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Abstract

Markov Random Fields (MRFs) have been successfully
applied to human activity modelling, largely due to their
ability to model complex dependencies and deal with lo-
cal uncertainty. However, the underlying graph structure
is often manually specified, or automatically constructed
by heuristics. We show, instead, that learning an MRF
graph and performing MAP inference can be achieved si-
multaneously by solving a bilinear program. Equipped with
the bilinear program based MAP inference for an unknown
graph, we show how to estimate parameters efficiently and
effectively with a latent structural SVM. We apply our tech-
niques to predict sport moves (such as serve, volley in
tennis) and human activity in TV episodes (such as kiss,
hug and Hi-Five). Experimental results show the proposed
method outperforms the state-of-the-art.

1. Introduction

Human activity recognition (HAR) is an important part
of many applications such as video surveillance, key event
detection, patient monitoring systems, transportation con-
trol, and scene understanding. HAR involves several sub-
fields in computer vision and pattern recognition, including
feature extraction and representation, human body detection
and tracking, and has attracted much research attention in
recent years. A suite of methods have been proposed for this
task and promising recognition rates have been achieved.
For example, in [11], more than 91% of actions can be cor-
rectly classified for the KTH dataset [15]. A detailed re-
view of different methods for HAR can be found in [1].
In this work, we focus on recognizing individual activities
in videos which contain multiple persons who may interact
with each other.

If one assumes that the activity of each person is an inde-
pendent and identically distributed (i.i.d.) random variable
from an unknown but fixed underlying distribution, one can
perform activity recognition by training a multiclass clas-

(a) i.i.d. method (b) MRF graph from heuristics

(c) MRF, Lan’s method (d) MRF, our method

Figure 1. Activity recognition within a tennis match: (a) an i.i.d.
method using multiclass SVM; (b) an MRF with a graph built us-
ing heuristics; (c) an MRF using Lan’s method[9]; (d) an MRF
with a graph learnt by our bilinear method. All algorithms se-
lect from four moves: normal hit (HT), serve (SV), volley (VL)
and others (OT). Green nodes denote successful labellings, and
red nodes failure.

sifer, or a group of binary classifiers, based on descriptors
such as HoG, HoF [6] or STIP [10] extracted from body
centred areas, as in [15], [12], [11]. We label these methods
as i.i.d. as they classify the action of each person separately.
These methods are thus very efficient, but they may not be
effective as the i.i.d. assumption is often not true in practice.
For example in a badminton game, a player smashing sug-
gests that his opponent is more likely to perform bending
and lobbing instead of serving.

Unlike traditional i.i.d methods, Markov Random Fields
(MRFs) [8] are able to model complex dependencies and
deal with local uncertainty in a consistent and principled
manner. A possible MRF is shown in Figure 1 (d), where
nodes represent the activity random variables, and the edges
reflect the dependencies. The reason that MRFs can achieve
a superior result to i.i.d. methods is because MRFs ob-
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tain the joint optimum over all variables whereas the i.i.d.
methods only seek optima for each variable separately. In
[5], MRFs are used to model activities like walking, queue-
ing, crossing etc. The MRFs’ graphs are built simply based
on heuristics such as two person’s relative position. These
heuristics may not be always reliable. For example, persons
waving to each other can be far away from each other. One
may deploy other heuristics, but they typically require spe-
cific domain knowledge, and apply only to a narrow range
of activities in a particular environment. Instead of using
heuristics, Lan et al. try to learn graphs based on the poten-
tial functions of the MRFs [9]. They seek the graph and the
activity labels that give the highest overall potential function
value (i.e. the smallest energy). The joint optimisation is
very different from a typical inference problem where only
labels are to be predicted. Thus they solve the joint opti-
misation problem approximately using a coordinate ascent
method by holding the graph fixed and updating the labels,
then holding labels fixed and updating the graph. Though
predicting each person’s activities is only a by-product —
predicting group activities is their task — their idea is gen-
erally applicable to HAR. A key problem with this method
is that coordinate ascent only finds local optima. Since the
graphs of MRFs encode the dependencies, constructing re-
liable graphs is crucial. An MRF with an incorrect graph
(such as Figure 1 (b) (c) ) may produce inferior results to
an i.i.d. method ( in Figure 1 (a)), whereas a MRF with a
correct graph (in Figure 1 (d)) produces a superior result, at
least for this example.

