
Inductive Hashing on Manifolds

Fumin Shen‡†∗, Chunhua Shen†, Qinfeng Shi†, Anton van den Hengel†, Zhenmin Tang‡
† The University of Adelaide, Australia ‡ Nanjing University of Science and Technology, China

Abstract

Learning based hashing methods have attracted consid-
erable attention due to their ability to greatly increase the
scale at which existing algorithms may operate. Most of
these methods are designed to generate binary codes that
preserve the Euclidean distance in the original space. Man-
ifold learning techniques, in contrast, are better able to
model the intrinsic structure embedded in the original high-
dimensional data. The complexity of these models, and the
problems with out-of-sample data, have previously rendered
them unsuitable for application to large-scale embedding,
however.

In this work, we consider how to learn compact binary
embeddings on their intrinsic manifolds. In order to address
the above-mentioned difficulties, we describe an efficient,
inductive solution to the out-of-sample data problem, and a
process by which non-parametric manifold learning may be
used as the basis of a hashing method. Our proposed ap-
proach thus allows the development of a range of new hash-
ing techniques exploiting the flexibility of the wide variety
of manifold learning approaches available. We particularly
show that hashing on the basis of t-SNE [29] outperforms
state-of-the-art hashing methods on large-scale benchmark
datasets, and is very effective for image classification with
very short code lengths.

1. Introduction
One of many challenges emerging from the current ex-

plosion in the volume of image-based media available is
how to index and organize the data accurately, but also ef-
ficiently. Various hashing techniques have attracted con-
siderable attention in computer vision, information retrieval
and machine learning [8, 9, 19, 31, 33], and seem to offer
great promise towards this goal. Hashing methods aim to
encode documents or images as a set of short binary codes,
while maintaining aspects of the structure of the original
data. The advantage of these compact binary representa-
tions is that pairwise comparisons may be carried out ex-
tremely efficiently. This means that many algorithms which

∗F. Shen’s contribution was made when he was visiting The University
of Adelaide.

are based on such pairwise comparisons can be made more
efficient, and applied to much larger datasets.

Locality sensitive hashing (LSH) [8] is one of the most
well-known data-independent hashing methods, and gener-
ates hash codes based on random projections. With the suc-
cess of LSH, random hash functions have been extended to
several similarity measures, including p-norm distances [6],
the Mahalanobis metric [17], and kernel similarity [16, 24].
However, the methods belonging to the LSH family nor-
mally require relatively long hash codes and several hash
tables to achieve both high precision and recall. This leads
to a larger storage cost than would otherwise be necessary,
and thus limits the sale at which the algorithm may be ap-
plied.

Data-dependent or learning-based hashing methods have
been developed with the goal of learning more compact
hash codes. Directly learning binary embeddings typically
results in an optimization problem which is very difficult
to solve, however. Relaxation is often used to simplify
the optimization (e.g., [3, 31]. As in LSH, the methods
aim to identify a set of hyperplanes, but now these hyper-
planes are learned, rather than randomly selected. For ex-
ample, PCAH [31], SSH [31], and ITQ [9] generate lin-
ear hash functions through simple PCA projections, while
LDAhash [3] is based on LDA. Extending this idea, there
are also methods which learn hash functions in a kernel
space, such as reconstructive embeddings (BRE) [15], ran-
dom maximum margin hashing (RMMH) [14] and kernel-
based supervised hashing (KSH) [20]. In a departure from
such methods, however, spectral hashing (SH) [33], one of
the most popular learning-based methods, generates hash
codes by solving the relaxed mathematical program that is
similar to the one in Laplacian eigenmaps [1].

Embedding the original data into a low dimensional
space while simultaneously preserving the inherent neigh-
borhood structure is critical for learning compact, effective
hash codes. In general, nonlinear manifold learning meth-
ods are more powerful than linear dimensionality reduc-
tion techniques, as they are able to more effectively pre-
serve the local structure of the input data without assum-
ing global linearity [26]. The geodesic distance on a man-
ifold has been shown to outperform the Euclidean distance
in the high-dimensional space for image retrieval [10], for



(a) Queries (b) `2 dist. on 784D (c) LSH with 128-bits (d) `2 dist. on embeded 48D (e) Hamming dist. with 48-bits

Figure 1: Top 10 retrieved digits for 4 queries (a) on a subset of MNIST with 300 samples. Search is conducted in the original feature space (b, c) and embedding space by
t-SNE [29] (d, e) using Euclidean distance (b, d) and hamming distance (c, e).

example. Figure 1 demonstrates that searching using either
the Euclidean or Hamming distance after nonlinear embed-
ding results in more semantically accurate neighbors than
the same search in the original feature space, and thus that
low-dimensional embedding may actually improve retrieval
or classification performance. However, the only widely
used nonlinear embedding method for hashing is Laplacian
eigenmaps (LE) (e.g., in [21, 33, 35]). Other effective man-
ifold learning approaches (e.g., LLE [25], elastic embed-
ding [4] or t-SNE [29]) have rarely been explored for hash-
ing.

