
Hash Kernels

Qinfeng Shi, James Petterson
Australian National University and NICTA,

Canberra, Australia

Gideon Dror
Department of Computer Science

Academic College of Tel-Aviv-Yaffo, Israel

John Langford, Alex Smola, Alex Strehl
Yahoo! Research

New York, NY and Santa Clara, CA, USA

Vishy Vishwanathan
Department of Statistics

Purdue University, IN, USA

Abstract

We propose hashing to facilitate efficient ker-
nels. This generalizes previous work using
sampling and we show a principled way to
compute the kernel matrix for data streams
and sparse feature spaces. Moreover, we give
deviation bounds from the exact kernel ma-
trix. This has applications to estimation on
strings and graphs.

1 Introduction

In recent years, a number of methods have been pro-
posed to deal with the fact that kernel methods have
slow runtime performance if the number of kernel func-
tions used in the expansion is large. We denote by X

the domain of observations and we assume that H is
a Reproducing Kernel Hilbert Space H with kernel
k : X× X→ R.

Keeping the kernel expansion small One line of
research (Burges and Schölkopf, 1997) aims to reduce
the number of basis functions needed in the overall
function expansion. This led to a number of reduced
set Support Vector algorithms which work as follows:
a) solve the full estimation problem resulting in a ker-
nel expansion, b) use a subset of basis functions to
approximate the exact solution, c) use the latter for
estimation. While the approximation of the full func-
tion expansion is typically not very accurate, very good
generalization performance is reported. The big prob-
lem in this approach is that the optimization of the
reduced set of vectors is rather nontrivial.

Work on estimation on a budget (Dekel et al., 2006)

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

tries to ensure that this problem does not arise in the
first place by ensuring that the number of kernel func-
tions used in the expansion never exceeds a given bud-
get or by using an `1 penalty (Mangasarian, 1998). For
some algorithms, e.g. binary classification, guarantees
are available in the online setting.

Keeping the kernel simple A second line of re-
search uses variants of sampling to achieve a similar
goal. That is, one uses the feature map representation

k(x, x′) = 〈φ(x), φ(x′)〉 . (1)

Here φ maps X into some feature space F. This ex-
pansion is approximated by a mapping φ̄ : X→ F̄

k̄(x, x′) =
〈
φ̄(x), φ̄(x′)

〉
often φ̄(x) = Cφ(x), (2)

where C ∈ R. Here φ̄ has more desirable computa-
tional properties than φ. For instance, φ̄ is finite di-
mensional (Fine and Scheinberg, 2001; Kontorovich,
2007; Rahimi and Recht, 2008), or φ̄ is particularly
sparse (Li et al., 2007).

Our Contribution Firstly, we show that the sam-
pling schemes of Kontorovich (2007) and Rahimi and
Recht (2008) can be applied to a considerably larger
class of kernels than originally suggested — the au-
thors only consider languages and radial basis func-
tions respectively. Secondly, we propose a biased ap-
proximation φ̄ of φ which allows efficient computa-
tions even on data streams. Our work is inspired by
the count-min sketch of Cormode and Muthukrishnan
(2004), which uses hash functions as a computationally
efficient means of randomization. This affords storage
efficiency (we need not store random vectors) and at
the same time they give performance guarantees com-
parable to those obtained by means of random projec-
tions.

As an application, we demonstrate computational ben-
efits over suffix array string kernels in the case of docu-
ment analysis and we discuss a kernel between graphs

Hash Kernels

which only becomes computationally feasible by means
of compressed representation.

Outline We begin with a description of previous
work in Section 2 and propose the hash kernels in
Section 3. An analysis follows in Section 4 and we
conclude with experiments in Section 5.

