev) 73.41 41.61 38.46 39.98

Ger (test) 70.56 46.81 65.67 54.66

Table 5.3: Comparison on different APS datasets on SMM.

In our next experiment, we investigate the effect of the offset (the weight

assigned to the constant feature Φ0) on the performance of our algorithm. We fix

the best value of C from the development dataset as above, but now we vary the

offset parameter. If we now use the best offset, tuned for accuracy or F1-score,

as the case may be, the performance on the test set changes. This is shown in

Tables 5.4 and 5.5.

dataset Acc. Rec. Prec. F1-score

Eng (dev) 70.90 26.15 72.10 38.38

Eng (test) 73.17 60.00 64.29 62.07

Ger (dev) 80.95 19.25 69.71 30.17

Ger (test) 68.55 24.47 76.67 37.10

Table 5.4: Performance on development and test set after tuning the offset for

the best accuracy.

5.6. EXPERIMENTS 75

dataset Acc. Rec. Prec. F1-score

Eng (dev) 55.02 98.46 43.31 60.16

Eng (test) 39.02 93.33 36.84 52.28

Ger (dev) 64.29 63.35 32.70 43.14

Ger (test) 75.40 73.40 65.71 69.35

Table 5.5: Performance on development and test set after tuning the offset for

best F1-score.

dataset Algo. Acc. Rec. Prec. F1-score

Eng SMM 77.71±6.18 33.44±13.98 64.33±21.85 40.12±11.22
SVM 66.95±5.28 37.06±9.95 37.78±14.24 34.72±4.86
BT 75.44±7.27 23.43±12.75 52.03±28.26 29.47±12.58

Ger SMM 76.68±3.71 50.87±10.80 60.96±10.87 55.15±10.08
SVM 67.22±7.50 19.88±8.60 34.48±10.99 24.70±8.45
BT 77.29±2.40 47.06±16.71 59.49±12.62 51.85±14.30

SB SMM 86.46±8.41 73.62±19.43 86.47±10.22 78.46±15.11
SVM 63.73±10.05 41.47±13.19 50.31±19.36 43.48±10.61
BT 87.99±6.24 77.51±14.06 87.13±10.38 81.23±9.55

SA SMM 82.96±6.22 65.60±14.06 78.53±11.63 71.13±12.57
SVM 58.26±8.90 49.92±13.15 38.64±15.37 41.05±10.42
BT 78.41±7.35 57.75±15.39 70.08±18.90 62.46±15.23

Table 5.6: Performance of various algorithms on our test corpus.

Thus far, following Sporleder and Lapata (2006) we worked with a single

random split of the data into training, development, and test set. In our final

experiment we test the statistical significance of our results by performing 10-fold

cross validation. For this experiment, we randomly pick 1/3rd of the data from

each corpus and tune parameters on this development set. The parameters are

now fixed, and the rest of the data is used to perform 10-fold cross validation.

The results are summarised in Table 5.6. While the performance of our algorithm

is relatively unchanged on the large GER dataset, there are large variations on

the relatively small ENG, SA, and SB datasets. This is to be expected because

10-fold cross-validation on small samples can skew the relative distribution of the

examples used for training and testing.

76 CHAPTER 5. AUTOMATIC PARAGRAPH SEGMENTATION

5.7 Conclusion

We presented a competitive algorithm for paragraph segmentation which uses

the ideas from large margin classifiers and graphical models to extend the semi-

Markov formalism to the large margin case. We obtain an efficient dynamic

programming formulation for segmentation which works in linear time in the

length of the sequence. Experimental evaluation shows that our algorithm is

competitive when compared to state-of-the-art methods.

Chapter 6

Action Segmentation and

Recognition

A challenging task in human action understanding is to segment and recognise a

video sequence of continuous elementary actions e.g. running and walking. This

has a wide range of applications in surveillance, video retrieval and intelligent

interfaces. The difficulty comes from high variability of appearances, shapes

and possible occlusions. The task is typically done in two steps: 1) segmenting

and then 2) classifying the segments. Using semi-Markov model (SMM), we can

segment and classify the video simultaneously.

6.1 Max Margin Approach

As commonly used in Schuldt et al. (2004); Dollar et al. (2005); Wong et al.

(2007); Jhuang et al. (2007); Nowozin et al. (2007), we assume only one person

appears in a given video sequence x (and we allow people in different video to

be different) performing actions labeled as y = {(bk, lk)}l−1
k=0 consisting of pairs

(bk, lk) that indicates the beginning position bk and its corresponding action lk

for the kth segment [bk, bk+1). Denote F (x,y;w) = 〈w,Φ(x,y)〉 the discriminant

function. For an unseen video sequence x, we predict the label via

y∗ = argmax
y

log p(y |x,w) = argmax
y

F (x,y; w). (6.1)

Learning the SMM discriminatively from training data is essentially a regularised

empirical risk minimisation problem (Tsochantaridis et al., 2005; Taskar et al.,

2004) with respect to w as in (4.4). The minimisation can be done by the cutting

77

78 CHAPTER 6. ACTION SEGMENTATION AND RECOGNITION

Algorithm 5 Bundle Method

Input: sequence xi and true label yi for example i, sample size m, precision ε > 0

Initialise w = 0

repeat

for i = 1 to m do

yi = argmaxy ∆(yi,y) + F (xi,y;w)

Compute the empirical loss Remp(w) (6.2) and the gradient ∇wRemp(w) (6.3).

w← BMRM(Remp(w),∇wRemp(w))

end for

until Remp(w) ≤ ε

plane method as we did for the APS problem in the previous chapter. Alter-

natively we can do it by Bundle Methods for Regularised Risk Minimisation

(BMRM) (Teo et al., 2007; Smola et al., 2007). Similar to the cutting plane

method, we need to compute the most violated label y which can be efficiently

obtained by a viterbi-like dynamic programming. BMRM requires two inputs:

the empirical risk

Remp(w) :=
1

m

∑
i

∆(yi,yi)− 〈w,Φ(xi,yi)− Φ(xi,yi)〉 , (6.2)

and its gradient

∇wRemp(w) = − 1

m

∑
i

Φ(xi,yi)− Φ(xi,yi). (6.3)

Empirical studies in Section 6.4 show that the bundle method often delivers

superior results to those of the cutting plane method as observed in Teo et al.

(2007); Smola et al. (2007).

6.2 Viterbi-Like Inference

For both learning algorithms (cutting plane and BMRM), we need to infer

yi = argmax
y∈Y

∆(yi,y) + F (xi,y; w). (6.4)

This can be done by dynamic programming due to decomposition of the feature

Φ and the cost function ∆. Φ(x,y) can be decomposed into local features as

Φ(x,y) =

(l−1∑
i=0

Φ1(x, ni, ci),
l−1∑
i=0

Φ2(x, ni, ni+1, ci),
l−1∑
i=0

Φ3(x, ni, ni+1, ci, ci+1)

)
.

6.2. VITERBI-LIKE INFERENCE 79

Here local features Φ1 and Φ2 capture the observation-label dependencies within

the current action segment: Φ1 encodes the information on the boundary frame

and Φ2 encodes the overall characteristics of the entire segment. The interaction

between two neighboring segments is encoded in Φ3. Similarly, F can also be

decomposed into three components fi(x,y) =
〈
w(i), φi(x,y)

〉
,∀i = {1, 2, 3} as

l−1∑
i=0

(
f1(x, ni, ci) + f2(x, ni, ni+1, ci) + f3(x, ni, ni+1, ci, ci+1)

)
.

Here w(1),w(2),w(3) are components of w. We use the Hamming distance to

measure the label cost ∆(y,y′) between alternative action sequence labels as

m−1∑
k=0

(1− 1(y(k) = y′(k))),

where 1(.) is the indicator function. Apparently, the label cost is decomposable

as well.

The decomposition of features and label cost function leads to a Viterbi-

like dynamic programming procedure proposed in Algorithm 6. Intuitively, it

iteratively asks for the best segmentation and classification for all previous frames,

assuming the current frame is a boundary frame with a known action class, and

then reuses and stores partial information as needed. However, we don’t know

whether the current frame is a boundary frame nor the true class of that segment.

The good news is that, in the end, we know the last frame is an ending frame,

and we will know the most likely class of the last frame by mamimising F . Then

we can back track all previous boundaries and classes since the information is

stored already.

For any segment i, we denote its related boundaries as n− := ni−1 and n := ni.

Similarly the related labels are c− := ci−1 and c := ci. Now, we maintain a partial

score S(x, n, c) that sums up to segment i (i.e. starts at position 0 and ends with

the segment [n−, n) with labels c− (for n−) and c (for n), respectively), and it is

defined as

max
c−,max{0,n−M}≤n−<n

{
S(x, n−, c−) + g(x, n−, n, c−, c)

}
. (6.5)

Here the increment

g(x, n−, n, c−, c) = f1(x, n−, c−) + f2(x, n−, n, c−)

+ f3(x, n−, n, c−, c) + 1−
n−1∑
k=n−

1(yk = c−).

80 CHAPTER 6. ACTION SEGMENTATION AND RECOGNITION

Algorithm 6 Viterbi-Like Inference

Input: sequence x of length l, its true label y, and maximum length of a

segment M

Output: score s, the most violated label y

Initialise matrices S ∈ Rl × C, J ∈ Zl, and L ∈ Zl to 0, y = ∅
for i = 1 to l do

for ci = 1 to C do

(Ji, Li) = argmax
j,cj

S(j, cj) + g(j, i, cj, ci)

S(i, ci) = S(j∗, c∗j∗) + g(j∗, i, c∗j∗ , ci)

end for

end for

c∗l = argmax
cl

S(l, cl)

s = S(l, c∗l)

y← {(l, c∗l)}
i← l

repeat

y← {(Ji, Li),y}
i← Ji

until i = 0

It is easy to verify that in the end, the sum of two terms in the RHS of (6.4)

amounts to S(l, cl). This algorithm can also be used for inference in the prediction

phase by letting

g(x, n−, n, c−, c) = f1(x, n−, c−) + f2(x, n−, n, c−) + f3(x, n−, n, c−, c).

This inference algorithm is very efficient — time complexity O(lMC2), linear

to the sequence length l and memory complexity O(l(C + 2)). Our C++ im-

plementation∗ processes the video sequences at 20 frames per second (FPS) on

average on an desktop with Intel Pentium 4 3.0GHz processor and 512M memory.

6.3 Feature Representation

Neuro-psychological findings such as Phillips et al. (2002) suggest that the visual

and motor cortices of human perception system are more responsible than the

∗Source code can be downloaded from http://users.rsise.anu.edu.au/˜qshi/code/smm release.tgz.

6.3. FEATURE REPRESENTATION 81

semantic ones for retrieval and recognition of visual action patterns. This moti-

vates us to represent action features Φ by a set of local features that capture the

salient aspect of spatial and temporal video gradients.

The foreground object in each image is obtained using an efficient background

subtraction method in Cheng et al. (2006). By applying the SIFT (Lowe, 2004)

key points detector, the object is represented as a set of key feature points ex-

tracted from the foreground with each point having a 128-dimensional feature

vector. Importantly, SIFT features bear these properties that are critical in our

context, as being relatively invariant to illumination and view-angle changes, as

well as being insensitive to the objects’ color appearance by capturing local image

textures in the gradient domain. In addition, from each feature point, we con-

struct an additional 60-dimensional shape context features (Belongie et al., 2002)

that roughly encode how each point “sees” the remaining points. The two sets

of features are then concatenated with proper scaling to form a 188-dimensional

vector. This point-set object representation are further transformed into a 50-

dimensional codebook using K-means, similar to the visual vocabulary approach

in Sivic and Zisserman (2003). Therefore, once a new frame is presented, its

key points will be projected into the existing codebook space with clustering as-

signments. Thus the object is now represented as a 50-dimensional histogram

vector. Typical results of the codebook representation are illustrated in Figure

6.4 (bottom row), where we randomly choose four codebook clusters and impose

the assigned feature point locations on individual images. Figure 6.4 convincingly

shows that each cluster of points is able to pick up patches in certain human body

areas, over time and across different people. For example, the white triangles tend

to stay on the hips.

With this codebook representation, we now construct feature functions Φ1,

Φ2 and Φ3 as follows.