One problem hindering the use of manifold learning for
hashing is that these methods do not directly scale to large
datasets. For example, to construct the neighborhood graph
(or pairwise similarity matrix) in these algorithms for n
data points is O(n2) in time, which is intractable for large
datasets. The second problem is that they are typically
non-parametric and thus cannot efficiently solve the criti-
cal out-of-sample extension problem. This fundamentally
limits their application to hashing, as generating codes for
new samples is an essential part of the problem. One of
the widely used solutions for the methods involving spec-
tral decomposition (e.g., LLE, LE and ISOMap [27]) is the
Nyström extension [2], which solves the problem by learn-
ing eigenfunctions of a kernel matrix. As mentioned in [33],
however, this is impractical for large-scale hashing since the
Nyström extension is as expensive as doing exhaustive near-
est neighbor search (O(n)). A more significant problem,
however, is the fact that the Nyström extension cannot be
directly applied to non-spectral manifold learning methods
such as t-SNE.

In order to address the out-of-sample extension prob-
lem, we propose a new non-parametric regression approach
which is both efficient and effective. This method allows
rapid assignment of new codes to previously unseen data in
a manner which preserves the underlying structure of the
manifold. Having solved the out-of-sample extension prob-
lem, we develop a method by which a learned manifold may
be used as the basis for a binary encoding. This method
is designed so as to generate encodings which reflect the
geodesic distances along such manifolds. On this basis we
develop a range of new embedding approaches based on a
variety of manifold learning methods. The best perform-
ing of these is based on manifolds identified through t-SNE,
which has been shown to be effective in discovering seman-
tic manifolds amongst the set of all images [29].

Given the computational complexity of many manifold
learning methods, we show that it is possible to learn the
manifold on the basis of a small subset of the data B (with
size m), and subsequently to inductively insert the remain-
der of the data, and any out-of-sample data, into the em-
bedding in O(m) time per point. This process leads to an
embedding method we label Inductive Manifold-Hashing
(IMH) which we show to outperform state-of-the-art meth-
ods on several large scale datasets both quantitatively and
qualitatively.

Related work Spectral Hashing Weiss et al. [33] formu-
lated the spectral hashing (SH) problem as

min
Y

∑
xi,xj∈X

w(xi,xj)‖yi − yj‖2 (1)

s.t. Y ∈ {−1, 1}n×r, Y>Y = nI, Y>1 = 0.

Here yi ∈ {−1, 1}r, the ith row in Y, is the hash code
we want to learn for xi ∈ Rd, which is one of the n
data points in the training data set X. W ∈ Rn×n with
Wij = w(xi,xj) = exp(−‖xi − xj‖2/σ2) is the graph
affinity matrix, where σ is the bandwidth parameter. I is the
identity matrix. The last two constraints force the learned
hash bits to be uncorrelated and balanced, respectively. By
removing the first constraint (i.e., spectral relaxation [33]),
Y can be easily obtained by spectral decomposition on the
Laplcaian matrix L = D −W, where D = diag(W1)
and 1 is the vector with all ones. However, constructing W
is O(dn2) (in time) and calculating the Nyström extension
for a new point is O(rn), which are both intractable for
large datasets. It is assumed in SH [33], therefore, that the
data are sampled from a uniform distribution, which leads
to a simple analytical eigenfunction solution of 1-D Lapla-
cians. However, this strong assumption is not true in prac-
tice and the manifold structure of the original data are thus
destroyed [21].

Anchor Graph Hashing To efficiently solve problem (1),
anchor graph hashing (AGH) [21] approximated the affin-
ity matrix W by the low-rank matrix Ŵ = ZΛ−1Z, where
Z ∈ Rn×m is the normalized affinity matrix (with k non-
zeros in each row) between the training samples and m an-
chors (generated by K-means), and Λ−1 normalizes Ŵ to
be doubly stochastic. Then the desired hash functions may
be efficiently identified by binarizing the Nyström eigen-
functions [2] with the approximated affinity matrix Ŵ.
AGH is thus efficient, in that it has linear training time and
constant search time, but as is the case for SH [33], the



generalized eigenfunction is derived only for the Laplacian
eigenmaps embedding.

Self-Taught Hashing Self-taught hashing (STH) [35] ad-
dressed the out-of-sample problem by a novel way: hash
functions are obtained by training an SVM classifier for
each bit using the pre-learned binary codes as class labels.
The binary codes were learned by directly solving (1) with
a cosine similarity function. This process has prohibitive
computational and memory costs, however, and training the
SVM can be very time consuming for dense data.

2. The proposed method
2.1. Inductive learning for hashing

Assuming that we have the manifold-based embedding
Y := {y1,y2, · · · , yn} for the entire training data X :=
{x1, x2, · · · , xn}. Given a new data point xq , we aim to
generate an embedding yq which preserves the local neigh-
borhood relationships among its neighbors Nk(xq) in X.
We choose to minimize the following simple objective:

C(yq) =

n∑
i=1

w(xq,xi)‖yq − yi‖2. (2)

Here we define

w(xq,xi) =

{
exp(−‖xq − xi‖2/σ2), if xi ∈ Nk(xq),

0 otherwise.
Minimizing (2) naturally uncovers an embedding for the
new point on the basis of its nearest neighbors on the low-
dimensional manifold initially learned on the base set. That
is, in the low-dimensional space, the new embedded loca-
tion for the point should be close to those of the points close
to it in the original space.