2 Previous Work and Applications

Generic Randomization Kontorovich (2007);
Rahimi and Recht (2008) independently propose the
following: denote by c ∈ C a random variable with
measure P. Moreover, let φc : X → R be functions
indexed by c ∈ C. For kernels of type

k(x, x′) = Ec∼P(c) [φc(x)φc(x′)] (3)

an approximation can be obtained by sampling C =
{c1, . . . , cn} ∼ P and expanding

k̄(x, x′) =
1
n

n∑
i=1

φci
(x)φci

(x′). (4)

In other words, we approximate the feature map φ(x)
by φ̄(x) = n−1 (φc1(x), . . . , φcn(x)). Assuming that
φc(x)φc(x′) has bounded range, i.e. φc(x)φc(x′) ∈
[a, a + R] for all c, x and x′ one may use Chernoff
bounds to give guarantees for large deviations between
k(x, x′) and k̄(x, x′). For matrices of size m×m one ob-
tains bounds of type O(R2ε−2 log m) by combining Ho-
effding’s theorem with a union bound argument over
the O(m2) different elements of the kernel matrix. The
strategy has widespread applications beyond those of
Kontorovich (2007); Rahimi and Recht (2008):

• Kontorovich (2007) uses it to design kernels on
regular languages by sampling from the class of
languages.

• The marginalized kernels of Tsuda et al. (2002)
use a setting identical to (3) as the basis for com-
parisons between strings and graphs by defining a
random walk as the feature extractor. Instead of
exact computation we could do sampling.

• The Binet-Cauchy kernels of Vishwanathan et al.
(2007) use this approach to compare trajectories
of dynamical systems. Here c is the (discrete or
continuous) time and P(c) discounts over future
events.

• The empirical kernel map of Schölkopf (1997) uses
C = X and employs some kernel function κ to
define φc(x) = κ(c, x). Moreover, P(c) = P(x),
i.e. placing sampling points ci on training data.

• For RBF kernels (Rahimi and Recht, 2008) use
the fact that k may be expressed in the system of

eigenfunctions which commute with the transla-
tion operator, that is the Fourier basis

k(x, x′) = Ew∼P(w)[e−i〈w,x〉ei〈w,x′〉]. (5)

Here P(w) is a nonnegative measure which exists
for any RBF kernel by virtue of Bochner’s theo-
rem, hence (5) can be recast as a special case of
(3). What sets it apart is the fact that the vari-
ance of the features φw(x) = ei〈w,x〉 is relatively
evenly spread. (5) extends immediately to Fourier
transformations on other symmetry groups (Berg
et al., 1984).

• The conditional independence kernel (Watkins,
2000) is one of the first instances of (3). Here
X,C are domains of biological sequences, φc(x) =
P(x|c) denotes the probability of observing x
given the ancestor c, and p(c) denotes a distri-
bution over ancestors.

While in many cases straightforward sampling may
suffice, it can prove disastrous whenever φc(x) has only
a small number of significant terms. For instance, for
the pair-HMM kernel most strings c are unlikely an-
cestors of x and x′, hence P(x|c) and P(x′|c) will be
negligible for most c. As a consequence the number
of strings required to obtain a good estimate is pro-
hibitively large — we need to reduce φ̄ further.

Locally Sensitive Hashing The basic idea of ran-
domized projections (Indyk and Motawani, 1998)
is that due to concentration of measures the in-
ner product 〈φ(x), φ(x′)〉 can be approximated by∑n

i=1 〈vi, φ(x)〉 〈vi, φ(x′)〉 efficiently, provided that the
distribution generating the vectors vi satisfies basic
regularity conditions. E.g. vi ∼ N(0, 1) is suffi-
cient. This allows one to obtain Chernoff bounds and
O(ε−2 log d) rates of approximation. The main cost is
to store vi and perform the O(nd) multiply-adds, thus
rendering this approach too expensive as a preprocess-
ing step in many applications.

Sparsification Li et al. (2007) propose to sparsify
φ(x) by randomization while retaining the inner prod-
ucts. One problem with this approach is that when
performing optimization for linear function classes, the
weight vector w which is a linear combination of φ(xi)
remains large and dense, thus obliterating a significant
part of the computational savings gained in sparsifying
φ.

Count-Min Sketch Cormode and Muthukrishnan
(2004) propose an ingenious method for representing
data streams. Denote by I an index set. Moreover, let
h : I→ {1, . . . , n} be a hash function and assume that

Shi, Petterson, Dror, Langford, Smola, Strehl, Vishwanathan

there exists a distribution over h such that they are
pairwise independent.