In this paper, we show Maximum A Posteriori (MAP) in-
ference for the activity labels and estimating the MRF graph
structure can be carried out simultaneously as a joint op-
timisation and that achieving the global optimum is guar-
anteed. We formulate the joint optimisation problem as
a bilinear program. Our bilinear formulation is inspired
by recent work in Linear Program (LP) relaxation based
MAP inference with known graphs in [7] and [16], and be-
lief propagation (BP) based MAP inference with unknown
graphs [9]. We show how to solve the bilinear program effi-
ciently via the branch and bound algorithm which is guaran-
teed to achieve a global optimum. We then apply this novel
inference technique to HAR with an unknown graph. Our
experimental results on synthetic and real data, including
tennis, badminton and TV episodes, show the capability of
our method.

The reminder of the paper is organized as follows. We
first introduce our task and the model representation in Sec-
tion 2.1 followed by the MAP problem and its LP relaxation
in Section 2.2. Then we give our bilinear formulation for
the MAP inference with unknown graphs in Section 3.1. In
Section 3.2 we show how to relax the bilinear program to
an LP. In Section 3.3 we describe how to solve the bilinear
program. In Section 4 we show how to train the model (i.e.

parameter estimation) for the MRFs. Section 5 provides the
experimental results followed by conclusions in Section 6.

2. Modelling HAR with unknown MRF graph

2.1. The Model

In HAR our goal is to estimate the activities of m per-
sons Y = (y1, y2, · · · , ym) ∈ Y, given an observation im-
age X ∈ X. To model the dependencies between activities,
we use and MRF with graph G = (V,E) where the ver-
tex set V = {1, 2, · · · ,m} and the edge set E is yet to be
determined.

We cast the estimation problem as that of finding a dis-
criminative function F (X,Y,G) such that for an image X ,
we assign the activities Y which exhibit the best score w.r.t.
F ,

Y ∗ = argmax
Y ∈Y,G∈G

F (X,Y,G). (1)

As in many learning methods, we consider functions linear
in some feature representation Ψ,

F (X,Y,G;w) = w>Ψ(X,Y,G). (2)

Here we consider feature map Ψ(X,Y,G)

Ψ(X,Y,G) =
[∑
i∈V

Ψ1(X, yi);
∑

(i,j)∈E

Ψ2(X, yi, yj)
]
.

(3)

The discriminative function F can be expressed as

F (X,Y,G;w) =∑
i∈V

w>1 Ψ1(X, yi)︸ ︷︷ ︸
−Ei(yi)

+
∑

(i,j)∈E

w>2 Ψ2(X, yi, yj)︸ ︷︷ ︸
−Ei,j(yi,yj)

, (4)

where w = [w1;w2]. Now, (1) is equivalent to

Y ∗ = argmin
Y,G

∑
(i,j)∈E

Ei,j(yi, yj) +
∑
i∈V

Ei(yi), (5)

which becomes an energy minimisation problem with un-
known graph G. Here Ei,j(yi, yj) is the edge energy func-
tion over edge (i, j) ∈ E and the Ei(yi) is the node energy
function over vertex i ∈ V.

2.2. The MAP inference and its LP Relaxation

If G is known, the MAP problem becomes

Y ∗ = argmin
Y

∑
(i,j)∈E

Ei,j(yi, yj) +
∑
i∈V

Ei(yi). (6)

4322



A typical LP relaxation [16] of the MAP problem is

min
q

∑
(i,j)∈E

∑
yi,yj

qi,j(yi, yj)Ei,j(yi, yj)+

∑
i∈V

∑
yi

qi(yi)Ei(yi) (7)

s.t. qi,j(yi, yj) ∈ [0, 1],
∑
yi,yj

qi,j(yi, yj) = 1,

∑
yi

qi,j(yi, yj) = qj(yj),∀(i, j) ∈ E, yi, yj .

qi(yi) ∈ [0, 1],∀i ∈ V, yi.

The last constraint can be removed safely since it can be
derived from the other constraints. When qi(yi),∀i ∈ V are
integers, the solution of problem (7) gives an exact solution
of the problem (6).