Differentiating C(yq) with respect to yq , we have

∂C(yq)

yq

∣∣∣∣
yq=y?q

= 2

n∑
i=1

w(xq,xi)(y
?
q − yi) = 0, (3)

which leads to the optimal solution

y?q =

∑n
i=1 w(xq,xi)yi∑n
i=1 w(xq,xi)

. (4)

Equation (4) provides a simple inductive formulation for the
embedding: produce the embedding for a new data point by
a (sparse) linear combination of the base embeddings.

The proposed approach here is inspired by Delalleau et
al. [7], where they have focused on non-parametric graph-
based learning in semi-supervised classification. Our aim
here is completely different: We try to scale up the manifold
learning process for hashing in an unsupervised manner.

The resulting solution (4) is consistent with the basic
smoothness assumption in manifold learning, that close-
by data points lie on or close to a locally linear manifold
[1, 25, 27]. This local-linearity assumption has also been
widely used in semi-supervised learning [7,34], image cod-
ing [32], and similar. In this paper, we propose to apply this

assumption to hash function learning.
However, as aforementioned, (4) does not scale well for

both computing Y (O(n2) e.g., for LE) and out-of-sample
extension (O(n)), which is intractable for large scale tasks.
Next, we show that the following prototype algorithm is
able to approximate yq using only a small base set well.
This prototype algorithm is based on entropy numbers de-
fined below.

Definition 1 (Entropy numbers [12]). Given any Y ⊆ Rr
and p ∈ N, the m-th entropy number εm(Y) of Y is defined
as

εm(Y ) := inf{ε > 0|N(ε, Y, ‖ · − · ‖) ≤ m},
where N is the covering number. Then εm(Y ) is the smallest
radius that Y can be covered by less or equal to m balls.
2.1.1 The prototype algorithm

Inspired by Theorem 27 of [12], we construct a prototype
algorithm below. We use m clusters to cover Y. Let αi =

w(xq,xi)∑n
j=1 w(xq,xj)

and Cj =
∑
i∈Ij αi. For each cluster index

set Ij , we randomly draw `j = bmCj + 1c many indices
from Ij proportional to their weight αi. That is, for µ ∈
{1, · · · , `j}, the µ-th randomly drawn index uj,µ Pr(uj,µ =
i) = αi

Cj
,∀j ∈ {1, · · · ,m}. We then construct ŷq as

ŷq =

m∑
j=1

Cj
`j

`j∑
µ=1

yuj,µ . (5)

Theorem 2. For any even number n′ ≤ n. If Prototype
Algorithm uses n′ many non-zero y ∈ Y to express ŷq ,
then

Pr[‖ŷq − yq‖ ≥ t] <
2(εn′

2
(Y))2

n′t2
. (6)

Corollary 3. For an even number n′, any ε > εn′
2

(Y), any

δ ∈ (0, 1) and any t > 0, if n′ ≥ 2ε2

δt2 , then with probability
at least 1− δ,

‖ŷq − yq‖ < t.

Refer to the supplementary material for the proofs of the
theorem and corollary. The quality of the approximation
depends on εn′

2
(Y) and n′. If data exhibit strong clustering

patterns, i.e., data within each cluster are very close to clus-
ter center, we will have small εn′

2
(Y), hence better approxi-

mation. Likewise, the bigger n′ is, the better approximation
is.

2.1.2 Approximation of the prototype algorithm

The clusters can be obtained via clustering algorithm such
as K-means. Since the n could be potentially massive,
it is impractical to compute αi within all clusters. Let
αi(xq) =

w(xq,xi)∑n
j=1 w(xq,xj)

. Ideally, for each cluster, we
want to select the yi that has high overall weight Oi =



∑
xq∈X αi(xq). For large scale X, we only have lim-

ited information available such as cluster centers {cj , j =
1, · · · ,m} and w(cj ,x),x ∈ X. Fortunately, the cluster-
ing result gives useful information about Oi. The cluster
centers have the largest overall weight w.r.t the points from
their own cluster, i.e.

∑
i∈Ij w(cj ,xi). This suggests we

should select all cluster centers to express ŷq .
Following many methods in the area (e.g., [21, 33]), we

obtain our general inductive hash function by binarizing the
low-dimensional embedding

h(x) = sgn

(∑m
j=1 w(x, cj)yj∑m
j=1 w(x, cj)

)
, (7)

where sgn(·) is the sign function and YB := {y1, y2,
· · · , ym} is the embedding for the base set B := {c1, c2,
· · · , cm}, which is the cluster centers obtained by K-means.
Here we assume that the embeddings yi are centered on the
origin. We term our hashing method Inductive Manifold-
Hashing (IMH). The inductive hash function provides a nat-
ural means for generalization to new data, which has a con-
stant O(dm + rk) time. With this, the embedding for the
training data becomes

Y = W̄XBYB, (8)

where W̄XB is defined such that W̄ij =
w(xi,cj)∑m
i=1 w(xi,cj)

,

for xi ∈ X, cj ∈ B.
Although the objective function (2) is formally related

to LE, it is general in preserving local similarity. The em-
beddings YB can be learned by any appropriate manifold
learning method which preserves the similarity of interest
in the low dimensional space. We empirically evaluate sev-
eral other embedding methods in Section 2.4. Actually, as
we show, some manifold learning methods (e.g., t-SNE de-
scribed in Section 2.2) can be better choices for learning
binary codes, although LE has been widely used. We will
discuss two methods for learning YB in the sequel.