Boundary Frame Features Φ1(x, ni, ci) = ϕ1(x, ni)⊗ ci, where ⊗ denotes a

tensor product (similar to (11) and (12) of Tsochantaridis et al. (2005)). ϕ1 is

a concatenation of two features. The first is a constant 1 which acts as the bias

or offset term. The second part is obtained from a local window with width ws

centered on the boundary frame. When ws = 1 it becomes a single histogram

vector.

Node Features on Segments Node features are devised to capture the char-

acteristics of the segment. Φ2 is defined as Φ2(x, ni, ni+1, ci) = ϕ2(x, ni, ni+1)⊗ci.

82 CHAPTER 6. ACTION SEGMENTATION AND RECOGNITION

1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9

1

Levels of difficulties

A
cc

ur
ac

y

SVM−SMM
BMRM−SMM
SVM−HMM
SVM
1NN
3NN
5NN

Figure 6.1: Comparing seven methods for action recognition on the synthetic dataset.

ϕ2(x, ni, ni+1) contains three components: the length of this segment, the mean

and the variance of the histogram vector of the segment (e.g. over frames from

ni to ni+1 − 1).

Edge Features on Neighboring Segments As in practice we have prior

knowledge about the minimum length of an action segment, we define the mini-

mum duration of a segment as d to reduce the complexity of the Viterbi algorithm.

Φ3(x, ni, ni+1, ci, ci+1) = ϕ3(x, ni, ni+1) ⊗ ci ⊗ ci+1, and it is a concatenation of

the following components: a) the mean of the histogram vector from frames ni

to ni+1− 1, and b) from frames ni+1 to ni+1 + d, as well as c) the variance of the

histogram vector from ni to ni+1 − 1, and d) from ni+1 to ni+1 + d.

6.4 Experiments

During the following experiments, the proposed discriminative SMM approach

is compared to three algorithms: KNN (where K=1, 3, 5), SVM multiclass and

SVM-HMM (Tsochantaridis et al., 2005). In particular, two variants of discrim-

inative SMM are considered, namely the one with cutting plane method (SVM-

SMM) and the one with bundle method (BMRM-SMM).

6.4. EXPERIMENTS 83

By default, we set ε = 1e − 4, M = 3, and ws = 3. The trade-off param-

eter η of each method (SVM multiclass, SVM-HMM, SVM-SMM and BMRM-

SMM) is tuned separately using cross-validation. Moreover, we evaluate the ac-

tion recognition and segmentation performance separately: A frame-wise recog-

nition rate is utilised to benchmark the recognition performance for each of the

comparison algorithms. To measure segmentation performance, we adopted the

F1-score, which is often used in information retrieval tasks, and is given by

(2× Precision× Recall)/(Precision + Recall).

6.4.1 Synthetic dataset

We start with a controlled experiment where we are able to quantitatively mea-

sure the performance of comparison algorithms by varying the difficulty level of

problems from easy to difficult. We do this by constructing a two-person two-

action synthetic dataset consisting of five trials, where each trial has a set of ten

sequences and corresponds to a certain level of difficulty†. Here a sequence of a

person P is sampled from a semi-Markov model/process with their own Gaussian

emission probabilities N(µc,P , σc,P) and duration parameters λc,P for the two ac-

tions c = 1, 2, respectively. We sample 150 frames from the SMM model for each

given person and action. Now, we build five trials as follows: For each trial, five

sequences are generated from each person’s model, and in the end we have ten

sequences. Across trials, we vary the level of difficulty by moving µ2 toward µ1

and fixing other parameters of the models.

Figure 6.1 displays the action recognition results on this dataset, where 5-fold

cross-validation is utilised. Here both discriminative SMM variants consistently

outperform others: In fact, both SVM-SMM and BMRM-SMM give almost the

same recognition accuracy regardless of the level of difficulty. They are followed

by SVM-HMM while the other methods (namely SVM and KNNs) have inferior

performance. This is due to SMM exploiting the contextual information from

neighboring nodes up to neighboring segments.

6.4.2 KTH dataset

The KTH dataset (Schuldt et al., 2004) contains 25 individuals performing six

activities: running, walking, jogging, boxing, handclapping and handwaving, where

each sequence contains a single action with multiple action cycles. Figure 6.2

†This dataset can be downloaded at http://users.rsise.anu.edu.au/˜qshi/code/smm release.tgz.

84 CHAPTER 6. ACTION SEGMENTATION AND RECOGNITION

Figure 6.2: Sample frames of one person engaging in six types of actions in the KTH dataset.

Method Brief Description Accuracy

Ke et al. (2005) cascade classifier, spatio-temporal 63.0

Schuldt et al. (2004) SVM, local space time features 71.7

Schindler and van Gool (2008) SVM, bag of snippets, shape and motion 92.7

Dollar et al. (2005) SVM, “cuboid” features 81.2

Nowozin et al. (2007) linear SVM, “cuboid” features 87.0

subsequence boosting, “cuboid” features 84.7

Wong et al. (2007) WX-SVM, “cuboid” features 91.6

Our SVM baseline SVM, “cuboid” features 85.1

Our BMRM-SVM discriminative SMM, “cuboid” features 95.0

Table 6.1: Action recognition rates on KTH dataset.

displays exemplar frames of one person performing each of the six activities.

To make direct comparisons to existing methods in literature presented in

Table 6.1, in this experiment we adopt the “cuboid” (Dollar et al., 2005) feature

(instead of SIFT) that captures the local spatio-temporal characteristics using

Gabor filters. More specifically, this detector is tuned to fire whenever variations

in local image intensities contain distinguishing spatio-temporal characteristics.

At each detected interest point location, a 3D cuboid is then extracted and repre-

sented as a flattened vector that contains the spatio-temporal windowed informa-

tion including normalised pixel values, brightness gradient and windowed optical

flow.

We adopt the same train and test sets splits as that of Nowozin et al. (2007),

only here our models are trained on the joined train+validation sets: Each model

6.4. EXPERIMENTS 85

truth vs. predict boxing handclapping handwaving jogging running walking

boxing 0.91 0.09 0.00 0.00 0.00 0.00

handclapping 0.00 0.96 0.00 0.00 0.04 0.00

handwaving 0.00 0.00 1.00 0.00 0.00 0.00

jogging 0.00 0.00 0.00 0.89 0.00 0.11

running 0.00 0.00 0.00 0.08 0.92 0.00

walking 0.00 0.00 0.00 0.12 0.00 0.88

Table 6.2: Confusion matrix of BMRM-SMM on the KTH dataset.

Figure 6.3: Sample frames of subjects each performing one of the four actions: slow walk,

fast walk, incline walk and walk with a ball, in an action sequence of the CMU MoBo dataset.

tuning parameters η of our methods are selected using 5-fold cross-validation

on the joined sets, then a single model is trained on the joined sets, and the

final accuracy is reported on the test set. Table 6.1 shows the results of our

methods: Our SVM baseline (85.1%) is comparable to similar methods (e.g.

SVM of Dollar et al. (2005); Nowozin et al. (2007)) reported in literature, while

our BMRM-SMM (95.0%) performs favorably comparing to these state-of-the-

art methods. We attribute this to the contextual information that we are able

to exploit through the use of Φ2 features in our SMM framework. Table 6.2

displays the confusion matrix of the BMRM-SMM method, where the handwaving

action can be perfectly identified from the rest of the actions. On the other hand,

there are a few mistakes among the three easy-to-be-confused categories: walking,

jogging, and running.

86 CHAPTER 6. ACTION SEGMENTATION AND RECOGNITION

1NN SVM HMM SVM-HMM SVM-SMM BMRM-SMM

Acc 0.65 ± 0.02 0.67 ± 0.03 0.68 ± 0.08 0.75 ± 0.06 0.75 ± 0.03 0.78 ± 0.07

F1 0.16 ± 0.05 0.15 ± 0.03 n/a ± n/a 0.43 ± 0.01 0.59 ± 0.03 0.59 ± 0.03

Table 6.3: Accuracies (Acc) and F1 scores on CMU MoBo dataset.

1NN 3NN 5NN SVM SVM-HMM SVM-SMM BMRM-SMM

0.82 ± 0.02 0.80 ± 0.03 0.77 ± 0.03 0.84 ± 0.03 0.87 ± 0.02 0.91± 0.02 0.94± 0.01

Table 6.4: Action recognition rates on the WBD dataset.

6.4.3 CMU MoBo dataset

This dataset (R.Gross and Shi, 2001) contains 24 individuals‡ walking on a tread-

mill. As illustrated in Figure 6.3, each subject performs in a video clip one of

the four different actions: slow walk, fast walk, incline walk and slow walk with

a ball. Each sequence has been pre-processed to contain several cycles of a single

action and we additionally manually label the boundary positions of these cycles.

The task on this dataset is to automatically partition a sequence into atomic

action cycles, as well as predict the action label of this sequence.

Table 6.3 presents the results averaged over 6-fold cross-validation. The re-

sults of 3NN and 5NN are omitted here as they are very similar to 1NN. We

also experiment with generative HMM solely on the task of action recognition

(predicting action label for each sequence), where one HMM is trained for each

action type using the BaumWelch algorithm. It performs slightly better than

the baseline methods including KNN (K=1,3,5) and SVM, but is still inferior

to SVM-HMM (Tsochantaridis et al., 2005), its discriminative counterpart. Note

that both SMM variants (SVM-SMM and BMRM-SMM) significantly outperform

the other methods including SVM-HMM on action label prediction as well as on

segmentation of action cycles.

6.4.4 WBD: A Dataset of Continuous Actions

In addition to the existing datasets (such as the MoBo and the KTH datasets),

where each sequence contains exactly one type of action, we construct a Walk-

Bend-Draw (WBD) dataset of continuous actions. Some exemplar frames are

displayed in Figure 6.4. This is an indoor video dataset containing three subjects,

‡The dataset originally consists of 25 subjects. We drop the last person since we experienced

technical problems obtaining the sequences of this individual walking with balls.

6.4. EXPERIMENTS 87

cluster Bcluster A cluster C cluster D

Figure 6.4: A Walk-Bend-Draw (WBD) dataset. Top shows some sample frames of the

dataset . Bottom displays the assignments of image feature points on four randomly chosen

codebook clusters over time and across person.

each performing six action sequences at 30 FPS at a resolution of 720× 480, and

each sequence consists of three continuous actions: slow walk, bend body and draw

on board, and on average each action lasts about 2.5 seconds. We subsample each

sequence to obtain 30 key frames, and manually label the ground truth actions.

The comparison results, obtained using 6-fold cross-validation, are summarised

in table 6.4. Both discriminative SMM variants consistently deliver the best re-

sults, while here BMRM-SMM slightly outperforms SVM-SMM. They are then

followed by SVM-HMM, SVM, and the KNN methods, in an order that is consis-

tent with the experimental results for the synthetic dataset. Furthermore, Tables

6.5 and 6.6 display the confusion matrices of the two SMM variants: SVM-SMM

vs. BMRM-SMM. where the two actions – walk and draw – seem to be rarely

confused with each other, nevertheless both sometimes are mis-interpreted as

bend. This is to be expected, as although walk and draw appear to be more

similar to human observer in isolated images, it nevertheless can be learned by

discriminative SMM methods that walk, bend and draw are usually conducted in

order.

88 CHAPTER 6. ACTION SEGMENTATION AND RECOGNITION

truth vs. predict walk bend draw

walk 0.93 0.07 0.00

bend 0.05 0.93 0.02

draw 0.01 0.09 0.89

Table 6.5: Confusion matrix of SVM-SMM on WBD.

truth vs. predict walk bend draw

walk 0.91 0.09 0.00

bend 0.03 0.93 0.04

draw 0.00 0.04 0.96

Table 6.6: Confusion matrix of BMRM-SMM on WBD.

6.5 Conclusion

We present a novel discriminative semi-Markov approach to human action anal-

ysis, where we intend to simultaneously segment and recognise continuous action

sequences. We then devise a Viterbi-like dynamic programming algorithm that

is able to efficiently solve the inference problem, and show the induced learning

problem can be cast as a convex optimisation problem with many constraints,

that can be subsequently solved and we present two such solvers. Empirical sim-

ulations demonstrate that our approach is competitive to and often outperforms

the state-of-the-art methods.

Our approach can be extended in several directions. It is promising to explore

the dual representation in order to incorporate matching cost between point sets.