3. Bilinear reformulation and LP relaxation

In this section we show how the MAP inference prob-
lem with an unknown graph can be formulated as a bilinear
program (BLP), which can be further relaxed to an LP. We
will also show how to obtain the labels and graph from the
solution of the BLP.

3.1. Bilinear program reformulation

Before we solve (5), let us consider a simpler case first
where the graph is unknown but the MAP solution Y ∗ is
known. We first introduce variables {zi,j}i,j indicating the
edge (i, j) exists or not, for all i, j ∈ V. Then the graph
G can be found by seeking the set of edges that give the
smallest energy as an integer program:

min
z

∑
i∈V

∑
j∈V

zi,jEi,j(y
∗
i , y
∗
j ) (8)

s.t.
∑
i∈V

zi,j ≤ d, zi,j = zj,i, zi,j ∈ {0, 1},∀i, j ∈ V, y∗i , y
∗
j .

Here we set Ei,j(yi, yj) = +∞ when i = j since (i, i) is
not a edge. Ei(yi) can be ignored, since it is independent
of the choice of edges. d ∈ N is a preset number that en-
forces the maximum number of degree of a vertex, allowing
one to enforce a sparse structure. However dropping the de-
gree constraint does not change the nature of the problem.
This integer program can be relaxed to a linear program by
changing the domain of zi,j from {0, 1} to [0, 1].

From (7) and (8), we can see that (5) can be relaxed
to the problem below with variables {qi(yi), i ∈ V},
{qi,j(yi, yj), i, j ∈ V} and {zi,j ,∀i, j ∈ V}:

min f(q, z) =
∑
i,j∈V

∑
yi,yj

qi,j(yi, yj)Ei,j(yi, yj)zi,j

+
∑
i∈V

∑
yi

qi(yi)Ei(yi). (9a)

s.t. qi,j(yi, yj) ∈ [0, 1],
∑
yi,yj

qi,j(yi, yj) = 1, (9b)

∑
yi

qi,j(yi, yj) = qj(yj), zi,j = zj,i, zi,j ∈ [0, 1],

∑
i∈V

zi,j ≤ d, ∀i, j ∈ V, yi, yj .

This problem is a BLP with disjoint constraints i.e. con-
straints on z do not involve q, and vice versa.

Solving the BLP in (9) returns {qi(yi), i ∈ V},
{qi,j(yi, yj), i, j ∈ V} and {zi,j ,∀i, j ∈ V}. We now show
how to obtain the graph and MAP inference solution from
BLP outcomes.

Obtaining the graph We start with E∗ = ∅. ∀i, j ∈
V, i 6= j, if zi,j ≥ 0.5, E∗ = E∗ ∪{(i, j)}. Thus we have
the estimated graph G∗ = (V,E∗).

Obtain the MAP solution Assume yi ∈ {1, 2, · · · ,K},
then ∀i ∈ V, y∗i = argmaxKk=1 qi(k). We have the esti-
mated label Y ∗ = (y∗1 , y

∗
2 , · · · , y∗m).

3.2. LP relaxation

Solving the BLP in (9) is non-trival, due to its non-
convexity. Here we show how to relax it to an LP, which
can be efficiently solved. By introducing ui,j(yi, yj) for
each (i, j, yi, yj), the bilinear program (9) is equivalent to

min
q,z,u

∑
i,j∈V

∑
yi,yj

ui,j(yi, yj) +
∑
i∈V

∑
yi

qk(yi)Ei(yi) (10a)

s.t.



qi,j(yi, yj) ∈ [0, 1] ∀i, j ∈ V, yi, yj ,

zi,j ∈ [0, 1] ∀i, j ∈ V,∑
yi,yj

qi,j(yi, yj) = 1 ∀i, j ∈ V,∑
yi
qi,j(yi, yj) = qj(yj) ∀i, j ∈ V, yj ,

zi,j = zj,i ∀i, j ∈ V,∑
j∈V zi,j ≤ d ∀i ∈ V,

ui,j(yi, yj) ≥
qi,j(yi, yj)Ei,j(yi, yj)zi,j ∀i, j ∈ V, yi, yj .