We summarize the Inductive Manifold-Hashing frame-
work in Algorithm 1. Note that the computational cost is
dominated by K-means in the first step, which is O(dmnl)
in time (with l the number of iterations). Considering that
m (normally a few hundreds) is much less than n, and is a
function of manifold complexity rather than the volume of
data, the total training time is linear in the size of training
set. If the embedding method is LE, for example, then using
IMH to compute YB requires constructing the small affin-
ity matrix WB and solving r eigenvectors of the m × m
Laplacian matrix LB which is O(dm2 + rm). Note that
in step 3, to compute W̄XB, one needs to compute the dis-
tance matrix between B and X, which is a natural output
of K-means, or can be computed additionally in O(dmn)
time. The training process on a dataset of 70K items with
784 dimensions can thus be achieved in a few seconds on a
standard desktop PC.

Algorithm 1 Inductive Manifold-Hashing (IMH)
Input: Training data X := {x1,x2, . . . ,xn}, code length r, base set
size m, neighborhood size k
Output: Binary codes Y := {y1,y2, . . . ,yn} ∈ Rn×r

1) Generate the base set B by random sampling or clustering (e.g. K-
means).
2) Embed B into the low dimensional space by (9), (12) or any other ap-
propriate manifold leaning method.
3) Obtain the low dimensional embedding Y for the whole dataset induc-
tively by Equation (8).
4) Threshold Y at zero.

Connection to the Nyström method As Equation (4),
the Nyström eigenfunction by Bengio et al. [2] also gener-
alizes to a new point by a linear combination of a set of low
dimensional embeddings:

φ(x) =
√
n

n∑
j=1

K̃(x,xj)V
j
rΣ
−1
r .

For LE, Vr and Σr correspond to the top r eigenvectors and
eigenvalues of a normalized kernel matrix K̃ with K̃ij =

K̃(xi,xj) = 1
n

w(xi,xj)√
Ex[w(xi,x)]Ex[w(x,xj)]

. In AGH [21], the

formulated hash function was proved to be the correspond-
ing Nyström eigenfunction with the approximate low-rank
affinity matrix. LELVM [5] also formulate out-of-sample
mappings for LE in a manner similar to (4) by combining
latent variable models. Both of these methods, and ours, can
thus be seen as applications of the Nyström method. Note,
however, that our method differs in that it is not restricted
to spectral methods such as LE, and that we aim to learn bi-
nary hash functions for similarity-based search rather than
dimensionality reduction. LELVM [5] cannot be applied to
other embedding methods other than LE.

2.2. Stochastic neighborhood preserving hashing

In order to demonstrate our approach we now derive
a hashing method based on t-SNE [29], which is a non-
spectral embedding method. t-SNE is a modification of
stochastic neighborhood embedding (SNE) [13] which aims
to overcome the tendency of that method to crowd points
together in one location. t-SNE provides an effective tech-
nique for visualizing data and dimensionality reduction,
which is capable of preserving local structures in the high
dimensional data while retaining some global structures
[29]. These properties make t-SNE a good choice for near-
est neighbor search. Moreover, as stated in [30], the cost
function of t-SNE in fact maximizes the smoothed recall
[30] of query points and their neighbors.

The original t-SNE does not scale well, as it has a time
complexity which is quadratic in n. More significantly,
however, it has a non-parametric form, which means that
there is no simple function which may be applied to out-
of-sample data in order to calculate their coordinates in the
embedded space. As was proposed in the previous subsec-



tion, we first apply t-SNE to the base set B [29],

min
YB

=
∑
xi∈B

∑
xj∈B

pij log

(
pij
qij

)
. (9)

Here pij is the symmetrized conditional probability in the
high dimensional space, and qij is the joint probability de-
fined using the t-distribution in the low dimensional embed-
ding space. The optimization problem (9) is easily solved
by a gradient descent procedure. After we get embeddings
YB of samples xi ∈ B, the hash codes for the entire dataset
can be easily computed using (7). It is this method which
we label IMH-tSNE.

2.3. Hashing with relaxed similarity preservation

As in the last subsection, we can compute YB consider-
ing local smoothness only within B. Based on equation (4),
in this subsection, we alternatively compute YB by consid-
ering the smoothness both within B and between B and X.
As in [7], the objective can be easily obtained by modifying
(1) as:

C(YB) =
∑

xi,xj∈B

w(xi,xj)‖yi − yj‖2 (CBB)

+ λ
∑

xi∈B,xj∈X

w(xi,xj)‖yi − yj‖2 (CBX)

(10)
where λ is the trade-off parameter. CBB enforces smooth-
ness of the learned embeddings within B while CBX en-
sures the smoothness between B and X. This formula-
tion is actually a relaxation of (1), by discarding the part
which minimizes the dissimilarity within X (denoted as
CXX). CXX is ignored since computing the similarity ma-
trix within X costs O(n2) time. The smoothness between
points in X is implicitly ensured by (8).