On future work we also plan to apply this approach to closely related problems,

such as detecting unusual actions from a large video dataset.

Chapter 7

Hybrid Models on NLP and

Image Categorisation

CRFs and SVMs can be seen as being representative of two different approaches to

classification problems. The former is a probabilistic approach – the conditional

probability of classes given each observation is explicitly modelled – while the

latter is a max margin approach – classification is performed without any attempt

to model probabilities.

Both approaches have their strengths and weaknesses. CRFs (Lafferty et al.,

2001; Sha and Pereira, 2003) use a log loss which is known to be consistent. How-

ever, modelling P (y |x) often requires a large number of training examples and

may sacrifice classification accuracy if the underlying distribution is complicated

(Bulatov and Bousquet, 2007). In contrast, Support Vector Machines make more

efficient use of training examples but are known to be inconsistent when there

are more than two classes (Tewari and Bartlett, 2007; Liu, 2007).

Despite their different characteristics, CRFs and SVMs appear very similar

when viewed as optimisation problems. The most salient difference is the loss

used by each: CRFs are trained using a log loss while SVMs typically use a hinge

loss.

In an attempt to capitalise on their relative strengths and avoid their weak-

nesses we propose a hybrid approach that uses a convex “blend” of these two

losses. The new hybrid loss is conditionally consistent and has a generalisation

bound guarantee. We postpone the detailed theoretical analysis to Chapter 8 (see

the consistency of the hybrid loss in Section 8.1.2 and the generalisation bound

of the hybrid loss in Section 8.2.3). We apply it to several natural language pro-

cessing (NLP) applications and image categorisation before concluding with some

89

90CHAPTER 7. HYBRIDMODELS ON NLP AND IMAGE CATEGORISATION

possible future refinements (Section 7.4).

7.1 The Hybrid Loss

The scores given to labels by a general model f : X → Rk can be transformed

into a conditional probability distribution p(x; f) ∈ [0, 1]k by letting

py(x; f) =
exp(fy(x))∑
y∈Y exp(fy(x))

. (7.1)

It is easy to show that under this interpretation the hinge loss for a proba-

bilistic model p = p(·; f) is given by

`H(p,y) =

[
1− ln

py
maxy′ 6=y py′

]
+

(7.2)

Another well known loss for probabilistic models, such as Conditional Random

Fields, is the log loss

`L(p,y) = − ln py. (7.3)

This loss penalises models that assign low probability to likely instances labels

and, implicitly, that assign high probability to unlikely labels.

The hybrid loss introduced in this chapter is a loss for probabilistic models

that is a convex combination of the hinge and log losses

`α(p,y) = α`L(p,y) + (1− α)`H(p,y) (7.4)

= −α ln(py) + (1− α)

[
1− ln

p

maxy′ 6=y py′

]
+

(7.5)

where mixture of the two losses is controlled by a parameter α ∈ [0, 1]. Setting

α = 1 or α = 0 recovers the log loss or hinge loss, respectively. The intention is

that choosing α close to 0 will emphasise having the maximum label probability

as large as possible while an α close to 1 will force models to prefer accurate

probability assessments over strong classification.

7.2 Consistency and Generalisation bound

We will show in Section 8.1.2 that the hybrid loss can be conditionally consis-

tent when the traditional hinge loss is not (see Theorem 16 in Section 8.1.3).

Specifically, the hybrid loss can yield consistent predictions for instances with

non-dominant labels provided the label probabilities are not too close. Also, we

will show that the hybrid loss has a tighter generalisation bound than CRFs (see

Theorem 19 in Section 8.2.3).

7.3. APPLICATIONS 91

7.3 Applications

To show how the hybrid approach performs relative to the log and hinge losses,

we apply it to a controlled synthetic multiclass dataset in which the dataset size

and proportion of examples with non-dominant labels is carefully controlled. As

might be expected, we observe that the hybrid loss outperforms the hinge loss

when there are many instances with non-dominant labels and outperforms the

log loss when relatively few training examples are available and most of those

have dominant labels.

We also compare the hybrid loss to the log and hinge losses on several struc-

tured estimation problems and note that the hybrid loss regularly performs as

well as either of the other losses.

7.3.1 Multiclass

We now run two multiclass simulations with a controlled data distributionD(y,x)

having non-dominant class, i.e., with instances with Dy(x) < 1/2 for all labels

y.

Non-dominant Distributions

Our first simulation is to see how the hinge, log and hybrid losses perform when

all data are from a distribution that has no dominant class. In this case one of the

labels y∗ for each instance x hasDy∗(x) = 0.46 and the rest of theDy(x),∀y 6= y∗

are of equal value. The instances are drawn from Gaussians, x ∼ N(µ, σ2),

where µ = 1.2, σ = 0, 0.1, 0.2, 0.3, For σ = 0, we generate datasets with 100

examples from Dy(x) for the number of classes |Y | = 3, 4, 5, . . . , 10. For instance,

the dataset with 10 classes has 46 examples from class y∗, and 6 examples from

each of the other classes. A good classifier should predict y∗ as label for it is the

most likely one. Thus a training error should be 1 − Dy∗(x) = 0.55. In other

words, predicting any other y instead of y∗ will give higher error.The training

errors for hinge, log and hybrid losses are plotted in Figure 7.1. As we can see

clearly, the errors for the log and the hybrid losses remain a constant (1−Dy∗(x))

as a good classifier should behave. Whereas the hinge loss error increases as the

number of classes increases. This is in concordance with the consistency analysis

of the three losses.

92CHAPTER 7. HYBRIDMODELS ON NLP AND IMAGE CATEGORISATION

2 4 6 8 10
0.5

0.6

0.7

0.8

0.9

1

tr
ai

ni
ng

 e
rr

or

number of classes

SVM
CRF and Hybrid

Figure 7.1: Training error curve with various number of classes. α = 0.5 for the

hybrid loss.

Mix of Non-dominant and Dominant Distributions

Minimising a consistent loss will always outperform an inconsistent one when

non-dominant distributions are present if the entire data distribution is available.

However, in practice, we often only have access to a small sample of the entire data

distribution. Our second simulation is to study how the three losses perform given

various training set sizes (denoted by m) and various proportions of instances

with non-dominant distributions (denoted by ρ). We generate a 5 class data

set with 100 feature dimensions as follows. In the non-dominant class case, the

observation x is fixed and its conditional distribution is set to be Dy∗(x) = 0.4 and

Dy(x) = 0.15 for y 6= y∗. In the dominant case, each dimension of the observation

x is drawn from a one dimensional normal distribution N(µ = 1 + j, σ = 0.6) for

the class j = 1, . . . , 5. The proportion ρ ranges over the values 0.1, 0.2, 0.3, . . . , 1

and for each ρ, we generate the test set and the validation set with the same

size 1000. Training set sizes of m = 30, 60, 100, 300, 600, 1000 are used. Given a

mixing ratio ρ, we train models using the three losses on the training data with

size m, and then apply the models to the test and validation data.

The results are summarised in Figure 7.2, from which we can see a clear trend

— when the non-dominant class portion ρ is small (e.g., when ρ = 0.1) and m is

small (30,60), the hinge loss outperforms the log and hybrid losses. For larger m,

the hybrid loss outperforms the log and hinge losses more often than not.

7.3. APPLICATIONS 93

30 60 100 300 600 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

ρ

(a) Hybrid vs. Hinge

30 60 100 300 600 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

ρ

(b) Hybrid vs. Log

30 60 100 300 600 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

ρ

(c) Hinge vs. Log

Figure 7.2: Accuracy first vs. accuracy second. The colored dot indicates accu-

racy first > accuracy second. The size of the dot is proportional to the difference

of two accuracies. Different color means the size is significantly different.

7.3.2 Text Chunking

Unlike the general multiclass case, structured estimation problems have a higher

chance of non-dominant distributions because of the very large number of labels

as well as ties or ambiguity regarding those labels. For example, in video segmen-

tation, predicting a boundary with 1 or 2 frames offset from the human manually

marked boundary is considered as “correct”. Likewise in text chunking, tagging

only one phrase differently while the rest are unchanged should not give totally

different probability predictions – especially when there are ambiguities. Likewise

in image denoising, changing a pixel’s predicted graylevel (1 to 255) by 1, should

not radically change the probability of the predicted whole image. Thus, because

of the prevalence of non-dominant distributions, we expect that trained models

using a hinge loss to perform poorly on these problems relative to training with

hybrid or log losses.

CONLL2000 Text Chunking

Our first structured estimation experiment is carried out on the CONLL2000

text chunking task∗. The data set has 8936 training sentences and 2012 testing

sentences with 106978 and 23852 phrases (a.k.a., chunks) respectively. The task is

to divide a text into syntactically correlated parts of words such as noun phrases,

verb phrases, and so on. For a sentence with L chunks, its label consists of the

tagging sequence of all chunks, i.e. y = (y1,y2, . . . ,yL), where yi is the chunking

tag for chunk i. As is commonly used in this task, the label y is modelled as a 1D

Markov chain, considering the dependency of adjacent chunking tags (yji ,y
j+1
i)

∗download from http://www.cnts.ua.ac.be/conll2000/chunking/

94CHAPTER 7. HYBRIDMODELS ON NLP AND IMAGE CATEGORISATION

Algorithm Accuracy Precision Recall F1 Score

SVM 94.61 91.23 91.37 91.30

CRF 95.10 92.32 91.97 92.15

Hybrid 95.11 92.35 92.00 92.17

Table 7.1: Accuracy, precision, recall and F1 Score on the CONLL2000 text

chunking task. Winners are in boldface.

Algorithm Accuracy Precision Recall F1 Score

SVM 94.64 87.58 88.30 87.94

CRF 95.21 90.07 88.89 89.48

Hybrid 95.24 90.12 88.98 89.55

Table 7.2: Accuracy, precision, recall and F1 Score on the baseNP chunking task.

Winners are in boldface.

given observation xi. Clearly, the model has exponentially many possible labels,

which suggest that there might be many non-dominant classes.

Since the true underlying distribution is unknown, we train a CRF (using

the feature template from the CRF++ toolkit† and the CRF code‡ from Leon

Bottou) on the training set and then apply the trained model to both the testing

and training datasets to get an estimate of the conditional distributions for each

instance. We sort the sentences xi from highest to lowest estimated probability

on the true chunking label yi given xi. The result is plotted in Figure 7.3, from

which we observe the existence of many non-dominant distributions — about 1/3

of the testing sentences and about 1/4 of the training sentences.

We split the data into 3 parts: training (20%), testing (40%) and validation

(40%). The regularisation parameter λ and the weight α are determined via

parameter selection using the validation set. The accuracy, precision, recall and

F1 Score on test set are reported in Table 7.2 for various used proportion of the

training set used. As expected, when there is not an abundant amount of data,

the hybrid loss outperforms both the SVM and CRF.

†download from http://crfpp.sourceforge.net/
‡download from http://leon.bottou.org/projects/sgd

7.3. APPLICATIONS 95

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

number of sentences

P
ro

ba
bi

lit
y

P(y
i
|x

i
)

P(y
i
*|x

i
)

P = 0.5

(a) the testing set

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

number of sentences

P
ro

ba
bi

lit
y

P(y
i
|x

i
)

P(y
i
*|x

i
)

P = 0.5

(b) the training set

Figure 7.3: Estimated probabilities of the true label Dyi
(xi) and most likely label

Dy∗i
(xi). Sentences are sorted according to Dyi

(xi) and Dy∗i
(xi) respectively in

ascending order. D = 1/2 is shown as the straight black dot line. About 700

sentences out of 2012 in the testing set and 2000 sentences out of 8936 in the

training set have no dominant class.

baseNP Chunking

This dataset is provided in CRF++ toolkit that is mentioned before. It has 900

sentences in total. The task is to automatically classify a chunking phrase is as

baseNP or not. We split the data and select λ and α in the same way as the

above CONLL2000 data. We report the test accuracy, precision, recall and F1

Score in Table 7.2. The hybrid loss/model outperforms SVM and CRF on all

measures.

7.3.3 Joint Image Categorisation

Our final experiment is joint image categorisation. The task is to categorise

pre-segmented image areas by considering their dependency across the image

segments. We use the well-known Corel dataset (Ren and Malik, 2003), which

has 100 images and 7 classes: hippo, polar bear, water, snow, vegetation, ground,

and sky. This is a very challenging task since there are 7n many possible labels

for an image with n segments.