Assume that we draw d hash functions hi at ran-
dom and let S ∈ Rn×d be a sketch matrix. For a
stream of symbols s update Shi(s),i ← Shi(s),i + 1 for
all 1 ≤ i ≤ d. To retrieve the (approximate) counts
for symbol s′ compute mini Shi(s′),i. Hence the name
count-min sketch. The idea is that by storing counts
of s according to several hash functions we can reduce
the probability of collision with another particularly
large symbol. Cormode and Muthukrishnan (2004)
show that only O(ε−1 log 1/δ) storage is required for
an ε-good approximation.

Cormode and Muthukrishnan (2004) discuss approx-
imating inner products and the extension to signed
rather than nonnegative counts. However, the bounds
degrade for real-valued entries. Even worse, for the
hashing to work, one needs to take the minimum over
a set of inner product candidates. This breaks the dot
product property.

Random Feature Mixing Ganchev and Dredze
(2008) provide empirical evidence that using hashing
can eliminate alphabet storage and reduce the number
of parameters without severely impacting model per-
formance. In addition, Langford et al. (2007) released
the Vowpal Wabbit fast online learning software which
uses a hash representation similar to that discussed
here.

3 Hash Kernels

Our goal is to design a possibly biased approximation
which a) approximately preserves the inner product,
b) which is generally applicable, c) which can work on
data streams, and d) which increases the density of
the feature matrices (the latter matters for fast linear
algebra on CPUs and graphic cards).

Kernel Approximation Our approach is most
closely related to the Count-Min sketch (Cormode and
Muthukrishnan, 2004) insofar as it uses a hash func-
tion to reduce a feature vector to a more compact rep-
resentation. As before denote by I an index set and
let h : I → {1, . . . , n} be a hash function drawn from
a distribution of pairwise independent hash functions.
Finally, assume that φ : X → R|J| is indexed by I

and that we may compute φi(x) for all nonzero terms
efficiently. In this case we define the hash kernel as
follows:

k̄(x, x′) =
〈
φ̄(x), φ̄(x′)

〉
with φ̄j(x) =

∑
i∈I;h(i)=j

φi(x) (6)

We are accumulating all coordinates i of φ(x) for which
h(i) generates the same value j into coordinate φ̄j(x).

Our claim is that hashing preserves information as well
as randomized projections with significantly less com-
putation. Before providing an analysis let us discuss
two key applications: efficient hashing of kernels on
strings and cases where the number of classes is very
high, such as categorization in an ontology.

Strings Denote by X = I the domain of strings
on some alphabet. Moreover, assume that φi(x) :=
λi#i(x) denotes the number of times the substring i
occurs in x, weighted by some coefficient λi ≥ 0. This
allows us to compute a large family of kernels via

k(x, x′) =
∑
i∈I

λ2
i #i(x)#i(x′). (7)

Teo and Vishwanathan (2006) propose a storage ef-
ficient O(|x| + |x′|) time algorithm for computing k
for a given pair of strings x, x′. Here |x| denotes the
length of the string. Moreover, a weighted combina-
tion

∑
i αik(xi, x) can be computed in O(|x|) time af-

ter O(
∑

i |xi|) preprocessing.

The big drawback with string kernels using suffix ar-
rays/trees is that they require large amounts of work-
ing memory. Approximately a factor of 50 additional
storage is required for processing and analysis. More-
over, updates to a weighted combination are costly.
This makes it virtually impossible to apply (7) to mil-
lions of documents. Even for modest document lengths
this would require Terabytes of RAM.

Hashing allows us to reduce the dimensionality. Since
for every document x only a relatively small number
of terms #i(x) will have nonzero values — at most
O(|x|2) but in practice we will restrict ourselves to
substrings of a bounded length l leading to a cost of
O(|x| · l) — this can be done efficiently in a single
pass over x. Moreover, we can compute φ̄(x) as a pre-
processing step and discard x altogether.

Note that this process spreads out the features avail-
able in a document evenly over the coordinates of φ̄(x).
Moreover, note that a similar procedure, or even the
Count-Min sketch outright can be used to obtain good
estimates for a TF/IDF reweighting of the counts ob-
tained, thus rendering preprocessing as memory effi-
cient as the actual computation of the kernel.