Applying equation (8) for yj , j ∈ X to (10), we obtain
the following problem

min trace(Y>B(DB −WB)YB) (11)

+λ trace(Y>B(DBX − W̄>XBWXB)YB),

where DB = diag(WB1) and DBX = diag(WBX1) are
both m×m diagonal matrices. Taking the constraint in (1),
we obtain

min
YB

trace(Y>B(M + λT)YB) (12)

s.t. Y>BYB = mI

where M = DB−WB, T = DBX−W̄>XBWXB. The op-
timal solution YB of the above problem is easily obtained
by identifying the r eigenvectors of M+λT corresponding
to the smallest eigenvalues (excluding the eigenvalue 0 with
respect to the trivial eigenvector 1)1. We name this method
IMH-LE in the following text.

1We set λ to 2 in all experiments.

16 32 48 64 80 96 112 128
0.1

0.12

0.14

0.16

0.18

0.2

Code length

M
A

P

CIFAR

 

 

IMH−tSNE
IMH−SNE
IMH−EE
IMH−LE
IMH−LE

B

IMH−LLE
IMH−DM
IMH−PCA
PCAH
GIST L2 scan

Figure 2: Comparison among different manifold learning methods within our IMH
hashing framework on CIFAR-10. IMH with the linear PCA (IMH-PCA) and PCAH
[31] are also evaluated for comparison. For clarity, forIMH-LE in Section 2.3, we
term IMH with the original LE algorithm on the base set B as IMH-LEB. IMH-DM
is IMH with the diffusion maps of [18].

2.4. Manifold learning methods for hashing
In this section, we compare different manifold learning

methods for hashing within our IMH framework. The com-
parison results are reported in Figure 2. For comparison, we
also evaluate the linear PCA within the framework (IMH-
PCA in the figure). We can clearly see that IMH-tSNE,
IMH-SNE and IMH-EE (with Elastic Embedding (EE) [4])
perform slightly better than IMH-LE (Section 2.3). This is
mainly because these three methods are able to preserve lo-
cal neighborhood structure while, to some extent, prevent-
ing data points from crowding together. It is promising that
all of these methods perform better than an exhaustive `2
scan using the uncompressed GIST features.

Figure 2 shows that LE (IMH-LEB in the figure), the
most widely used embedding method in hashing, does not
perform as well as a variety of other methods (including
t-SNE), and in fact performs worse than PCA, which is a
linear technique. This is not surprising because LE (and
similarly LLE) tends to collapse large portions of the data
(and not only nearby samples in the original space) close
together in the low-dimensional space. The results are con-
sistent with the analysis in [4, 29]. Based on the above ob-
servations, we argue that manifold learning methods (e.g. t-
SNE, EE), which not only preserve local similarity but also
force dissimilar data apart in the low-dimensional space, are
more effective than the popular LE for hashing.

It is interesting to see that IMH-PCA outperforms PCAH
[31] by a large margin, despite the fact that PCAH is per-
formed on the whole training data set. This shows that the
generalization capability of IMH based on a very small set
of data points also works for linear dimensionality methods.

3. Experimental results
We evaluate IMH on four large scale image datasets:

CIFAR-102, MNIST , SIFT1M [31] and GIST1M3. The
MNIST dataset consists of 70, 000 images, each of 784 di-
mensions, of handwritten digits from ‘0’ to ‘9’. As a subset
of the well-known 80M tiny image collection [28], CIFAR-
10 consists of 60,000 images which are manually labelled

2http://www.cs.toronto.edu/˜kriz/cifar.html
3http://corpus-texmex.irisa.fr/



100 200 300 400 500 600 700 800
0.12

0.14

0.16

0.18

0.2

0.22

Base set size m

M
A

P

CIFAR @64 bits

 

 

IMH−tSNEH
IMH−LE
IMH−LE

B

AGH

2 5 10 15 20

0.15

0.16

0.17

0.18

0.19

0.2

Number of nearest neighbours k

M
A

P

CIFAR @64 bits

 

 

IMH−tSNEH

IMH−LE

IMH−LE
B

AGH

Figure 3: MAP results versus varying base set size m (left, fixing k = 5) and
number of nearest base points k (right, fixing m = 400) for the proposed methods
and AGH. The comparison is conducted on the CIFAR-10 dataset using 64-bits .

bits IMH-LEB IMH-LE IMH-tSNE AGH

32 Random 14.07 16.20 17.26 -
K-means 16.05 17.48 18.38 15.76

64 Random 14.64 16.98 16.93 -
K-means 15.90 18.20 19.04 14.55

96 Random 14.76 17.02 17.21 -
K-means 15.46 18.56 19.41 13.98

Table 1: MAP (%) evaluation of different base generating methods: random sampling
vs. K-means. The comparison is performed on the CIFAR-10 dataset with code
lengths from 32 to 96 and base set size 400.

as 10 classes with 6, 000 samples for each class. We rep-
resent each image in this dataset by a GIST feature vec-
tor [23] of dimension 512. For MNIST and CIFAR-10, the
whole dataset is split into a test set with 1, 000 samples and
a training set with all remaining samples.