The ground truth segmentations provided from the dataset are used as pre-

segmented object regions. Therefore each image contains one or multiple ob-

jects/regions. We use 56 images for training, and 20 images for testing. The rest

of the images are excluded either because they are too small or because they con-

96CHAPTER 7. HYBRIDMODELS ON NLP AND IMAGE CATEGORISATION

Dataset |Y | SVM-linear SVM-RBF SVM-Struct CRF Hybrid

Corel 7n 58.62 65.52 89.66 86.21 89.66

Table 7.3: Image object categorisation on the Corel dataset. SVM-Linear: i.i.d. SVM

using Linear kernel. SVM-RBF: i.i.d. SVM using RBF kernel. SVM-Struct: structured

SVM using Linear kernel; CRF: CRF on sparse graph using MAP estimator with LBP

inference. Hybrid: our hybrid model on a sparse graph. Winners are in boldface.

tain too many objects. The graphical model of an image is shown in Figure 7.4,

where each segment is a node and edges capture the adjacency dependence.

Features

Any image with n segments and labels is represented as (x,y) = {(xi,yi)}ni=1,

where the xi and yi are the i-th segment and corresponding label. We assume

that global feature Φ(x,y) is decomposed over singleton terms Φi(x
i,yi), ∀i, 1 ≤

i ≤ n, as well as over pairwise terms Φij(x
i,yi), ∀(i, j) ∈ Ax, where Ax is the set

of adjacent segments in x

Φ(x,y) =
∑
i

Φi(x
i,yi) +

∑
(i,j)∈A

Φij(x
i,yi,yj). (7.6)

We assume Φi is a tensor product of instance and label feature functions, given

by Φi(x,y) = ϕi(x)⊗ yi where ϕi is the raw node feature depending only on the

observed segmented image. Similarly Φij(x,y) = ϕij(x) ⊗ yij, where ϕij is the

raw edge feature depending only on the observation, and yij := [yi yj]. ϕi and

ϕij are assembled from

ϕ1 We extract a well known texton feature vector Shotton et al. (2006) from

each patch, hence every pixel is represented by a texton vector. The node

feature for an object is the empirical mean of the texton vector of pixels.

The raw node feature is given by ϕi(x) = [1 ϕ1(xi)].

ϕ2 We use the mean of the boosted texton probability density of all interior and

boundary pixels of the objects as their edge feature. The raw edge feature

is given by ϕij(x) = [1 ϕ2(xi) ϕ2(xj)].

As shown in Figure 7.4, the graphical model is very general. Exactly com-

puting CRF gradients involves computing an expectation that is NP hard. The

7.4. CONCLUSION 97

(a) Raw image (b) Segmentation

(c) Objects (d) Features

Figure 7.4: An illustration of the image objects, graph and features. (a) The raw

hippo image. (b) The segmentation result. (c) The objects. (d) Node and edge

features: node feature encodes the object characteristics, while the edge feature

encodes the interaction between objects.

common way is to run approximation such as Loopy Belief Propagation (LBP)

or sampling. We use LBP for CRF here. All structured algorithms use the same

node and edge features. Non-structured algorithms use the node feature only. As

shown in Table 7.4, structured algorithms outperform the non-structured ones as

expected. And it is interesting to see that structured SVM outperforms CRF.

We conjecture that this is because the CRF decision hyperplane becomes less

accurate due to the approximated gradient i.e., the expectation of the feature.

Whereas structured SVM needs only an argmax operation which is more efficient

and perhaps more reliable.

7.4 Conclusion

We have provided theoretical and empirical motivation for the use of a novel

hybrid loss for multiclass and structured prediction problems which can be used

in place of the more common log loss or multiclass hinge loss. This new loss

attempts to blend the strength of purely discriminative approaches to classifica-

98CHAPTER 7. HYBRIDMODELS ON NLP AND IMAGE CATEGORISATION

tion, such as Support Vector machines, with probabilistic approaches, such as

Conditional Random Fields. Theoretically, the hybrid loss enjoys better consis-

tency guarantees than the hinge loss while experimentally we have seen that the

addition of a purely discriminative component can improve accuracy when data

is less prevalent.

Part IV

Structured Learning Theory

99

Chapter 8

Structured Learning Theory

Unlike the well developed statistical learning theory in non-structured cases (es-

pecially binary classification), the learning theory with structured data is still

immature. There is no commonly agreed method of capacity control to explain

or guarantee the performance of these algorithms. The generalisation bounds—

even the recent structured PAC-Bayes bounds—are not yet tight for exponentially

many possible labels. The original Fisher consistency is too coarse a notion to

characterise structured surrogate losses.

In this chapter, we will extend the Fisher consistency to the structured case,

and propose a refined notion to characterise the structured surrogate losses. We

will review the recent development of PAC-Bayes bounds and give a bound on

the generalisation error of a single structured classifier. We will also introduce

Probabilistic margins (P-margins) which take the label distribution into account.

It turns out that many existing algorithms can be viewed as special cases of P-

margins. Hopefully the new alternative concept of margins can help understand

existing algorithms as well as design new algorithms.

8.1 Fisher Consistency

Fisher consistency for classification (FCC) is an important property for algo-

rithms, for it tells whether the algorithms yield the best optimal decision bound-

ary given the entire data population. However, the existing FCC is too coarse

— it requires that consistency holds for all data distributions. We will propose a

more refined notion of Fisher consistency, namely Conditional Fisher Consistency

for Classification (CFCC), that takes into account the true distribution of class

labels. We will show how to examine CFCC and how to compute PAC-Bayes

101

102 CHAPTER 8. STRUCTURED LEARNING THEORY

bounds with an example of a hybrid loss which is CFCC and has a PAC-Bayes

bound.

8.1.1 Losses for Structured Prediction

In classification problems observations x ∈ X are paired with labels y ∈ Y via

some joint distribution D over X×Y. We will write D(x,y) for the joint proba-

bility and D(y |x) for the conditional probability of y given x. Since the labels

y are finite and discrete we will also use the notation Dy(x) for the conditional

probability to emphasise that distributions over Y can be thought of as vectors

in Rk for k = |Y |.
When the number of possible labels k = |Y | > 2 we call the classification

problem a multiclass classification problem. A special case of this type of problem

is structured prediction where the set of labels Y has some combinatorial structure

that typically means k is very large (Bakir et al., 2007). As seen in Section 7

a variety of problems, such as text tagging and image categorisation, can be

construed as structured prediction problems.

Given m training samples S = {(xi,yi)}mi=1 drawn i.i.d. from D, the aim of

the learner is to produce a predictor h : X → Y that minimises the misclassi-

fication error RD(h) = PrD [h(x) 6= y]. Since the true distribution is unknown,

an approximate solution to this problem is typically found by minimising a regu-

larised empirical estimate of the risk for a surrogate loss `. Examples of surrogate

losses will be discussed below.

Once a loss is specified, a solution is found by solving

min
f

1

m

m∑
i=1

`(f(xi),yi) + Ω(f) (8.1)

where each model f : X→ Rk assigns a vector of scores f(x) to each observation

and regulariser Ω(f) penalises overly complex functions. A model f found in this

way can be transformed into a predictor by defining h(x) = argmaxy∈Y fy(x).

In structured prediction, the models are usually specified in terms of a param-

eter vector w ∈ Rn and a feature map φ : X×Y → Rn by defining fy(x; w) =

〈w, φ(x,y)〉 and in this case, the regulariser is Ω(f) = λ
2
‖w ‖2 for some choice of

λ ∈ R. However much of the analysis does not assume any particular parametric

model.

A common surrogate loss for multiclass problems is a generalisation of the

binary class hinge loss used for Support Vector Machines (Crammer and Singer,

8.1. FISHER CONSISTENCY 103

2000):

`H(f,y) = [1−M(f,y)]+ (8.2)

where [z]+ = z for z > 0 and is 0 otherwise, and M(f,y) = fy − maxy′ 6=y f
′
y

is the margin for the vector f ∈ Rk. Intuitively, the hinge loss is minimised

by models that not only classify observations correctly but also maximise the

difference between the highest and second highest scores assigned to the labels.

8.1.2 Conditional Fisher Consistency For Classification

We will say that a vector f ∈ R|Y | is aligned with a distribution D ∈ ∆(Y)

whenever its maximisers are also maximisers for D:

argmax
y∈Y

fy ⊆ argmax
y∈Y

Dy.

A loss function ` is called Fisher consistent for classification (FCC) – or

classification calibrated – if minimising its conditional risk L(p) = Ey∼D[`(p,y)]

yields a vector p∗ aligned with D. This is an important property for losses since

it is equivalent to the asymptotic consistency of the empirical risk minimiser for

that loss (Tewari and Bartlett, 2007, Theorem 2).

The multi-class hinge loss `H is known to be inconsistent for classification

when there are more than two classes (Liu, 2007; Tewari and Bartlett, 2007).

The analysis in (Liu, 2007) shows that hinge loss is consistent whenever there

is an instance x with a non-dominant distribution – that is, Dy(x) < 1
2

for all

y ∈ Y. Conversely, A distribution is dominant for an instance x if there is some

y with Dy(x) > 1
2
.

In contrast, the log loss used to train CRFs is Fisher consistent for probability

estimation – that is, the associated risk is minimised by the true conditional

distribution – and thus `C is FCC since the minimising distribution is equal to

D(x) and thus aligned with D(x).

The existing FCC is too restrictive since it requires the consistency for all D

— even for some bizarre D which may never appear in real applications. Hence

we introduce a more refined notion of Fisher consistency that takes into account

the true distribution of class labels.

Definition 15 (Conditional Fisher Consistency For Classification) If D =

(D1, . . . , Dk) is a distribution over the labels Y then we say the loss ` is condi-

tionally FCC with respect to D whenever minimising the conditional risk w.r.t.

D, LD(h) = Ey∼D [`(h,y)] yields a predictor h∗ that is consistent with D. Of

104 CHAPTER 8. STRUCTURED LEARNING THEORY

course, if a loss ` is conditionally FCC w.r.t. D for all D it is, by definition,

(unconditionally) FCC.

8.1.3 Conditional Consistency of Hybrid Loss

Recall the hybrid loss for probabilistic models that is a convex combination of

the hinge and log losses in (7.4).

Theorem 16 Let D = (D1, . . . , Dk) be a distribution over labels and let y1 =

maxyDy and y2 = maxy 6=y1
Dy be the two most likely labels. Then the hybrid

loss `α is conditionally FCC for D whenever Dy1
> 1

2
or

α > 1−
Dy1
−Dy2

1− 2Dy1

. (8.3)

Theorem 16 can be inverted and interpreted as a constraint on the distribution

D such that a hybrid loss with parameter α will yield consistent predictions.

Specifically, the hybrid loss will be consistent if, for all x ∈ X such that Dy(x) has

no dominant label (i.e., Dy(x) ≤ 1
2

for all y ∈ Y), the separation Dy1
(x)−Dy2

(x)

between the top two probabilities is more than (1− α)(1− 2Dy1
(x)). When this

is not the case for some x, the classification problem for that instance is, in some

sense, too difficult to disambiguate. For the proof see Appendix B.

We expect that some stronger sufficient conditions on α are possible since the

bounds used to establish Theorem 16 are not tight. Our conjecture is that a

necessary and sufficient condition would include a dependency on the number of

classes.

8.2 PAC-Bayes Bounds

The generalisation error

eD = Pr
(x,y)∼D

(
y 6= argmax

y′∈Y
F (x,y′; w)

)
captures the performance of the algorithm. There are several bounds such as VC

bound(Vapnik, 1996), Rademacher bound(Shawe-Taylor and Cristianini, 2004)

and so on that upper bound the generalisation error. Among them, PAC-Bayes

bounds (McAllester, 1998; Langford et al., 2001; Germain et al., 2008; Zhu and

Xing, 2009) are particularly tight.