(10b)

However, the above problem is still non-convex due to the
bilinear term qi,j(yi, yj)zi,j . The bilinear term can be fur-
ther substituted, however. Following the relaxation tech-
niques in [13, 4], we relax (10) to the following LP program:
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min
q,z,u,γ

∑
i,j∈V

∑
yi,yj

ui,j(yi, yj) +
∑
k∈V

∑
yk

qk(yk)Ek(yk),

(11a)

s.t.



qi,j(yi, yj) ∈ [0, 1] ∀i, j ∈ V, yi, yj ,

zi,j ∈ [0, 1] ∀i, j ∈ V,∑
yi,yj

qi,j(yi, yj) = 1 ∀i, j ∈ V,∑
yi
qi,j(yi, yj) = qj(yj) ∀i, j ∈ V, yj ,

zi,j = zj,i ∀i, j ∈ V,∑
j∈V zi,j ≤ d ∀i ∈ V,

ui,j(yi, yj) ≥
Ei,j(yi, yj)γi,j(yi, yj) ∀i, j ∈ V, yi, yj ,

γl ≤ γi,j(yi, yj) ≤ γu ∀i, j ∈ V, yi, yj ,

(11b)

where γl is

max{qli,j(yi, yj)zi,j + zli,jqi,j(yi, yj)− qli,j(yi, yj)zli,j ,
quyi,yj (yi, yj)zi,j + zui,jqi,j(yi, yj)− qui,j(yi, yj)zui,j},

and γu is

min{qui,j(yi, yj)zi,j + zli,jqi,j(yi, yj)− qui,j(yi, yj)zli,j ,
qli,j(yi, yj)zi,j + zui,jqi,j(yi, yj)− qli,j(yi, yj)zui,j}.

The LP relaxation (11) provides an efficient way of com-
puting lower bounds for the bilinear program (9). In order
to solve (9), we resort to a branch and bound method [3]
detailed in the next section.

3.3. Branch and bound solution

Branch and bound [3] is an iterative approach for find-
ing global ε-close solutions to non-convex problems. Con-
sider minimising a function f : Rn → R, over an n-
dimensional rectangle Qinit. Any Q ⊆ Qinit can be ex-
pressed as

∏n
i=1[li, ui] where li and ui are the smallest and

largest input values at the i-th dimension. Here we define
the length of Q as L(Q) = maxni=1(ui − li). The branch
and bound method requires two functions Φlb and Φub over
any Q ⊆ Qinit, such that

Φlb(Q) ≤ min
v∈Q

f(v) ≤ Φub(Q), (12a)

∀ε > 0,∃δ > 0,L(Q) < δ ⇒ Φub(Q)− Φlb(Q) < ε.
(12b)

Here we consider f(q, z) in (9) and assume Qinit = [0, 1]n,
thus v = (q, z) ∈ Qinit.

Branch strategy Since there are fewer zi,j variables than
qi,j(yi, yj) variables, we always split Q along the zi,j vari-
ables as suggested in [4].

Bound strategy For any Q ⊆ Qinit, we let Φlb(Q) be the
solution of (11) when restricting (q, z) ∈ Q. Denoting its
solution (q∗, z∗), we let Φub(Q) = f(q∗, z∗) in (9). Clearly
minq,z∈Q f(q, z) ≤ f(q∗, z∗) since (q∗, z∗) ∈ Q. Since
(11) is a relaxation of (9), Φlb(Q) ≤ minq,z∈Q f(q, z).
Thus condition (12a) is satisfied. By the argument of
Lemma 1 in [4], Condition (12b) is also satisfied. Hence
convergence holds.

4. Training
We now present a maximum margin training method

for predicting structured output variables, such as human
activity labels. Given an observed image and activities,
{(Xi, Y i)}`i=1 (note that the graphs are not known), we
estimate w via Latent Structural Support Vector Machine
(LSSVM) [19],

min
w

1

2
‖w ‖2 + C

∑̀
i=1

[
max
Y,G′

[
w>Ψ(Xi, Y,G′)+

∆(Y i, Y )
]
−max

G
w>Ψ(Xi, Y i, G)

]
+

, (13)

where [a]+ = max{0, a}. Here C is the trade-off between
the regularizer and the risk, ∆ is the label cost,

∆(Y i, Y ) =
1

m

m∑
j=1

δ(yij 6= yj), (14)

where the indicator function δ(·) = 1 if the statement
is true, 0 otherwise. We follow [19] in solving (13) via
Convex-Concave Procedure (CCCP) [20], since (13) is non-
convex.