We compare nine hashing algorithms including the pro-
posed IMH-tSNE, IMH-LE and seven other unsupervised
state-of-the-art methods: PCAH [31], SH [33], AGH [21]
and STH [35], BRE [15], ITQ [9], Spherical Hashing (SpH)
[11]. We use the provided codes and suggested parame-
ters according to the authors of these methods. Because our
methods are fully unsupervised we did not consider super-
vised methods in our experiments. Due to the high com-
putational cost of BRE and high memory cost of STH, we
sample 1, 000 and 5, 000 training points for these two meth-
ods respectively. We measure performance by mean of av-
erage precision (MAP) or precision and recall curves for
hamming ranking using 16 to 128 hash bits. We also report
the results for hash lookup using a Hamming radius within 2
by F1 score [22]: F1 = 2(precision·recall)/(precision+
recall). Ground truths are defined by the category informa-
tion for the labeled datasets MNIST and CIFAR-10, and by
Euclidean neighbors for SIFT1M and GIST1M.

Base selection In this section, we take the CIFAR-10
dataset for example to compare different base generation
methods and different base sizes for the proposed methods.
AGH is also evaluated here for comparison. Table 1 com-
pares two methods for generating base point sets: random
sampling and K-means on the training data. Not surpris-
ingly, we see that the performance of our methods using
K-means is better at all code lengths than that using random
sampling. Also we can see that, even with base set by ran-
dom sampling, the proposed methods outperform AGH in
all cases but one. Due to the superior results and high effi-
ciency in practice, we generate the base set by K-means in

16 32 48 64 80 96 112 128
0.1

0.12

0.14

0.16

0.18

0.2

Code length

M
A

P

CIFAR

16 32 48 64 80 96
0

0.05

0.1

0.15

0.2

0.25

Code length

F
1 m

ea
su

re

CIFAR

 

 

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

Figure 4: Comparison of different methods on CIFAR-10 based on MAP (left) and
F1 (right) for varying code lengths.

the following experiments.
From Figure 3, we see that the performance of the pro-

posed methods and AGH do not change significantly with
both the base set size m and the number of nearest base
points k. Based on this observation, for the remainder of
this paper, we set m = 400 and k = 5 for our methods,
unless otherwise specified. Also it is clear that IMH-LEB,
which only enforces smoothness in the base set, does not
perform as well as IMH-LE, which also enforces smooth-
ness between the base set and training set. Note, however,
that IMH-LEB is still better than AGH on this dataset.

Results on CIFAR-10 dataset We report the compara-
tive results based on MAP for hamming ranking with code
lengths from 16 to 128 bits in Figure 4. We see that the pro-
posed IMH-LE and IMH-tSNE perform best in all cases.
Among the proposed algorithms, the LE based IMH-LE
is inferior to the t-SNE based IMH-tSNE. IMH-LE is still
much better than AGH and STH, however. ITQ performs
better than SpH and BRE on this dataset, but is still inferior
to IMH. SH and PCAH perform worst in this case, because
SH relies upon its uniform data assumption while PCAH
simply generates the hash hyperplanes by PCA directions,
which does not explicitly capture the similarity information.
The results are consistent with the complete precision and
recall curves shown in the supplementary material. We also
report the F1 results for hash lookup with Hamming radius
2 It is can be seen that IMH-LE and IMH-tSNE also out-
perform all other methods by large margins. BRE and AGH
obtain better results than the remaining methods, although
the performance of all methods drop as code length grows.

Figure 5 shows the precision and recall curves of ham-
ming ranking for the compared methods. We see that STH
and AGH obtain relatively high precisions when a small
number of samples are returned, however precision drops
significantly as the number of retrieved samples increases.
In contrast, IMH-tSNE, IMH-LE and ITQ achieve higher
precisions with relatively larger numbers of retrieved points.

We also show qualitative results of IMH and related
methods on a sample query in Figure 6. As can be seen,
IMH-tSNEH achieves the best search quality in term of vi-
sual relevance.

Results on MNIST dataset The MAP and F1 scores for
these compared methods are reported in Figure 7. As in Fig-
ure 4, IMH-tSNE achieves the best results. On this dataset



(a) Query

(b) IMH-tSNE (c) SH (d) AGH (e) STH

Figure 6: The query image (a) and the query results returned by various methods with 32 hash bits. False positive returns are marked with red borders.

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
re

ci
si

on

Number of samples (X 2000)

CIFAR @64 bits

 

 

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Number of samples (X 2000)

CIFAR @64 bits

 

 

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

Figure 5: Comparison of different methods on CIFAR-10 based on precision (left)
and recall (right) using 64-bits. Please refer to the complementary for complete re-
sults for other code lengths.

16 32 48 64 80 96 112 128
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Code length

M
A

P

MNIST

16 32 48 64 80 96 112 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Code length

F
1 m

ea
su

re

MNIST

 

 

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

Figure 7: Comparison of different methods on the MNIST dataset using MAP (left)
and F1 (right) for varying code lengths.

we can clearly see that IMH-tSNE outperforms IMH-LE by
a large margin, which increases as code length increases.
This further demonstrates the advantage of t-SNE as a tool
for hashing by embedding high dimensional data into a low
dimensional space. The dimensionality reduction procedure
not only preserves the local neighborhood structure, but also
reveals important global structure (such as clusters) [29].
Among the four LE-based methods, while IMH-LE shows
a small advantage over AGH, both methods achieve much
better results than STH and SH. ITQ and BRE obtain high
MAPs with longer bit lengths, but they still perform less
well for the hash look up F1. PCAH performs worst in
terms of both MAP and the F1 measure. Refer to the sup-