8.2. PAC-BAYES BOUNDS 105

There are two types of classifiers commonly used in PAC-Bayes bounds :

Gibbs classifiers and Average classifiers. Both assume that there exist a prior P

over classifiers h ∈ H. The task for Gibbs classifiers is to choose a posterior Q

such that the Q-weighted majority vote classifier (a Gibbs classifier) will have the

smallest risk. For h parameterised by w via F , we simply denote the prior and

posterior on w as P (w) and Q(w) to avoid too much notation. The prediction

then becomes

GQ(x) = Eh∼Q(h)[h(x)] (8.4)

= Ew∼Q(w)[argmax
y′∈Y

F (x,y′; w)]. (8.5)

Similarly, an Average classifier predicts by

AQ(x) = argmax
y′∈Y

Ew∼Q(w)[F (x,y′; w)]. (8.6)

So the risk for a Gibbs classifier is

R(GQ) = E(x,y)∼D(x,y)[GQ(x) 6= y] (8.7)

= E(x,y)∼D(x,y){Ew∼Q(w)[`0/1(x,y; w)]}, (8.8)

where the 0/1 loss `0/1(x,y; w) = 1(y 6= argmaxy′∈Y F (x,y′; w)). 1(s) = 1 if the

statement s is true and 0 otherwise. The risk for an Average classifier is

R(AQ) = E(x,y)∼D(x,y)[AQ(x) 6= y] (8.9)

= E(x,y)∼D(x,y){y 6= argmax
y′∈Y

Ew∼Q(w)[F (x,y′; w)]}. (8.10)

The Gibbs classifier seems to be easier to bound since the two expectations are

together. Indeed, the first PAC-Bayes bounds were proposed (McAllester, 1998,

1999) for Gibbs classifiers. Later, it is observed that R(AQ) ≤ 2R(GQ) (Langford

and Shawe-Taylor, 2003; Germain et al., 2008), thus one can focus on R(GQ)

only.

8.2.1 PAC-Bayes Bounds on Gibbs Classifiers

McAllester introduced PAC-Bayes analysis (McAllester, 1998, 1999) which is

further refined in McAllester (2001); Langford et al. (2001); Langford (2005);

Langford and Shawe-Taylor (2003). Germain et al. (2008) recently give a sim-

plified PAC-Bayesian bound proof on Gibbs classifiers for any convex function

D : [0, 1] × [0, 1] → R. Defining D(q, p) = 2(q − p)2, one can apply it to any

general loss `(x, y; w), thus giving the following lemma:

106 CHAPTER 8. STRUCTURED LEARNING THEORY

Theorem 17 (PAC-Bayesian bound(McAllester, 2001; Germain et al., 2008))

For any data distribution D, for any prior P and posterior Q over w, for any

δ ∈ (0, 1], for any loss `. With probability at least 1 − δ over random sample S

from D with m instances, we have

R(Q, `) ≤ RS(Q, `) +

√
KL(Q||P) + ln(1

δ
Es∼Dm Ew∼P e2m(R(Q,`)−RS(Q,`))2)

2m
,

where KL(Q||P) := Ew∼Q ln(Q(w)
P (w)

) is the Kullback-Leibler divergence between Q

and P , and

R(Q, `) = EQ,D[`(x,y; w)], (8.11)

RS(Q, `) = EQ
∑m

i=1 `(xi,yi; w)

m
. (8.12)

(Es∼Dm Ew∼P e
2m(R(Q,`)−RS(Q,`))2) is usually upper bounded by a function indepen-

dent to the data distribution D. For example, for the zero-one loss, it is upper

bounded by m+ 1 (see Germain et al., 2008).

8.2.2 PAC-Bayes bounds on Average Classifiers

Langford et al. (2001) give a margin bound on average classifier for binary clas-

sification as follows:

Theorem 18 (Bound on Average Classifier for Binary Classification) For

Y = {−1, 1}, for any data distribution D, for any prior P over w, for any w, any

δ ∈ (0, 1] and for any γ > 0, with probability at least 1− δ over random samples

S from D with m instances, we have

Pr
(x,y)∼D(x,y)

(
y Eh∼Q[h(x)] ≤ 0

)
≤ Pr

(x,y)∼S

(
y Eh∼Q[h(x)] ≤ γ

)
+O

√γ−2 |H |2
2

lnm+ lnm+ ln δ−1

m

 .

Zhu and Xing (2009) later extend it to structured output case for MEDN (see

Section 4.4.3 for its definition), which is still an average classifier.

8.2.3 PAC-Bayes Margin bounds

Here we extend existing PAC-Bayes bounds on Averaging classifiers to a single

classifier such as SVMs or CRFs in the structured output case. Define M(w′,y) =

miny′ 6=y 〈w,Φ(x,y)− Φ(x,y′)〉, then the following theorem holds.

8.3. PROBABILISTIC MARGINS 107

Theorem 19 (Generalisation Margin Bound) For any data distribution D,

for any prior P over w, for any w, any δ ∈ (0, 1] and for any γ > 0, with

probability at least 1 − δ over random samples S from D with m instances, we

have

eD ≤ Pr
(x,y)∼S

(EQ(M(w′,y)) ≤ γ)

+O

√γ−2 ||w ||2
2

ln(m|Y |) + lnm+ ln δ−1

m

 .

For the proof see Appendix B. The big O notation bound decreases as γ in-

creases. However, choosing a large γ will increase the empirical error ξ =

Pr(x,y)∼S(EQ(M(w′,y)) ≤ γ). Fixing ξ, one can then seek the largest possible γ

to tighten the bound.

In fact, the theorem holds not only for the hybrid model, but also for the

SVMs and CRFs. Moreover, for a fixed ξ, the largest possible γ in the hybrid

model implicitly depends on α. This is because SVMs purely maximise the margin

γ whereas the hybrid model tries to balance a large margin and small log loss

according to α. For CRFs, the bound can be meaningless since γ is not maximised

at all. Using the FCC analysis, one can always find the smallest α to ensure the

conditionally FCC on the hybrid model. Applying the theorem gives a non-

trivial generalisation bound on the hybrid model. This way, the hybrid model

has strengths of both CRFs and SVMs.

8.3 Probabilistic Margins

Traditional large margin algorithms have a geometrical interpretation — the hy-

perplane separates the correctly and incorrectly labeled data in the feature space

by a large margin. However, the existing margins don’t take into account the

probability distribution of the labels. One may argue that if you want to do

classification, you don’t need to waste your computational power on modelling

the distribution. However, if we have some knowledge of the label distribution,

taking it into account may help design more robust learning algorithms.

8.3.1 Geometrical Margins

Crammer and Singer give the definition of SVM margins for multiclass classifi-

cation (Crammer and Singer, 2001), which has been further generalised in struc-

108 CHAPTER 8. STRUCTURED LEARNING THEORY

tured label case (Taskar et al., 2004; Tsochantaridis et al., 2004). It is known

that the margin has a geometrical interpretation — the hyperplane (i.e. the

discriminant function F) separates the correctly and incorrectly labeled data in

the feature space by a large margin. Hence we call it geometrical margin. For

example, the hard margin SVMs is defined as

max
γ

γ s.t. (8.13a)

‖w ‖ = 1 (8.13b)

∀i,y 〈w,Φ(xi,yi)− Φ(xi,y)〉 ≥ γ, (8.13c)

where γ ≥ 0, enforces the separability of input-output pairs. To allow outliers,

the soft margin constraint is defined as

max
γ

γ − C
∑
i

ξi s.t. (8.14a)

‖w ‖ = 1 (8.14b)

∀i,y 〈w,Φ(xi,yi)− Φ(xi,y)〉 ≥ γ − ξi. (8.14c)

8.3.2 Probabilistic Margins

As we shall see, these margin constraints haven’t made use of any information

about how the data is distributed. It is natural to think what we will gain by

making use of the (approximated) distribution of the data Pw(y |x). We call any

margins represented in terms of Pw(y |x) Probabilistic Margins. For simplicity,

we use p(y) to express Pw(y |x) when the context of x is clear.

Definition 20 (Feasible sets and P-mapping) The smallest feasible set for

any y ∈ Y is {p : p(y) = 1, p ∈ ∆(Y)}, i.e. the corresponding corner of the

simplex. We denote it as M∞(y). A convex set Mγ(y) is a feasible set if and

only if there exists
∏

γ : ∆(Y)× Y→Mγ(y) ∀γ ∈ R, satisfies:

(Monotonic decrease) Mγ1(y) ⊃Mγ2(y) if and only if γ1 < γ2; (8.15)

(Convexity) Mγ(y) is still convex. (8.16)

Such a
∏

γ is called P-mapping. We also define

Mγ =
⋃
y∈Y

Mγ(y) (8.17)

.

8.3. PROBABILISTIC MARGINS 109

0

0.5

1

0

0.5

1

0

0.5

1

P(y=1|x)
P(y=2|x)

P
(y

=
3|

x)

(a) SVMs

0

0.5

1

0

0.5

1

0

0.5

1

P(y=1|x)
P(y=2|x)

P
(y

=
3|

x)
(b) CRFs

0

0.5

1

0

0.5

1

0

0.5

1

P(y=1|x)
P(y=2|x)

P
(y

=
3|

x)

(c) cycle

Figure 8.1: Contours of P-margins feasible sets. The green lines are the boundary

of Mγ on the simplex on selected γ values. The region with red dots is Mγ(y = 3)

with the largest γ value. 3 classes are used for demonstration purposes, although

nothing prevents us from using the structured case. (a) SVMs margin. That

is ln p(y)
p(y∗)

> γ. γ = 0.5, 1, 1.5. (b) Lower bounded CRFs margin. That is

ln p(y) > γ. γ = ln(0.6), ln(0.7), ln(0.8). (c) Cycle constraint margin. That is

(p(y) − 1)2 +
∑

y′ 6=y(p(y
′)2) < (1 − γ)2, γ = 0.5, 0.65, 0.8. Red dots are p points

sampled in the feasible set. Due to symmetry, we only sample from the right half

region of Mγ, and then display sample points symmetrically on both sides.

Intuitively, P-margins can be viewed as getting different contours of the feasible

set via choosing different Mγ. Thus increasing γ, the feasible set shrinks differ-

ently given different
∏

. On the other hand, one can come up with any contour

of the feasible set, as long as the Monotonic decrease and Convexity hold, it is a

valid P-margin. This is very convenient.

Some P-margins are shown in Fig. 8.1. For example Fig. 8.1a shows that the

contours of SVMs margin feasible sets are parallel to blue bisector lines. Whereas

for Lower Bounded CRFs (LCRFs), the contours are straight lines (see Fig. 8.1b).

What if we want the contours to be cycles centred at each corner as Fig. 8.1c

shows? It turns out that following constraint (p(y)−1)2+
∑

y′ 6=y(p(y′)2) < (1−γ)2

gives exactly what we want.

Definition 21 (Realizable P-margins) A functional µ : ∆(Y) × Y → R is

called a realizable P-margin if and only if µ satisfies:

∀γ ∈ R, {p : p ∈ ∆(Y), µ(p,y) > γ} = Mγ(y).

.

110 CHAPTER 8. STRUCTURED LEARNING THEORY

Realizable margins have a more intuitive interpretation — µ(p,y) is greater than

a certain threshold. It is easy to show that margins for SVMs and LCRFS are

realisable. And the cycle constraint can be rewritten as

1−
√

(p(y)− 1)2 +
∑
y′ 6=y

(p(y′)2) > γ,

thus it is realisable as well.

We now examine two interpretations of the probabilistic margins. The first

relates the p-margin to losses for probability estimation while the second gives

a geometrical interpretation in terms of restrictions of models on probability

simplexes. This second interpretation provides an intuition as to how the margins

act as a capacity control, in a similar way to the way the original, geometric

margin does for classification.

8.3.3 Losses imply P-Margins

Many existing algorithm can then be cast as

max
p
γ, s.t. (8.18a)

∀i, p ∈Mγ(yi). (8.18b)

To allow outliers, a soft margin version is obtained by a relaxed constraint

max
p
γ − C

∑
i

ξi, s.t. (8.19a)

∀i, p ∈Mγ−ξi(yi), ξi > 0. (8.19b)

For realizable margins, the constraints become

max
p
γ − C

∑
i

ξi, s.t. (8.20a)

∀i, µ(p,yi) ≥ γ − ξi, ξi > 0. (8.20b)

Alternatively, it can be written as

min
p
J(p) := λΩ(p) +

m∑
i=1

ξi, s.t. (8.21a)

∀i, µ(p,yi) ≥ γ0 − ξi, ξi > 0, (8.21b)

where γ0 is a fixed constant.