Multiclass Classification can sometimes lead to a
very high dimensional feature vector even if the un-
derlying feature map x → φ(x) may be acceptable.
For instance, for a bag-of-words representation of doc-
uments with 104 unique words and 103 classes this
involves up to 107 coefficients to store the parameter
vector directly when the φ(x, y) = ey ⊗ φ(x), where
⊗ is the tensor product and ey is a vector whose y-th
entry is 1 and the rest are zero. The dimensionality of
ey is the number of classes.

Hash Kernels

Note that in the above case φ(x, y) corresponds to a
sparse vector which has nonzero terms only in the part
corresponding to ey. That is, by using the joint index
(i, y) with φ(x, y)(i,y′) = φi(x)δy,y′ we may simply ap-
ply (6) to an extended index to obtain hashed versions
of multiclass vectors. We have

φ̄j(x, y) =
∑

i∈I;h(i,y)=j

φi(x). (8)

In some cases it may be desirable to compute a com-
pressed version of φ(x), that is, φ̄(x) first and subse-
quently expand terms with y. In particular for strings
this can be useful since it means that we need not
parse x for every potential value of y. While this de-
teriorates the approximation in an additive fashion it
can offer significant computational savings since all we
need to do is permute a given feature vector as opposed
to performing any summations.

Streams Some features of observations arrive as a
stream. For instance, when performing estimation on
graphs, we may obtain properties of the graph by using
an MCMC sampler. The advantage is that we need
not store the entire data stream but rather just use
summary statistics obtained by hashing. Application
for hash kernels on general graph data is future work.

4 Analysis

We show that the penalty we incur from using hashing
to compress the number of coordinates only grows log-
arithmically with the number of objects and with the
number of classes. While we are unable to obtain the
excellent O(ε−1) rates offered by the count-min sketch,
our approach retains the inner product property thus
making hashing accessible to linear estimation.

Bias and Variance A first step in our analysis is to
compute bias and variance of the approximation φ̄(x)
of φ(x). Whenever needed we will write φ̄h(x) and
k̄h(x, x′) to make the dependence on the hash function
h explicit. Using (6) we have

k̄h(x, x′) =
∑

j

∑
i:h(i)=j

φi(x)
∑

i′:h(i′)=j

φ′i(x
′)

= k(x, x′) +
∑

i,i′:i 6=i′

φi(x)φi′(x′)δh(i),h(i′)

where δ is the Kronecker delta function. Taking the
expectation with respect to the random choice of hash
functions h we obtain the expected bias

Eh[k̄h(x, x′)] =
(
1− 1

n

)
k(x, x′) + 1

n

∑
i

φi(x)
∑

i

φi′(x′)

Here we exploited the fact that for a random choice of
hash functions the collision probability is 1

n uniformly

over all pairs (i, j). Consequently k̄(x, x′) is a biased
estimator of the kernel matrix, with the bias decreas-
ing inversely proportional to the number of hash bins.

The main change is a rank-1 modification in the kernel
matrix. Given the inherent high dimensionality of the
estimation problem, a one dimensional change does not
in general have a significant effect on generalization.

Straightforward (and tedious) calculation which is
completely analogous to the above derivation leads to
the following expression for the variance Var[k̄h(x, x′)]
of the hash kernel. Key in the derivation is our as-
sumption that the family of hash functions we are deal-
ing with is pairwise independent.

n−1
n2

(
k(x, x)k(x′, x′) + k2(x, x′)− 2

∑
i

φ2
i (x)φ2

i (x
′)

)
As can be seen, the variance decreases O(n−1) in the
size of the values of the hash function. This means
that we have an O(n−

1
2) convergence asymptotically

to the expected value of the kernel.

Information Loss One of the key fears of using
hashing in machine learning is that information is
lost in the process which unavoidably restrains the
best-possible prediction. For example, the well-known
birthday paradox suggests that if the space that the
hash function maps into has size n then if there are
about n0.5 features a collision is likely.