Method Train time Test time
64-bits 128-bits 64-bits 128-bits

IMH-LE 9.9 9.9 5.1× 10−5 3.8× 10−5

IMH-tSNE 16.7 20.2 2.8× 10−5 3.1× 10−5

SH 6.8 16.2 5.8× 10−5 1.8× 10−4

STH 266.1 485.4 1.8× 10−3 3.6× 10−3

AGH 9.5 9.5 4.7× 10−5 5.5× 10−5

PCAH 3.8 4.1 5.7× 10−6 1.2× 10−5

SpH 19.7 41.0 1.3× 10−5 2.0× 10−5

ITQ 10.4 20.3 6.9× 10−6 1.1× 10−5

BRE 418.9 1731.9 1.2× 10−5 2.4× 10−5

Table 2: Comparison of training and testing times (in seconds) on MNIST with 70K
784D feature points. K-means dominates the cost of AGH and IMH (8.9 seconds),
which can be conducted in advance in practice. The experiments are based on a
desktop PC with a 4-core 3.07GHZ CPU and 8G RAM.

16 32 48 64 80 96 112 128
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Code length

F
1
 m

e
a

s
u

re

SIFT1M

 

 

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

16 32 48 64 80 96 112 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Code length

R
e
c
a
ll

SIFT1M

 

 

IMH−tSNE
IMH−LE
AGH
STH
SH
PCAH
SpH
ITQ
BRE

Figure 8: Comparative results results on SIFT1M for F1 (left) and recall (right) with
hamming radius 2. Ground truth is defined to be the closest 2 percent of points as
measured by the Euclidean distance.

plementary material for the complete precision and recall
curves which validate the observations here.

Efficiency Table 2 shows training and testing time on the
MNIST dataset for various methods, and shows that the lin-
ear method, PCAH, is fastest. IMH-tSNE is slower than
IMH-LE, AGH and SH in terms of training time, however
all of these methods have relatively low execution times and
are much faster than STH and BRE. In terms of test time,
both IMH algorithms are comparable to other methods, ex-
cept STH which takes much more time to predict the binary
codes by SVM on this non-sparse dataset.

Results on SIFT1M and GIST1M SIFT1M contains
one million local SIFT descriptors extracted from a large
set of images [31], each of which is represented by a 128D
vector of histograms of gradient orientations. GIST1M con-
tains one million GIST features and each feature is repre-
sented by a 960D vector. For both of these datasets, one
million samples are used as training set and additional 10K
are used for testing. As in [31], ground truth is defined as
the closest 2 percent of points as measured by the Euclidean
distance. For these two large datasets, we generate 1, 000
points by K-means and set k = 2 for both IMH and AGH.
The comparative results on SIFT1M and GIST1M are sum-
marized in Figure 8 and Figure 9, respectively. Again, IMH
consistently achieves superior results in terms of both F1

score and recall with hamming radius 2. We see that the
performance of most of these methods decreases dramati-
cally with increasing code length as the hamming spaces
become more sparse, which makes the hash lookup fail
more often. However IMH-tSNE still achieves relatively
high scores with large code lengths. If we look at Figure 8
(left), ITQ obtains the highest F1 with 16-bits, however it
decreases to near zero at 64-bits. In contrast, IMH-tSNE
still manages an F1 of 0.2. Similar results are observed in



16 32 48 64 80 96 112 128
0

0.05

0.1

0.15

0.2

Code length

F
1
 m

e
a

s
u

re

GIST1M

 

 

IMH−tSNE
IMH−LE
AGH
SH
PCAH
SpH
ITQ

16 32 48 64 80 96 112 128
0

0.1

0.2

0.3

0.4

0.5

Code length

R
ec

al
l

GIST1M

 

 

IMH−tSNE
IMH−LE
AGH
SH
PCAH
SpH
ITQ

Figure 9: Comparative results results on GIST1M by F1 (left) and recall (right) with
hamming radius 2. Ground truth is defined to be the closest 2 percent of points as
measured by the Euclidean distance.

3264 128 256 384 512

70

75

80

85

90

95

Code length

A
cc

ur
ac

y 
(%

)

MNIST

 

 

IMH−LE
IMH−tSNE
AGH
ITQ
SH
PCAH
SphH
STH
BRE

Figure 10: Classification accuracy (%) on MNIST with binary codes of various hash-
ing methods by linear SVM.

the recall curves.
Classification on binary codes In order to demonstrate

classification performance we have trained a linear SVM on
the binary codes generate by IMH for the MNIST data set.
In order to learn codes with higher bit lengths for IMH and
AGH, we set the size of the base set to 1, 000. Accuracies
of different binary encodings are shown in Figure 10. Both
IMH and AGH achieve high accuracies on this dataset, al-
though IMH performs better with higher code lengths. In
contrast, the best results of all other methods, obtained by
ITQ, are consistently worse than those for IMH, especially
for short code lengths. Note that even with only 128-bit
binary features IMH obtains a high 94.1%. Interestingly,
we get the same classification rate of 94.1% applying the
linear SVM to the uncompressed 784D features, which oc-
cupy several hundreds times as much space as the learned
hash codes.