8.4. CONCLUSION 111

Algorithms Losses µ(p,y) γ0

Hinge [1− 〈w,Φ(x,y)− Φ(x,y)〉]+ ln p(y)
p(y)

1

HingeRescale [∆(y,y)− 〈w,Φ(x,y)− Φ(x,y)〉]+ ln p(y)
p(y)

∆(y,y)

SquaredHinge 1
2
(1− 〈w,Φ(x,y)− Φ(x,y)〉)2 −1

2
(ln p(y)

p(y)
)2 + ln p(y)

p(y)
1
2

CRF 〈Φ(x,y),w〉 − ln(Z(w |x)) − ln(p(y)) 0

Table 8.1: Loss functions and their P-margins constraint µ(p, y) ≥ γ0 − ξ.

SVMs The soft margin SVM has the hinge loss

`h(x,y,w) = [1− 〈w,Φ(x,y)− Φ(x,y)〉]+

= [1− ln
p(y)

p(y)
]+.

So µ(p,y) = ln p(y)
p(y)

and γ0 = 1.

CRFs CRFs can be also formulated as

argmin
w

||w ||2

2σ2
+

m∑
i=1

ξi (8.22)

s.t. ln(p(yi)) ≥ −ξi, ξi ≥ 0, ∀i (8.23)

So µ(p,y) = ln(p(yi)) and γ0 = 0.

For more examples of P-margins for various algorithms, see Table 8.1.

8.4 Conclusion

We extended the Fisher consistency to the structured case, and proposed a refined

notion to characterise the structured surrogate losses. We reviewed the recent

development of PAC-Bayes bounds and gave a bound on the generalisation error

of a single structured classifier. We also introduce P-margins which take the label

distribution into account. And we show that many existing algorithms can be

viewed as special cases of the new margin concept which may help understand

existing algorithms as well as design new algorithms.

112 CHAPTER 8. STRUCTURED LEARNING THEORY

Part V

Conclusions and Future

Directions

113

Chapter 9

Summary and Future Directions

In this chapter, we will summarise our contributions and discuss future directions.

9.1 Contribution Summary

In this thesis, we made several contributions — some are complete, and some

are at the exploratory stage. We propose hash kernels (in Chapter 2) to facili-

tate efficient kernels (Shi et al., 2009a,b) which can deal with massive multi-class

problems with even more than 7000 classes. We exploit the connection between

hash kernels and compressed sensing, and apply hashing to face recognition which

significantly speeds up the state-of-the-art (Shi et al., 2010a) (in Chapter 3). We

propose a novel approach for automatic paragraph segmentation (Shi et al., 2007)

(in Chapter 5), namely training Semi-Markov models discriminatively using a

Max-Margin method. This method allows us to model the sequential nature of

the problem and to incorporate features of a whole paragraph. We jointly seg-

ment and recognise actions in video sequences with a discriminative semi-Markov

model framework (Shi et al., 2008, 2009d) (in Chapter 6). A Viterbi-like algo-

rithm is devised to help efficiently solve the induced optimisation problem. We

propose a novel hybrid loss (Shi et al., 2009c, 2010b) (in Chapter 7) which has the

advantages of both CRFs and SVMs — it is consistent and has a tight PAC-Bayes

bound. We apply it to various applications such as Text chunking, Named En-

tity Recognition and Joint Image Categorisation. We study the recent advances

in PAC-Bayes bounds, and apply them to structured learning (Shi et al., 2009c,

2010b) (in Chapter 8). Moreover, we propose a more refined notion of Fisher con-

sistency, namely Conditional Fisher Consistency for Classification (CFCC)(Shi

et al., 2010b), that conditions on the knowledge of the true distribution of class

115

116 CHAPTER 9. SUMMARY AND FUTURE DIRECTIONS

labels. It turns out that the hybrid loss is CFCC but not FCC. We also intro-

duce Probabilistic margins (in Chapter 8) which take the label distribution into

account. And we show that many existing algorithms can be viewed as special

cases of the new margin concept which may help understand existing algorithms

as well as design new algorithms.

9.2 Future Directions

9.2.1 Tightening PAC-Bayes bounds

PAC-Bayes bounds incorporate both data and the distributions of models. How-

ever, those existing bounds are often pessimistic and loose. It may be possible

to develop tighter bounds using more information exacted from the data. For

example, the true conditional distribution of a label for an observation is often

on few labels. Hence the large quantity of the size of the label space in the PAC-

Bayes bound might be replaced by some much smaller quantity which may lead

to tighter bound.

9.2.2 Adaptive hybrid loss

The current hybrid model uses a single, fixed α for each training set. One inter-

esting avenue to explore would be trying to dynamically estimate a good value of

α on a per-observation basis. This may further improve the efficacy of the hybrid

loss by exploiting the robustness of SVMs (low α) when the label distribution for

an observation has a dominant class but switching to probability estimation via

CRFs (high α) when this is not the case.

9.2.3 Compressed Sensing and Graphical model inference

Inference for large graphical models is often extremely expensive. For instance,

a 1000 by 1000 pixels image can have a graphical model with 1 million nodes.

Even approximate inference algorithms become very expensive. How to infer and

learn models as such scales is still an open question.

Compressed Sensing (CS) (Candes and Tao, 2005; Candés et al., 2006; Donoho,

2006; Tropp and Gilbert, 2007; Song et al., 2008) in the context of information

theory and signal processing discovered a surprising result — a sparse signal can

be recovered by a sampling rate much smaller than the conventional Shannon-

Nyquist rate. Hsu et al. (2009) apply CS to multi-label prediction problems with

9.2. FUTURE DIRECTIONS 117

large output spaces under the assumption of output sparsity. They learn a regres-

sor from which one can predict a compressed label which is then used to recover

the original label. However, their technique can not deal with dependent labels

in graphical models. Cevher et al. (2008) infer a restricted Markov Random Field

with only binary classes on each node. Moreover, they implicitly assume that the

expected feature is the same as or similar to the expected label values, so that

they can avoid designing potential functions in the compressed space.

We are interested in applying CS to more general graphical models. Com-

pared to multi-class or multi-label, graphical models are already compact repre-

sentations. The notion of sparsity in CS may no longer be applicable to general

graphical models. We would instead like to define a novel notion — compressibil-

ity instead on graphical models. By random mapping or mapping according to

clustering/separability, we may be able to map the original large graphical mod-

els to much smaller graphical models with careful design of potential functions

which guarantee the consistency between the inference in the original graphical

models and that in the compressed ones. The task of inference is to find the most

likely labels which are often grouped or separated into subspaces. Exploiting the

correlation between subspaces such as blocked/grouped `1 regularisation (Stojnic,

2009) or more general model-based CS (Baraniuk et al., 2009) is a possible way

to recover the original best label from the compressed best label. This way, one

could infer a large graphical model with millions of nodes with the cost of only

thousands of nodes.

118 CHAPTER 9. SUMMARY AND FUTURE DIRECTIONS

Appendix A

Appendix

This appendix contains proofs for hash kernels and compressive sensing.

Theorem 2 For a random function mapping l features duplicated c times into

a space of size n, for all loss functions L and distributions D on n features, the

probability (over the random function) of no information loss is at least:

1− l[1− (1− c/n)c + (lc/n)c].

Proof The proof is essentially a counting argument with consideration of the

fact that we are dealing with a hash function rather than a random variable. It

is structurally similar to the proof for a Bloom filter (Bloom, 1970), because the

essential question we address is: “What is a lower bound on the probability that

all features have one duplicate not colliding with any other feature?”

Fix a feature f . We’ll argue about the probability that all c duplicates of f

collide with other features.

For feature duplicate i, let hi = h(f ◦ i). The probability that hi = h(f ′ ◦ i′)
for some other feature f ′ ◦ i′ is bounded by (l− 1)c/n because the probability for

each other mapping of a collision is 1/n by the assumption that h is a random

function, and the union bound applied to the (l− 1)c mappings of other features

yields (l− 1)c/n. Note that we do not care about a collision of two duplicates of

the same feature, because the feature value is preserved.

The probability that all duplicates 1 ≤ i ≤ c collide with another feature is

bounded by (lc/n)c + 1 − (1 − c/n)c. To see this, let c′ ≤ c be the number of

distinct duplicates of f after collisions. The probability of a collision with the first

of these is bounded by (l−1)c
n

. Conditioned on this collision, the probability of the

119

120 APPENDIX A. APPENDIX

next collision is at most (l−1)c−1
n−1

, where 1 is subtracted because the first location is

fixed. Similarly, for the ith duplicate, the probability is (l−1)c−(i−1)
n−(i−1)

. We can upper

bound each term as lc
n

, implying the probability of all c′ duplicates colliding with

other features is at most (lc/n)c
′
. The probability that c′ = c is the probability

that none of the duplicates of f collide, which is (n−1)!
nc(n−c−1)!

≥ ((n − c)/n)c. If

we pessimistically assume that c′ < c implies that every duplicate collides with

another feature, then

P(coll) ≤ P(coll|c′ = c) P(c′ = c) + P(c′ 6= c)

≤ (lc/n)c + 1− ((l − c)/l)c.

Simplification gives (lc/n)c+1−(1−c/n)c as claimed. Taking a union bound over

all l features, we find that the probability any feature has all duplicates collide is

bounded by l[1− (1− c/n)c + (lc/n)c].

Theorem 3 Assume that the probability of deviation between the hash kernel

and its expected value is bounded by an exponential inequality via

P
[∣∣∣kh(x,x′)− Eh

[
k
h
(x,x′)

]∣∣∣ > ε
]
≤ c exp(−c′ε2n)

for some constants c, c′ depending on the size of the hash and the kernel used. In

this case the error ε arising from ensuring the above inequality, with probability

at least 1− δ, for m observations and M classes for a joint feature map Φ(x, y),

is bounded by

ε ≤
√

(2 log(m+ 1) + 2 log(M + 1)− log δ + log c− 2 log 2)/nc′. (A.1)

Proof Apply the union bound to the kernel matrix of size (mM)2, that is, to

all T := m(m+ 1)M(M + 1)/4 unique elements. Solving

Tc exp(−c′ε2n) = δ,

we get the bound

ε ≤
√

log (Tc)− log δ

c′n
.

Bounding log (Tc) from above

log (Tc) = log T + log c ≤ 2 log(m+ 1) + 2 log(M + 1) + log c− 2 log 2,

and substituting it into (A.1) yields the result.

121

Corollary 10 [Recovery on a Specific Basis] For any η-sparse signal α ∈ Rn

and two constants z1, z2 > 0, let d ≥ z1η log(n/η), and draw d row vectors

r1, . . . , rd independently from the standard Gaussian distribution on Rm. Denote

the stacked vectors {ri}di=1 as the matrix R ∈ Rd,m. For any matrix A ∈ Rm,n

with unit length columns, with probability at least 1− e−z2d, the signal α can be

recovered via

α∗ = argmin
α∈Rn

‖R x− (R A)α‖2
`2

+ λ‖α‖`1 .

Proof Let Aj, j = 1, . . . , n denote the j-th column vector of the matrix A and let

Ã := R A, i.e., the row vectors Ãi =
(
〈ri,A1〉 , . . . , 〈ri,An〉

)
for (i = 1, . . . , d).

Note that the inner product 〈ri,Aj〉 =
∑m

k=1 ri,k Ak,j is still a random variable

drawn from Gaussian distribution N(0,
∑m

k=1 A2
k,j). Hence {Ãi}di=1 are random

vectors independently drawn from the Gaussian distribution in Rm. Corollary 10

follows Theorem 9.

Theorem 12 [Hashing OMP Recovery] For any η-sparse signal α ∈ Rn and

confidence δ > 0, given hash matrix H, let d ≥ 16η2 log(n/δ), for any matrix

A ∈ Rm,n, take the measurements such that H x = (H A)α. Then with proba-

bility at least 1− δ, the signal α can be recovered via Algorithm 2.

Proof Admissibility mainly relies on the coherence statistic µ := maxj<k | 〈Rj,Rk〉 |.
In a hash matrix H, {−1, 1} are equally likely to appear so E[〈Hj,Hk〉] = 0. By

the hoeffding inequality, P (| 〈Hj,Hk〉 > ε|) ≤ 2e−εN/2. The union bound argu-

ment further gives the bound on P (µ) < d of H as of Bernoulli random matrix.