CCCP requires solving the following two problems:

max
G

w>Ψ(Xi, Y i, G). (15)

max
Y,G

w>Ψ(Xk, Y,G) + ∆(Y k, Y ). (16)

Here (15) is efficiently solved via (8). Clearly (16) is equiv-
alent to

min
Y,G

∑
(i,j)∈E

Ei,j(yi, yj) +
∑
i∈V

E′i(yi), (17)

where E′i(yi) = Ei(yi) − δ(yki 6= yi). Note that (17) has
the same form as (5), and thus can also be formulated as a
bilinear program which in turn can be solved by the Branch
and Bound method.
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Lan’s method The approach closest to ours is that pro-
posed by Lan et al. in [9] using LSSVM via CCCP to recog-
nise human activities. They also are required to solve (15)
and (16). They use an LP similar to (8) to solve (15), and
use a coordinate ascent style algorithm to approximately
solve (16). The coordinate ascent style algorithm iterates
the following two steps: (1) holding G∗ fixed and solving,

Y ∗ = argmax
Y

w>Ψ(Xk, Y,G) + ∆(Y k, Y ) (18)

via belief propagation; (2) holding Y ∗ fixed and solving

G∗ = argmax
G

w>Ψ(Xi, Y ∗, G) (19)

via an LP (8). It is known that coordinate ascent style algo-
rithms are prone to converging to local optima. In the exper-
iment section we provide an empirical comparison between
Lan’s method and ours.

5. Experiments
We apply our method to a synthetic dataset and three real

datasets. The real datasets include two sports competition
datasets (tennis and badminton), and a TV episode dataset.

5.1. Synthetic data

To quantitatively evaluate the performance of different
methods for MAP inference and graph estimation, we ran-
domly generate node (unary) and edge (binary) energies for
different scales of problems. Specifically, 12 groups of en-
ergies are generated and each group corresponds to a fixed
number of nodes and a fixed number of activities. For each
group we randomly generate energies 50 times. The ground
truth graphs and activities labels are obtained by exhaustive
search for (5). For the true graph G = (V,E), predicted
graph G′ = (V,E′) with m nodes, true labels Y and pre-
dicted label Y ′, we define two errors below,

eg(G,G
′) =

1

m(m− 1)

∑
i,j∈V

| zi,j − z′i,j |, (20)

el(Y, Y
′) =

1

m

m∑
i=1

δ(yi 6= y′i), (21)

Here we compare four methods: our bilinear method
(BLP), Lan’s method in [9] (Lan’s), the isolated graph (0
edge connections) with node status decided according to
node potentials (we call it the ISO method), belief propaga-
tion on fully connected graphs (BP+Full). We report the av-
erage errors (for 50 runs) for the 12 groups of synthetic data
in Fig. 2. As expected, our bilinear method (the blue bars)
outperforms all other methods on both graph prediction and
activity prediction for 10 groups out of 12. The superior
results of our method are due to the use of global optimisa-
tion techniques, whereas Lan’s method achieves only local
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(b) Label errors

Figure 2. A comparison of the graph error (a) and the label error
(b) by different methods. The yellow, red, cyan and blue bars cor-
respond to errors by using the ISO method, the BP+Full method,
the Lan’s method, and our BLP method respectively.

optima. The errors for both ISO and BP+Full are high, be-
cause their graphs are not learnt. This shows the importance
of learning the graph structure. An interesting observation
is that the label prediction error of the ISO method is much
lower than that of BP+Full, though their performance on
graph estimation is reversed. This may be caused by loopy
belief propagation (LBP) on fully connected graphs with
too many loops.

5.2. Predict moves in sports

The task is to find sporting activity labels for m persons
Y = (y1, y2, · · · , ym) ∈ Y, given an observation image
X ∈ X. The bounding box for each athlete is already given.