Redundancy in features is very helpful in avoiding in-
formation loss. This redundancy can be explicit or sys-
temic such as might be expected with a bag-of-words
or substring representation. In the following we ana-
lyze explicit redundancy where a feature is mapped to
two or more values in the space of size n. This can
be implemented with a hash function by (for example)
appending the string i ∈ {1, . . . , c} to feature f and
then computing the hash of f ◦ i for the i-th duplicate.

The essential observation with explicit feature dupli-
cation is that the information in a feature is only lost
if all duplicates of the feature collide with another fea-
ture. Given this observation, it’s unsurprising that
increasing the size of n by a constant multiple c and
duplicating features c times makes collisions with all
features unlikely. It’s perhaps more surprising that
when keeping the size of n constant and duplicating
features, the probability of losing the information in
features due to collision can go down.

Theorem 1 For a random function mapping l fea-
tures duplicated c times into a space of size n, the
probability (over the random function) that all features
have at least one duplicate colliding with no other fea-
tures is at least 1− l[1− (1− c/n)c + (lc/n)c].

Shi, Petterson, Dror, Langford, Smola, Strehl, Vishwanathan

To see the implications consider l = 105 and n = 108.
Without duplication, a birthday paradox collision is
virtually certain. However, if c = 2, the probability of
a collision of all duplicates for any feature is bounded
by about 0.404, and for c = 3 it drops to about 0.0117.

Proof The proof is essentially a counting argument
with consideration of the fact that we are dealing with
a hash function rather than a random variable.

Fix a feature f . We’ll argue about the probability that
all c duplicates of f collide with other features.

For feature duplicate i, let hi = h(f ◦i). The probabil-
ity that hi = h(f ′ ◦ i′) for some other feature f ′ ◦ i′ is
bounded by (l−1)c/n because the probability for each
other mapping of a collision is 1/n by the assumption
that h is a random function, and the union bound ap-
plied to the (l − 1)c mappings of other features yields
(l − 1)c/n. Note that we do not care about a colli-
sion of two duplicates of the same feature, because the
feature value is preserved.

The probability that all duplicates 1 ≤ i ≤ c collide
with another feature is bounded by (lc/n)c + 1− (1−
c/n)c. To see this, let c′ ≤ c be the number of distinct
duplicates of f after collisions. The probability of a
collision with the first of these is bounded by (l−1)c

n .
Conditioned on this collision, the probability of the
next collision is at most (l−1)c−1

n−1 , where 1 is subtracted
because the first location is fixed. Similarly, for the ith
duplicate, the probability is (l−1)c−(i−1)

n−(i−1) . We can up-
per bound each term as lc

n , implying the probability
of all c′ duplicates colliding with other features is at
most (lc/n)c′

. The probability that c′ = c is the prob-
ability that none of the duplicates of f collide, which
is (n−1)!

nc(n−c−1)! ≥ ((n − c)/n)c. If we pessimistically as-
sume that c′ < c implies that every duplicate collides
with another feature, then

P(coll) ≤ P(coll|c′ = c) P(c′ = c) + P(c′ 6= c)
≤ (lc/n)c + 1− ((l − c)/l)c.

Simplification gives (lc/n)c + 1 − (1 − c/n)c as
claimed. Taking a union bound over all l features,
we get that the probability any feature has all dupli-
cates collide is bounded by l[1−(1−c/n)c+(lc/n)c].

Rate of Convergence As a first step note that
any convergence bound only depends logarithmically
on the size of the kernel matrix.

Theorem 2 Assume that the probability of devia-
tion between the hash kernel and its expected value is
bounded by an exponential inequality via

P
[∣∣k̄h(x, x′)−Eh

[
k̄h(x, x′)

]∣∣ > ε
]
≤ c exp(−c′ε2n)

for some constants c, c′ depending on the size of the
hash and the kernel used. In this case the error ε aris-
ing from ensuring the above inequality for m observa-
tions and M classes (for a joint feature map φ(x, y))
is bounded by (with c′′ := − log c− 2 log 2)

ε ≤
√

(2 log(m + 1) + 2 log(M + 1)− log δ − c′′)/c′.

Proof [sketch only] Apply the union bound to the
kernel matrix of size (mM)2, that is, to all m(m +
1)M(M + 1)/4 unique elements. Taking logs on both
sides and solving for ε yields the result.