This then leads to the same bound on the smallest singular value. Also we know

the columns of H with multiple hash functions are independent and normalization

only changes the scale, hence H is admissible. Admissibility implies reconstruc-

tion, so the theorem holds.

122 APPENDIX A. APPENDIX

Appendix B

Appendix

This appendix contains proofs for structured learning.

Theorem 16 Let D = (D1, . . . , Dk) be a distribution over labels and let y1 =

maxyDy and y2 = maxy 6=y1
Dy be the two most likely labels. Then the hybrid

loss `α is conditionally FCC for D whenever Dy1
> 1

2
or

α > 1−
Dy1
−Dy2

1− 2Dy1

. (B.1)

Proof Since we a free to permute labels within Y we will assume without loss of

generality that D1 = maxy∈YDy and D2 = maxy 6=1 Dy. The proof now proceeds

by contradiction and assumes there is some minimiser p = argminq∈∆(Y) Lα(q,D)

that is not aligned with D. That is, there is some y∗ 6= 1 such that py∗ ≥ p1. For

simplicity, and again without loss of generality, we will assume y∗ = 2.

The first case to consider is when p2 is a maximum and p1 < p2. Here

we construct a q that “flips” the values of p1 and p2 and leaves all the values

unchanged. That is, q1 = p2, q2 = p1 and qy = py for all y = 3, . . . , k. Intuitively,

this new point is closer to D and therefore the CRF component of the loss will

be reduced while the SVM loss won’t increase. The difference in conditional risks

satisfies

Lα(p,D)− Lα(q,D) =
k∑

y=1

Dy.(`α(p,y)− `α(q,y))

= D1.(`α(p, 1)− `α(q, 1))

+D2.(`α(p, 2)− `α(q, 2))

= (D1 −D2)(`α(q, 2)− `α(q, 1))

123

124 APPENDIX B. APPENDIX

since `α(p, 1) = `α(q, 2) and `α(p, 2) = `α(q, 1) and the other terms cancel by

construction. As D1−D2 > 0 by assumption, all that is required now is to show

that `α(q, 2)− `α(q, 1) = α ln q1
q2

+ (1− α)(`H(q, 2)− `H(q, 1)) is strictly positive.

Since q1 > qy for y 6= 1 we have ln q1
q2
> 0, `H(q, 2) =

[
1− ln q2

q1

]
+
> 1,

and `H(q, 1) =
[
1− ln q1

qy

]
+
< 1, and so `H(q, 2) − `H(q, 1) > 1 − 1 = 0. Thus,

`α(q, 2)− `α(q, 1) > 0 as required.

Now suppose that p2 = p1 is a maximum. In this case we show a slight

perturbation q = (p1 +ε, p2−ε, p3, . . . , pk) yields a lower for ε > 0. For y 6= 1, 2 we

have `L(p,y)−`(q,y) = 0 and since p2 > py and q1 > qy thus `H(p,y)−`H(q,y) =

1− ln py
p2

+ 1− ln qy
q1

= ln p2
q1
> 1− q1

p2
= − ε

p2
since − lnx > 1−x for x ∈ (0, 1) and

q1 = p1 + ε = p2 + ε. Therefore

`α(p,y)− `α(q,y) > −ε(1− α)

p1

(B.2)

When y = 1, `L(p, 1)−`L(q, 1) = − ln p1
q1
> q1−p1

p1
= ε

p1
and `H(p, 1)−`H(q, 1) =

(1− ln p1
p2

)− (1− ln q1
q2

) = ln q1
q2

= ln p1+ε
p1−ε since p1 = p2. Thus `H(p, 1)− `H(q, 1) >

1− p1−ε
p1+ε

= 2ε
p1+ε

. And so

`α(p,y)− `α(q,y) > ε

[
α

p1

+
2(1− α)

p1 + ε

]
(B.3)

Finally, when y = 2 we have `L(p, 2) − `L(q, 2) = − ln p2
q2
> q2−p2

p2
= −ε

p1
and

`H(p, 2)− `H(q, 2) = (1− ln p2
p1

)− (1− ln q2
q1

) = ln q2
q1
> 1− q1

q2
= −2ε

p1+ε
. Thus,

`α(p, 2)− `α(q, 2) > −ε
[
α

p1

+
2(1− α)

p1 + ε

]
. (B.4)

Putting the inequalities (B.2), (B.3) and (B.4) together yields

lim
ε→0

Lα(p,D)− Lα(q,D)

ε

> lim
ε→0

(D1 −D2)

[
α

p1

+
2(1− α)

p1 + ε

]
−

k∑
y=3

Dy
1− α
p1

=
D1 −D2

p1

(2− α)− 1−D1 −D2

p1

(1− α)

=
1

p1

(D1 −D2 + (1− α)(2D1 − 1)).

Observing that since D1 > D2, when D1 >
1
2

the final term is positive without

any constraint on α and when D1 <
1
2

the difference in risks is positive whenever

α > 1− D1 −D2

1− 2D1

(B.5)

125

completes the proof.

Theorem 19 [Generalisation Margin Bound] For any data distribution D, for

any prior P over w, for any w, any δ ∈ (0, 1] and for any γ > 0, with probability

at least 1− δ over random samples S from D with m instances, we have

eD ≤ Pr
(x,y)∼S

(EQ(M(w′,y)) ≤ γ)

+O

√γ−2 ||w ||2
2

ln(m|Y |) + lnm+ ln δ−1

m

 .

Proof By choosing the weight prior P (w) = 1
Z

exp(−‖w ‖
2

2
) and the posterior

Q(w′) = 1
Z

exp(−‖w
′−w ‖2

2
), one can show eD = PrD(EQM(w′,y) ≤ 0) by sym-

metry argument proposed in Langford et al. (2001); McAllester (2007). Applying

the PAC-Bayes margin bound Langford et al. (2001); Zhu and Xing (2009) and

using the fact that KL(Q||P) = ||w ||2
2

yields the theorem.

126 APPENDIX B. APPENDIX

Bibliography

D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss

with binary coins. J. Comput. Syst. Sci, 66(4):671–687, 2003.

Y. Altun and A. Smola. Unifying divergence minimization and statistical infer-

ence via convex duality. In H. Simon and G. Lugosi, editors, Proc. Annual

Conf. Computational Learning Theory, LNCS, pages 139–153. Springer, 2006.

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector

machines. In Proc. Intl. Conf. Machine Learning, pages 3–10, Menlo Park,

California, 2003. AAAI Press.

A. Appleby. Murmurhash, 2008. http://sites.google.com/site/murmurhash/.

G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar, and S. V. N. Vish-

wanathan. Predicting Structured Data. MIT Press, Cambridge, Massachusetts,

2007.

R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive

sensing. In arxiv.org, 2009.

R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. A simple proof of the

restricted isometry principle for random matrices. Constructive Approximation,

2007.

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition

using shape contexts. IEEE Trans. Pattern Analysis and Machine Intell., 24

(4):509–522, 2002.

C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic Analysis on Semigroups.

Springer, New York, 1984.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

127

128 BIBLIOGRAPHY

B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13:422C426, July 1970.

K. M. Borgwardt, H.-P. Kriegel, S. V. N. Vishwanathan, and N. Schraudolph.

Graph kernels for disease outcome prediction from protein-protein interaction

networks. In R. B. Altman, A. K. Dunker, L. Hunter, T. Murray, and T. E.

Klein, editors, Proceedings of the Pacific Symposium of Biocomputing 2007,

Maui Hawaii, January 2007. World Scientific.

Y. Bulatov and O. Bousquet. Log loss or hinge loss, 2007.

http://yaroslavvb.blogspot.com/2007/06/log-loss-or-hinge-loss.html.

C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support

vector learning machines. In M. C. Mozer, M. I. Jordan, and T. Petsche,

editors, Advances in Neural Information Processing Systems 9, pages 375–381,

Cambridge, MA, 1997. MIT Press.

E. Candés. The restricted isometry property and its implications for compressed

sensing. C. R. Acad. Sci. Paris, Ser. I, 346:589–592, 2008.

E. Candés, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information. IEEE Trans.

Information Theory, 52(2):489–509, 2006.

E. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Info

Theory, 51(12):4203–4215, 2005.

V. Cevher, M. F. Duarte, C. Hegde, and R. G. Baraniuk. Sparse signal recovery

using markov random fields. In Twenty-Two Annual Conference on Neural

Information Processing Systems, CanadaA, 2008.

L. Cheng, S. Wang, D. Schuurmans, T. Caelli, and S. Vishwanathan. An online

discriminative approach to background subtraction. In IEEE international

conference on advanced video and signal based surveillance (AVSS), 2006.

M. Collins. Discriminative training methods for hidden Markov models. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Process-

ing, 2002.

G. Cormode and M. Muthukrishnan. An improved data stream summary: The

count-min sketch and its applications. In LATIN: Latin American Symposium

on Theoretical Informatics, 2004.

BIBLIOGRAPHY 129

K. Crammer and Y. Singer. On the learnability and design of output codes for

multiclass problems. In N. Cesa-Bianchi and S. Goldman, editors, Proc. Annual

Conf. Computational Learning Theory, pages 35–46, San Francisco, CA, 2000.

Morgan Kaufmann Publishers.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass

kernel-based vector machines. J. Mach. Learn. Res., 2:265–292, 2001.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and

C. Hansch. Structure-activity relationship of mutagenic aromatic and het-

eroaromatic nitro compounds. correlation with molecular orbital energies and

hydrophobicity. J Med Chem, 34:786–797, 1991.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based

perceptron on a fixed budget. In Y. Weiss, B. Schölkopf, and J. Platt, editors,

Advances in Neural Information Processing Systems 18, Cambridge, MA, 2006.

MIT Press.

P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from non-enzymes

without alignments. J Mol Biol, 330(4):771–783, Jul 2003.

P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via

sparse spatio-temporal features. In VS-PETS workshop, 2005.

D. L. Donoho. Compressed sensing. IEEE Trans. Information Theory, 52(4):

1289–1306, 2006.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel repre-

sentations. JMLR, 2:243–264, Dec 2001.

C. Galleguillos, A. Rabinovich, and S. Belongie. Object categorization using co-

occurrence, location and appearance. In IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2008. MIT Press, 2008.

K. Ganchev and M. Dredze. Small statistical models by random feature mixing.

In workshop on Mobile NLP at ACL, 2008.

D. Genzel. A paragraph boundary detection system. In Sixth International

Conference on Intelligent Text Processing and Computational Linguistics (CI-

CLing’05), pages 825–830, 2005.

130 BIBLIOGRAPHY

D. Genzel and E. Charniak. Variation of entropy and parse trees of sentences as

a function of the sentence number. In Proceedings of the 2003 conference on

Empirical methods in natural language processing, pages 65–72, Morristown,

NJ, USA, 2003. Association for Computational Linguistics.

A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumina-

tion cone models for face recognition under variable lighting and pose. IEEE

Trans. Pattern Anal. Mach. Intelligence, 23(6):643–660, 2001.

P. Germain, A. Lacasse, F. Laviolette, and M. Marchand. Pac-bayesian learning

of linear classifiers. In ICML, 2008.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo

in Practice. Chapman & Hall, 1995.

I. Guyon, V. Vapnik, B. Boser, L. Bottou, and S. A. Solla. Structural risk

minimization for character recognition. In J. E. Moody, S. J. Hanson, and

R. Lippmann, editors, Advances in Neural Information Processing Systems 4,

pages 471–479, San Mateo, CA, 1992. Morgan Kaufmann Publishers.

X. He, S. Yan, Y. Hu, and P. Niyogi. Face recognition using Laplacianfaces. IEEE

Trans. Pattern Anal. Mach. Intelli., 27(3):328–340, 2005.

D. Hsu, S. M. Kakade, J. Langford, and T. Zhang. Multi-label prediction via com-

pressed sensing. In Twenty-Third Annual Conference on Neural Information

Processing Systems, CanadaA, 2009.

P. Indyk and R. Motawani. Approximate nearest neighbors: Towards removing

the curse of dimensionality. In Proceedings of the 30th Symposium on Theory

of Computing, pages 604–613, 1998.

T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. In S. A.

Solla, T. K. Leen, and K.-R. Müller, editors, Advances in Neural Information

Processing Systems 12, pages 470–476, Cambridge, MA, 2000. MIT Press.