5.2.1 Datasets

Two datasets are used here. The first one is the UIUC
badminton match dataset [17]. We only use the annotated
men’s singles video with 3,072 frames. This dataset in-
cludes four moves: smash (SM), backhand (BH), forehand
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(FH) and others (OT). The second dataset is created by us.
This dataset is a mixed-doubles tennis competition video of
2961 frames. We have annotated this video frame by frame.
The annotation includes the position and the size of each
body centred bounding box, the pose and the action of each
player. This dataset includes four moves: normal hit (HT),
serve (SV), volley (VL) and others (OT). Thus the moves
for the i-th person can be expressed as a discrete variable
yi ∈ {1, 2, 3, 4}.

5.2.2 Features

We use the LSSVM (Section 4) to train a discriminative
model to predict moves. The feature Ψ in (3) consists of
two local features Ψ1, Ψ2 defined below,

Ψ1(X, yi) = si⊗ e1(yi), (22)
Ψ2(X, yi, yj) = ti⊗ tj ⊗ e1(yi)⊗ e1(yj)⊗ e2(ri,j)

(23)

• Move Local Appearance: Similar to [9], si =
(si,1, si,2, si,3, si,4) ∈ R4, where si,j , (j = 1, 2, 3, 4)
is a move confidence score of assigning the i-th per-
son the j-th move. The the score is the discriminative
function value of a weak classifier trained on the local
image descriptor similar to that in [17]. The only dif-
ference is that we histogram the dense gradients, rather
than the silhouette of the human body area, since esti-
mating silhouette is tricky when both camera and peo-
ple are moving. All settings for the feature extraction
process are as suggested in the literature. We pick this
descriptor for two reasons. First, the descriptor is ex-
tracted from a stack of 15 consecutive frames, which
accounts for the temporal action context. Second the
length of descriptor vector is well controlled via the
PCA projection.

• Pose: ti is a vector of body pose confidence scores
based on a weak classifier trained on the same local
descriptor used for s. Here five discrete body poses
are considered: profile-left, profile-right, frontal-left,
frontal-right and backwards, thus ti ∈ R5.

• Relative position: Here ri,j ∈ {1, 2, · · · , 6} is the rel-
ative position of person i and person j. There are six
possible relative positions including overlap, near-left,
near-right, adjacent-left, adjacent-right and far. The
relative position of two persons is determined accord-
ing to their 2D Euclidean distance as in [14].

• Tensor product: Here e1(yi) is a 4-dimensional vector
with 1 in the yi-th dimension, and 0 elsewhere. Like-
wise, e2(ri,j) is a 6-dimensional vector with 1 in the
ri,j-th dimension, and 0 elsewhere. ⊗ denotes the Kro-
necker tensor.

Intuitively, Ψ1 reflects the confidence of assigning one per-
son to different moves, Ψ2 captures the co-occurrence of
the related persons’ body poses, relative 2D position and
their moves. Based on this joint feature representation, our
model predict the moves via (5).

All datasets are randomly split into two parts: one for
training and the other for testing. We compare four meth-
ods:

• MCSVM uses a multiclass SVM trained on the local
image descriptor.

• SSVM uses a structural SVM [18] for training. Find-
ing the most violated constraint requires inference
which is done via BP. The graph is constructed by find-
ing the minimum spanning tree weighted by the 2D
Euclidean distance between persons.

• Lan’s method described in Section 4. The degree of
the vertex d is set to 1.0. This means each node can
have at most two edges ( zi,j ≥ 0.5 adds a edge).

• BLP (our method) described in Section 4. We use
Mosek package [2] to solve LP involved in our bilinear
method. The degree of the vertex d is set to 1.0.

The confusion matrices for two datasets are presented in
Table 1 and 2. We can see that in tennis dataset, our BLP
outperforms the other methods on all four moves. In bad-
minton dataset, our BLP outperforms the other methods on
3 moves: FH, BH and SM. SSVM achieves the best recog-
nition rate on OT, and our BLP achieves the second best.
As expected, MCSVM performs the worst in general, since
it relies solely on the local descriptors. An interesting ob-
servation is that Lan’s method does not always outperform
SSVM. This may be because of the local optima problem of
Lan’s method.