To obtain an exponential bound on the probability
of deviation note that while each coordinate of the
hashed feature is identically distributed, the set of fea-
tures is only exchangeable but not independent. Al-
though the effect is small, this precludes a direct ap-
plication of Chernoff bounds.

Using the variance calculation, Chebyshev’s inequality
gives bounds on the probability of large deviation by
ε of the form O(n−1ε−2), albeit not an exponential
inequality. Bounds for exchangeable random variables,
in particular (Chatterjee, 2005, Theorem 3.3), can be
used to obtain an exponential inequality in ε of the
form required by Theorem 2, albeit without providing
the desired dependency on n. We conjecture that a
bound providing both scaling behavior exists (and our
conjecture is supported by our experimental findings).
This is subject of future work.

5 Experiments

To test the efficacy of our approach we applied hashing
to the following problems: first we used it for classifica-
tion on the Reuters RCV1 dataset as it has a relatively
large feature dimensionality. Secondly, we applied it
to the DMOZ ontology of topics of webpages1 where
the number of topics is high.

5.1 Reuters Articles Categorization

We use the Reuters RCV1 binary classification dataset
(Lewis et al., 2004). 781,265 articles are used for train-
ing by stochastic gradient descent (SGD) and 23,149
articles are used for testing. Conventionally one would
build a bag of words representation first and calculate
exact term frequency / inverse document frequency
(TF-IDF) counts from the contents of each article as
features. The problem is that the TF calculation needs
to maintain a very large dictionary throughout the
whole process. Moreover, it is impossible to extract

1Dmoz L2 denotes non-parent topic data in the top 2
levels of the topic tree and Dmoz L3 denotes non-parent
topic data in the top 3 levels of the topic tree.

Hash Kernels

Datasets #Train #Test #Label
RCV1 781,265 23,149 2
Dmoz L2 4,466,703 138,146 575
Dmoz L3 4,460,273 137,924 7,100

Table 1: Text datasets. #X denotes the number of
observations in X.

Algorithm Pre TrainTest Error %
BSGD 303.60s 10.38s 6.02
VW 303.60s 510.35s 5.39
VWC 303.60s 5.15s 5.39
HK 0 25.16s 5.60

Table 2: Runtime and Error on RCV1. BSGD: Bot-
tou’s SGD, VW: Vowpal Wabbit without cache, VWC:
Vowpal Wabbit using cache file, HK: Hash kernel; Pre:
preprocessing time, TrainTest: time to load data, train
and test the model; Error: misclassification rate

bits #unique Collision % Error %
24 285614 0.82 5.586
22 278238 3.38 5.655
20 251910 12.52 5.594
18 174776 39.31 5.655
16 64758 77.51 5.763
14 16383 94.31 6.096

Table 3: Influence of the hash size on Reuters (RCV1)
on collisions (reported for both training and test set
combined) and error rates. Note that there is no no-
ticeable performance degradation even for a 40% col-
lision.

features online since the entire vocabulary dictionary
is usually unobserved during training. Another disad-
vantage is that calculating exact IDF requires us to
preprocess all articles in a first pass. This is not pos-
sible as articles such as news may vary daily.

However, it suffices to compute TF and IDF approxi-
mately as follows: using hash features, we no longer re-
quire building the bag of words. Every word produces
a hash key which is the dimension index of the word.
The frequency is recorded in the dimension index of
its hash key. Therefore, every article has a frequency
count vector as TF. This TF is a much denser vector
which requires no knowledge of the vocabulary. IDF
can be approximated by scanning a smaller part of the
training set.

A quantile-quantile plot in Figure 1 shows that this
approximation is justified — the dependency between
the statistics on the subset (200k articles) and the full
training set (800k articles) is perfectly linear.

We compare the hash kernel with Leon Bottou’s

0 2 4 6 8 10

x 104

0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

DF from part of data

D
F

 fr
om

 a
ll

da
ta

Figure 1: Quantile-quantile plot of the DF counts
computed on a subset (200k documents) and the full
dataset (800k documents). DF(t) is the number of
documents in a collection containing word t.