J. Janssen and N. Limnios. Semi-Markov Models and Applications. Kluwer Aca-

demic, 1999.

H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system

for action recognition. In IEEE International Conference on Computer Vision

(ICCV), 2007.

BIBLIOGRAPHY 131

K. S. Jones. A statistical interpretation of term specificity and its application in

retrieval. Journal of Documentation, 28:11–21, 1972.

M. I. Jordan. An Introduction to Probabilistic Graphical Models. MIT Press,

2008. To Appear.

Y. Ke, R. Sukthankar, and M. Hebert. Efficient visual event detection using vol-

umetric features. In International Conference on Computer Vision, volume 1,

pages 166 – 173, October 2005.

L. Kontorovich. A universal kernel for learning regular languages. In Machine

Learning in Graphs, 2007.

J. D. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Prob-

abilistic modeling for segmenting and labeling sequence data. In Proc. Intl.

Conf. Machine Learning, volume 18, pages 282–289, San Francisco, CA, 2001.

Morgan Kaufmann.

J. Langford. Tutorial on practical prediction theory for classification. JMLR, 6:

273–306, 2005.

J. Langford, L. Li, and A. Strehl. Vowpal wabbit online learning project, 2007.

http://hunch.net/?p=309.

J. Langford, M. Seeger, and N. Megiddo. An improved predictive accuracy bound

for averaging classifiers. In ICML, 2001.

J. Langford and J. Shawe-Taylor. Pac-bayes and margin. In Neural Information

Processing Systems. MIT Press, 2003.

S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, UK, 1996.

D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for

text categorization research. The Journal of Machine Learning Research, 5:

361–397, 2004.

D. D. Lewis. Naive (Bayes) at forty: The independence assumption in information

retrieval. In C. Nédellec and C. Rouveirol, editors, Proceedings of ECML-98,

10th European Conference on Machine Learning, number 1398, pages 4–15,

Chemnitz, DE, 1998. Springer Verlag, Heidelberg, DE.

132 BIBLIOGRAPHY

P. Li, K. Church, and T. Hastie. Conditional random sampling: A sketch-based

sampling technique for sparse data. In B. Schölkopf, J. Platt, and T. Hoffman,

editors, Advances in Neural Information Processing Systems 19, pages 873–880.

MIT Press, Cambridge, MA, 2007.

Y. Liu. Fisher consistency of multicategory support vector machines. In Proc.

Intl. Conf. Machine Learning, 2007.

D. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

O. L. Mangasarian. Generalized support vector machines. Technical report,

University of Wisconsin, Computer Sciences Department, Madison, 1998.

A. Martinez and R. Benavente. The ar face database. Technical Report 24, CVC

Tech. Report, 1998.

D. McAllester. Generalization bounds and consistency for structured labeling. In

Predicting Structured Data, Cambridge, Massachusetts, 2007. MIT Press.

D. A. McAllester. Some PAC Bayesian theorems. In Proc. Annual Conf. Com-

putational Learning Theory, pages 230–234, Madison, Wisconsin, 1998. ACM

Press.

D. A. McAllester. PAC-Bayesian model averaging. In Proc. Annual Conf. Com-

putational Learning Theory, pages 164–170, Santa Cruz, USA, 1999.

D. A. McAllester. Pac-bayesian stochastic model selection. ML, 2001.

B. D. McKay. nauty user’s guide. Technical report, Dept. Computer Science,

Austral. Nat. Univ., 1984.

A. Nobel and A. Dembo. A note on uniform laws of averages for dependent

processes. Statistics and Probability Letters, 17:169–172, 1993.

S. Nowozin, G. Bakir, and K. Tsuda. Discriminative subsequence mining for

action classification. In International Conference on Computer Vision, 2007.

S. Park and H. Kautz. Hierarchical recognition of activities of daily living using

multi-scale, multiperspective vision and rfid. the 4th. In IET International

Conference on Intelligent Environments, page 2008, 2008.

BIBLIOGRAPHY 133

J. Phillips, G. Humphreys, U. Noppeney, and C. Price. The neural substrates

of action retrieval: An examination of semantic and visual routes to action.

Visual Cognition, 9(4-5):662–685, 2002.

N. Przulj. Biological network comparison using graphlet degree distribution.

Bioinformatics, 23(2):e177–e183, Jan 2007.

G. Raetsch and S. Sonnenburg. Large scale hidden semi-markov SVMs. In Ad-

vances in Neural Information Processing Systems 19, 2006.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In

J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural

Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.

X. Ren and J. Malik. Learning a classification model for segmentation. In Proc.

9th Int’l. Conf. Computer Vision, volume 1, pages 10–17, 2003.

R.Gross and J. Shi. The CMU motion of body (MoBo) database. Technical

Report Tech. Report CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon

University, 2001.

M. Rudelson and R. Veshynin. Geometric approach to error correcting codes and

reconstruction of signals. Int. Math. Res. Notices, 64:4019–4041, 2005.

S. Sarawagi and W. Cohen. Semi-markov conditional random fields for informa-

tion extraction. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in

Neural Information Processing Systems 16, 2004.

R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text

categorization. Machine Learning, 39(2/3):135–168, 2000.

K. Schindler and L. van Gool. Action snippets: How many frames does human

action recognition require? Computer Vision and Pattern Recognition, IEEE

Computer Society Conference on, 0:1–8, 2008.

B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997.

Download: http://www.kernel-machines.org.

C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local svm

approach. In Proc. Intl. Conf. Pattern Recognition, pages 32–36, Washington,

DC, USA, 2004. IEEE Computer Society.

134 BIBLIOGRAPHY

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceed-

ings of HLT-NAACL, pages 213–220, Edmonton, Canada, 2003. Association for

Computational Linguistics.

J. Shawe-Taylor, P. Bartlett, R. C. Williamson, and M. Anthony. A framework for

structural risk minimization. In Proc. Annual Conf. Computational Learning

Theory, pages 68–76, New York, 1996. Association for Computing Machinery.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, Cambridge, UK, 2004.

Q. Shi, Y. Altun, A. Smola, and S. V. N. Vishwanathan. Semi-markov models for

sequence segmentation. In Proceedings of the 2007 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 640–648, 2007.

Q. Shi, H. Li, and C. Shen. Rapid face recognition using hashing. In Proc. IEEE

Conf. Computer Vision and Pattern Recognition, San Francisco, USA, 2010a.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. Smola, A. Strehl, and S. V. N.

Vishwanathan. Hash kernels. In M. Welling and D. van Dyk, editors, Proc.

Intl. Workshop on Artificial Intelligence and Statistics. Society for Artificial

Intelligence and Statistics, 2009a.

Q. Shi, J. Petterson, G. Dror, J. Langford, A. J. Smola, and S. Vishwanathan.

Hash kernels for structured data. Journal of Machine Learning Research -

Special Topic on Large Scale Learning, 10:2615–2637, Nov. 2009b.

Q. Shi, M. Reid, and T. Caetano. Hybrid model of conditional random field and

support vector machine. In Workshop at the 23rd Annual Conference on Neural

Information Processing Systems, Vancouver/Whistler, B.C., Canada, 2009c.

Q. Shi, M. Reid, and T. Caetano. Conditional random fields and support vector

machines for structured prediction: A hybrid approach. In Proc. Intl. Conf.

Machine Learning, Haifa, Israel, 2010b. submitted.

Q. Shi, L. Wang, L. Cheng, and A. J. Smola. Discriminative human action

segmentation and recognition using semi-markov model. In Proc. IEEE Conf.

Computer Vision and Pattern Recognition, Anchorage, AK, 2008.

Q. Shi, L. Wang, L. Cheng, and A. J. Smola. Discriminative human action

segmentation and recognition using semi-markov model. International Journal

of Computer Vision, 2009d. Accepted under revision.

BIBLIOGRAPHY 135

J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance,

shape and context modeling for multi-class object recognition and segmenta-

tion. In In ECCV, pages 1–15, 2006.

J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object

matching in videos. In Proceedings of the International Conference on Com-

puter Vision, volume 2, pages 1470–1477, Oct. 2003.

A. Smola, S. Vishwanathan, and Q. Le. Bundle methods for machine learning.

In NIPS, 2007.

Y. Song, F. Nie, C. Zhang, and S. Xiang. A unified framework for semi-supervised

dimensionality reduction. Pattern Recognition, 41(9):2789–2799, 2008.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening lp

relaxations for map using message passing. In Proceedings of the 24th Annual

Conference on Uncertainty in Artificial Intelligence (UAI-08), pages 503–510.

MIT Press, 2008.

C. Sporleder and M. Lapata. Broad coverage paragraph segmentation across

languages and domains. ACM Trans. Speech Lang. Process., 3(2):1–35, 2006.

M. Stojnic. Block-length dependent thresholds in block-sparse compressed sens-

ing. In arxiv.org, 2009.

B. Taskar. Learning Structured Prediction Models: A Large Margin Approach.

PhD thesis, Stanford University, 2004.

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In

S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information

Processing Systems 16, pages 25–32, Cambridge, MA, 2004. MIT Press.

C. Teo, Q. Le, A. Smola, and S. Vishwanathan. A scalable modular convex solver

for regularized risk minimization. In KDD, 2007.

C. H. Teo and S. V. N. Vishwanathan. Fast and space efficient string kernels using

suffix arrays. In ICML ’06: Proceedings of the 23rd international conference

on Machine learning, pages 929–936, New York, NY, USA, 2006. ACM Press.

A. Tewari and P. Bartlett. On the consistency of multiclass classification methods.

Journal of Machine Learning Research, 8:1007–1025, 2007.

136 BIBLIOGRAPHY

H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma. Statistical

evaluation of the predictive toxicology challenge 2000-2001. Bioinformatics, 19

(10):1183–1193, July 2003.

J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via

orthogonal matching pursuit. IEEE Trans. Information Theory, 53(12):4655–

4666, 2007.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector ma-

chine learning for interdependent and structured output spaces. In Proc. Intl.

Conf. Machine Learning, New York, NY, USA, 2004. ACM Press.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods

for structured and interdependent output variables. J. Mach. Learn. Res., 6:

1453–1484, 2005.

K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences.

Bioinformatics, 18 (Suppl. 2):S268–S275, 2002.

M. Turk and A. Pentland. Face recognition using eigenfaces. In Proc. IEEE Conf.

Computer Vision and Pattern Recognition, pages 586–591, Hawaii, June 1991.

V. Vapnik. Structure of statistical learning theory. In A. Gammerman, editor,

Computational and Probabalistic Reasoning, chapter 1. John Wiley and Sons,

Chichester, 1996.

S. V. N. Vishwanathan, K. Borgwardt, and N. N. Schraudolph. Fast computation

of graph kernels. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances

in Neural Information Processing Systems 19, Cambridge MA, 2007a. MIT

Press.

S. V. N. Vishwanathan, A. J. Smola, and R. Vidal. Binet-Cauchy kernels on

dynamical systems and its application to the analysis of dynamic scenes. In-

ternational Journal of Computer Vision, 73(1):95–119, 2007b.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families,

and variational inference. Technical Report 649, UC Berkeley, Department of

Statistics, September 2003.

C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett,

B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Clas-

sifiers, pages 39–50, Cambridge, MA, 2000. MIT Press.

BIBLIOGRAPHY 137

K. Weinberger, A. Dasgupta, J. Attenberg, J. Langford, and A. Smola. Feature

hashing for large scale multitask learning. In L. Bottou and M. Littman, editors,

International Conference on Machine Learning, 2009.

K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin

nearest neighbor classification. J. Mach. Learn. Res., 10:207–244, 2009.

S. Wong, T. Kim, and R. Cipolla. Learning motion categories using both semantic

and structural information. In IEEE Conf. on CVPR, pages 1–6, 2007.

J. Wright, A. Y. Yang, S. S. Sastry, and Y. Ma. Robust face recognition via

sparse representation. IEEE Trans. Pattern Anal. Mach. Intelli., 2008.

A. Y. Yang, J. Wright, Y. Ma, and S. S. Sastry. Feature selection in face recog-

nition: A sparse representation perspective. Tech. Report, 2007.

C. Zhu. Ut once more: The sentence as the key functional unit of translation.

Meta, 44:429–447, 1999.

J. Zhu and E. P. Xing. Maximum entropy discrimination markov networks.

JMLR, 2009.