5.3. Predict activities in TV episodes

The TVHI dataset proposed in [14] is a benchmark for
predicting HAR in real TV episodes. It contains 300 short
videos collected from TV episodes and include five activi-
ties: handshake (HS), hug (HG), High-Five (HF), kiss (KS)
and No-Interaction (NO). Each of the first four activities
consists of 50 video clips. No-Interaction contains 100
video clips. We also bisect this dataset into training and
testing parts as was done in the sports competition datasets.
We use the same four methods as in the sports competition
datasets. The confusion matrices are presented in Table 3.
Our BLP outperforms the others on all activities. Lan’s
method performs reasonably well on four activities: HS,
HG, HF, and KS, but performs poorly on NO. It is interest-
ing to see that MCSVM performs the second best on NO.

We show prediction results in Fig. 3 for four methods
on different datasets. A green node means correct pre-
diction and a red node means wrong prediction. We can
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Table 1. Confusion matrices of the tennis dataset (sports match)
Alg. MCSVM SSVM Lan’s BLP
A/A OT SV HT VL OT SV HT VL OT SV HT VL OT SV HT VL
OT 0.43 0.31 0.11 0.15 0.48 0.17 0.20 0.14 0.30 0.29 0.20 0.21 0.59 0.08 0.22 0.11
SV 0 0.59 0.17 0.24 0.15 0.75 0 0.09 0.10 0.74 0.15 0.01 0.17 0.76 0.06 0
HT 0.23 0.27 0.23 0.27 0.31 0.18 0.31 0.21 0.31 0.09 0.35 0.25 0.39 0.07 0.39 0.15
VL 0.08 0.06 0.06 0.80 0.15 0.14 0.06 0.65 0.15 0 0 0.85 0 0 0.10 0.90

Table 2. Confusion matrices of the badminton dataset (sports match)
Alg. MCSVM SSVM Lan’s BLP
A/A OT FH BH SM OT FH BH SM OT FH BH SM OT FH BH SM
OT 0.38 0.15 0.12 0.34 0.65 0.21 0.03 0.11 0.56 0.21 0.06 0.17 0.61 0.19 0.02 0.18
FH 0.38 0.40 0 0.22 0.14 0.45 0.22 0.18 0.07 0.42 0.24 0.27 0.10 0.52 0.14 0.24
BH 0.14 0.23 0.44 0.19 0.32 0.24 0.39 0.05 0.01 0.16 0.65 0.18 0 0.27 0.66 0.07
SM 0.08 0.04 0.16 0.71 0.16 0.12 0.08 0.64 0.09 0.06 0.08 0.78 0.08 0.07 0.07 0.78

see that when the graph is learnt correctly, MRF-based ap-
proaches (see in the 2nd row, column 3, 4) outperform the
i.i.d. method MCSVM (see in the 2nd row, column 1). We
also see that Lan’s method often learns better graphs (see
the 3rd column) than the graphs built from heuristics in
SSVM (see the 2nd column). Overall, our BLP learns the
most accurate graph and therefore makes the most accurate
activity prediction.

6. Conclusion and future work
The structure of the graph used is critical to the suc-

cess of any MRF-based approach to human activity recogni-
tion, because they encapsulate the relationships between the
activities of multiple participants. These graphs are often
manually specified, or automatically constructed by heuris-
tics, but both approaches have their limitations. We have
thus shown that it is possible to develop a MAP inference
method for unknown graphs, and reformulated the problem
of finding MAP solution and the best graph jointly as a bi-
linear program, which is solved by branch and bound. An
LP relaxation is used as a lower bound for the bilinear pro-
gram. Using the bilinear program based MAP inference,
we have shown that it is possible to estimate parameters ef-
ficiently and effectively with a latent structural SVM. Ap-
plications in predicting sport moves and human activities in
TV episodes have shown the strength of our method.

The BLP formulation is not only applicable to MRFs,
but also to graphical models with factor graphs and di-
rected graphs (i.e. Bayesian networks). One possible fu-
ture work is to seek BP style algorithms to replace LP re-
laxations in solving BLP. Another possible future direction
is to consider temporal dependencies among video frames
using tracking techniques and dynamic hierarchy graphical
models.
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Figure 3. Prediction results of different methods on tennis data (1st two rows), badminton data (the 3rd row) and TV episode data (the last
2 rows). First Column: the i.i.d. method using MCSVM; Second Column: SSVM; Third Column: Lan’s method; Last Column: our
BLP method. Both the nodes and edges of the MRFs are shown. For the i.i.d. method, there are no edges. The green node indicates correct
predictions, and the red nodes incorrect predictions.
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