Stochastic Gradient Descent SVM2 (BSGD) and Vow-
pal Wabbit3 (VW). Our hash scheme is generating fea-
tures online. BSGD is generating features offline and
learning them online. VW uses BSGD’s preprocessed
features and creates further features online. Caching
speeds up VW considerably. However, it requires one
run of the original VW code for this purpose. We com-
pare all three algorithms on RCV1 in Table 2. As can
be seen, the preprocessing time of BSGD and VW is
considerably longer compared to the time for training
and testing, due to the TF-IDF calculation which is
carried out offline. Hashing avoids this and we gener-
ate features on the fly as we are learning the model.
For a fair comparison, we measure the time for feature
loading, training and testing together. As can be seen,
the speed of online feature generation is considerable
compared to disk access.

Furthermore, we investigate the influence of hash size
(i.e. the number of hash bins) on the misclassification
rate. As can be seen in Table 3, when the hash size
decreases, the collision and the error rate increase. In
particular, a 24 bit hash causes almost no collisions.
Nonetheless, an 18 bit hash which has almost 40% col-
lisions performs equally well on the problem. This
leads to rather memory-efficient implementations.

5.2 Dmoz Websites Multiclass Classification

In a second experiment we perform topic categoriza-
tion using the topic ontology DMOZ. The task is to
recognize the topic of websites given the short descrip-
tions provided on the webpages. To simplify things we

2http://leon.bottou.org/projects/sgd
3http://hunch.net/∼vw/

Shi, Petterson, Dror, Langford, Smola, Strehl, Vishwanathan

HLF 28bit HLF 24bit HF no hash U base P base
error memory error memory error memory memory error error

L2 30.12 2G 30.71 0.125G 31.28 2.25G (19bit) 7.85G 99.83 85.05
L3 52.1 2G 53.36 0.125G 51.47 1.73G (15bit) 96.95G 99.99 86.83

Table 4: Misclassification and memory footprint of hashing and baseline methods on DMOZ. HLF: joint hashing
of labels and features. HF: hash features only. no hash: direct model (not implemented as too large, hence only
memory estimates — we have 1,832,704 unique words). U base: baseline of uniform classifier. P base: baseline
of majority vote. Note: the memory footprint in HLF is essentially independent of the number of classes used.

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

topics

lo
g

co
un

ts

0 2000 4000 6000 8000
0

2

4

6

8

10

12

14

topics

lo
g

co
un

ts

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

topics

lo
g

co
un

ts

Histogram
Error curve

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

topics

lo
g

co
un

ts

Histogram
Error curve

Figure 2: Left: results on L2, Right: results on L3; Top: frequency counts for topics as reported on the training
set (the test set distribution is virtually identical). We see an exponential decay in counts. Bottom: log-counts
and error probabilities on the test set. Note that the error is reasonably evenly distributed among the size of the
classes (besides a number of near empty classes which are learned perfectly).

categorize only the leaf nodes (level 2: L2 or level 3:
L3) as a flat classifier (the hierarchy could be easily
taken into account by adding hashed features for each
part of the path in the tree). This leaves us with 575
leaf topics on L2 and with 7100 leaf topics on L3.

Conventionally, assuming M classes and l features,
training M different parameter vectors w requires
O(Ml) storage. This is infeasible for massively mul-
ticlass applications. However, by hashing data and
labels jointly we are able to obtain an efficient joint

representation which makes the implementation com-
putationally possible.

As can be seen in Table 4 joint hashing of features
and labels outperforms all other approaches and in
many cases is necessary to make large multiclass cat-
egorization computationally feasible at all (competing
methods run out of memory). In particular, hashing
features only produces slightly worse results than joint
hashing of labels and features. This is likely due to the
increased collision rate: we need to use a smaller hash

Hash Kernels

to store the class dependent weight vectors explicitly.

Next we investigate whether such good misclas-
sification rate is obtained by predicting well only
on a few dominant topics. We reorder the topic
histogram in accordance to ascending error rate.
Figure 2 shows that the hash kernel does very
well on the first one hundred topics. They corre-
spond to easy categories such as language related sets
”World/Italiano”,”World/Japanese”,”World/Deutsch”.