Conclusion We have proposed a simple yet effective
hashing framework which provides a practical connec-
tion between manifold learning methods (typically non-
parametric and with high computational cost) and hash
function learning (requiring high efficiency). By preserv-
ing the underlying manifold structure with several non-
parametric dimensionality reduction methods, the proposed
hashing methods outperform several state-of-the-art meth-
ods in terms of both hash lookup and hamming ranking
on several large-scale retrieval-datasets. The proposed in-
ductive formulation of the hash function sees the proposed
methods require only linear time (O(n)) for indexing all
of the training data and a constant search time for a novel
query. The learned hash codes were also shown to have
promising results on a classification problem even with very

short code lengths.
This work was in part supported by ARC Future Fellowship

FT120100969.
References
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for

embedding and clustering. In Proc. Adv. Neural Inf. Process. Syst., 2001.
[2] Y. Bengio, O. Delalleau, N. Roux, J. Paiement, P. Vincent, and M. Ouimet.

Learning eigenfunctions links spectral embedding and kernel PCA. Neural
Comput., 16(10):2197–2219, 2004.

[3] M. M. Bronstein and P. Fua. LDAHash: Improved matching with smaller de-
scriptors. IEEE Trans. Pattern Anal. Mach. Intell., 2012.

[4] M. Carreira-Perpinán. The elastic embedding algorithm for dimensionality re-
duction. In Proc. Int. Conf. Mach. Learn., 2010.

[5] M. Carreira-Perpinán and Z. Lu. The laplacian eigenmaps latent variable
model. Proc. Int. Conf. Artif. Intell. Stat., 2007.

[6] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hash-
ing scheme based on p-stable distributions. In Ann. Symp. Comput. Geometry,
2004.

[7] O. Delalleau, Y. Bengio, and N. Le Roux. Efficient non-parametric function
induction in semi-supervised learning. In Proc. Int. Workshop Artif. Intelli.
Stat., pages 96–103, 2005.

[8] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via
hashing. In Proc. Int. Conf. Very Large Datadases, 1999.

[9] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean approach to
learning binary codes. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2011.

[10] X. He, W.-Y. Ma, and H.-J. Zhang. Learning an image manifold for retrieval.
In Proc. ACM Multimedia, 2004.

[11] J. Heo, Y. Lee, J. He, S. Chang, and S. Yoon. Spherical hashing. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., 2012.

[12] R. Herbrich and R. C. Williamson. Algorithmic luckiness. J. Mach. Learn.
Res., 3:175–212, 2002.

[13] G. Hinton and S. Roweis. Stochastic neighbor embedding. In Proc. Adv. Neural
Inf. Process. Syst., 2002.

[14] A. Joly and O. Buisson. Random maximum margin hashing. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., 2011.

[15] B. Kulis and T. Darrell. Learning to hash with binary reconstructive embed-
dings. In Proc. Adv. Neural Inf. Process. Syst., 2009.

[16] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable
image search. In Proc. IEEE Int. Conf. Comp. Vis., 2009.

[17] B. Kulis, P. Jain, and K. Grauman. Fast similarity search for learned metrics.
IEEE Trans. Pattern Anal. Mach. Intell., pages 2143–2157, 2009.

[18] S. Lafon and A. Lee. Diffusion maps and coarse-graining: A unified framework
for dimensionality reduction, graph partitioning, and data set parameterization.
IEEE Trans. Pattern Anal. Mach. Intell., 28(9):1393–1403, 2006.

[19] X. Li, G. Lin, C. Shen, A. van den Hengel, and A. Dick. Learning hash func-
tions using column generation. In Proc. Int. Conf. Mach. Learn., 2013.

[20] W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang. Supervised hashing with kernels.
In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2012.

[21] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In Proc.
Int. Conf. Mach. Learn., 2011.

[22] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Re-
trieval. Cambridge University Press, New York, NY, USA, 2008.

[23] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic repre-
sentation of the spatial envelope. Int. J. Comp. Vis., 2001.

[24] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-
invariant kernels. In Proc. Adv. Neural Inf. Process. Syst., 2009.

[25] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear
embedding. Science, pages 2323–2326, 2000.

[26] A. Talwalkar, S. Kumar, and H. Rowley. Large-scale manifold learning. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2008.

[27] J. Tenenbaum, V. De Silva, and J. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, pages 2319–2323, 2000.

[28] A. Torralba, R. Fergus, and W. Freeman. 80 million tiny images: A large data
set for nonparametric object and scene recognition. IEEE Trans. Pattern Anal.
Mach. Intell., pages 1958–1970, 2008.

[29] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. J. Mach.
Learn. Res., 9:2579–2605, 2008.

[30] J. Venna, J. Peltonen, K. Nybo, H. Aidos, and S. Kaski. Information retrieval
perspective to nonlinear dimensionality reduction for data visualization. J.
Mach. Learn. Res., 11:451–490, 2010.

[31] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing for large scale
search. IEEE Trans. Pattern Anal. Mach. Intell., 34(12):2393 –2406, 2012.

[32] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained
linear coding for image classification. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., 2010.

[33] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Proc. Adv. Neural
Inf. Process. Syst., 2008.

[34] K. Yu, T. Zhang, and Y. Gong. Nonlinear learning using local coordinate cod-
ing. In Proc. Adv. Neural Inf. Process. Syst., 2009.

[35] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing for fast similarity
search. In Proc. ACM SIGIR Conf., 2010.