6 Discussion

In this paper we showed that hashing is a computa-
tionally attractive technique which allows one to ap-
proximate kernels for very high dimensional settings
efficiently by means of a sparse projection into a lower
dimensional space. In particular for multiclass catego-
rization this makes all the difference in terms of being
able to implement problems with thousands of classes
in practice on large amounts of data and features. How
to apply hash kernels for data which have more com-
plex structure such as general graph and how to get a
unbiased estimator of the kernel are future work.

References

C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic
Analysis on Semigroups. Springer, New York, 1984.

C. J. C. Burges and B. Schölkopf. Improving the accu-
racy and speed of support vector learning machines.
In M. C. Mozer, M. I. Jordan, and T. Petsche, ed-
itors, Advances in Neural Information Processing
Systems 9, pages 375–381, Cambridge, MA, 1997.
MIT Press.

S. Chatterjee. Concentration Inequalities with Ex-
changeable Pairs. PhD thesis, Stanford University,
2005.

G. Cormode and M. Muthukrishnan. An improved
data stream summary: The count-min sketch and
its applications. In LATIN: Latin American Sympo-
sium on Theoretical Informatics, 2004.

O. Dekel, S. Shalev-Shwartz, and Y. Singer. The For-
getron: A kernel-based perceptron on a fixed bud-
get. In Y. Weiss, B. Schölkopf, and J. Platt, editors,
Advances in Neural Information Processing Systems
18, Cambridge, MA, 2006. MIT Press.

S. Fine and K. Scheinberg. Efficient SVM training us-
ing low-rank kernel representations. JMLR, 2:243–
264, Dec 2001.

K. Ganchev and M. Dredze. Small statistical models
by random feature mixing. In workshop on Mobile
NLP at ACL, 2008.

P. Indyk and R. Motawani. Approximate nearest
neighbors: Towards removing the curse of dimen-
sionality. In Proceedings of the 30th Symposium on
Theory of Computing, pages 604–613, 1998.

L. Kontorovich. A universal kernel for learning regular
languages. In Machine Learning in Graphs, 2007.

J. Langford, L. Li, and A. Strehl. Vowpal wabbit online
learning project (technical report). Technical report,
2007.

D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1: A
new benchmark collection for text categorization re-
search. The Journal of Machine Learning Research,
5:361–397, 2004.

P. Li, K. Church, and T. Hastie. Conditional ran-
dom sampling: A sketch-based sampling technique
for sparse data. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems 19, pages 873–880. MIT
Press, Cambridge, MA, 2007.

O. L. Mangasarian. Generalized support vector ma-
chines. Technical report, University of Wisconsin,
Computer Sciences Department, Madison, 1998.

N. Przulj. Biological network comparison using
graphlet degree distribution. Bioinformatics, 23(2):
e177–e183, Jan 2007.

A. Rahimi and B. Recht. Random features for large-
scale kernel machines. In J. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neu-
ral Information Processing Systems 20. MIT Press,
Cambridge, MA, 2008.

B. Schölkopf. Support Vector Learning. R. Old-
enbourg Verlag, Munich, 1997. Download:
http://www.kernel-machines.org.

C. H. Teo and S. V. N. Vishwanathan. Fast and space
efficient string kernels using suffix arrays. In ICML
’06: Proceedings of the 23rd international conference
on Machine learning, pages 929–936, New York, NY,
USA, 2006. ACM Press. ISBN 1-59593-383-2. doi:
http://doi.acm.org/10.1145/1143844.1143961.

K. Tsuda, T. Kin, and K. Asai. Marginalized ker-
nels for biological sequences. Bioinformatics, 18
(Suppl. 2):S268–S275, 2002.

S. V. N. Vishwanathan, A. J. Smola, and R. Vidal.
Binet-Cauchy kernels on dynamical systems and its
application to the analysis of dynamic scenes. Inter-
national Journal of Computer Vision, 73(1):95–119,
2007.

C. Watkins. Dynamic alignment kernels. In A. J.
Smola, P. L. Bartlett, B. Schölkopf, and D. Schuur-
mans, editors, Advances in Large Margin Classifiers,
pages 39–50, Cambridge, MA, 2000. MIT Press.

