Vector Algebra and Calculus

. Revision of vector algebra, scalar product, vector product
. Triple products, multiple products, applications to geometry
. Differentiation of vector functions, applications to mechanics

. Scalar and vector fields. Line, surface and volume integrals, curvilinear co-
ordinates

. Vector operators — grad, div and curl
. Vector |dentities, curvilinear co-ordinate systems
. Gauss’ and Stokes’ Theorems, and extensions

. Engineering Applications




7. Gauss' and Stokes’ Theorems

e This lecture finally begins to deliver on why we introduced div, grad and curl
by introducing ...

e Gauss’ Theorem enables an integral taken over a volume to be replaced by
one taken over the surface bounding that volume, and vice versa.
Why would we want to do that?
Computational efficiency and/or numerical accuracy come to mind.

e Stokes’ Theorem enables an integral taken around a closed curve to be
replaced by one taken over any surface bounded by that curve.




Gauss’ Theorem

e Suppose that a(r) is a vector field, and we want to compute the
total flux of the field across the surface S that bounds a volume V:

. dS
e dSis /,,_%
1. normal to the local surface 48 \
dS

element ds
) o S
2. must everywhere point out of Sy
s

the volume

e Gauss' Theorem tells us that we can do this by considering the total flux
generated inside the volume V:
Gauss’ Theorem:

[;a-dS=[,dva dV




Informal proof

e Divergence was defined as
dvady = d(Efflux) = > a-dS.

surface of dV
e |f we sum over the volume
elements, this results in a
sum over the surface
elements.

e But if two elemental
surface touch, their dS
vectors are in opposing

direction and cancel.
e Thus the sum over surface elements gives the overall bounding surface.

fdiva de/ a-ds
V Surface of V




& Example of Gauss' Theorem 7.4

Q: Derive fsa . dS where a = z%k and S is the surface of a sphere of radius R

centred on the origin: (i) directly; (ii) by applying Gauss’ Theorem.
3 A
Z

T dz
F{Slnﬁdﬁdq) T Z

A(i): On the surface of the sphere, a = R3cos® 6k and dS = RZ?sin8d6d¢t.
Everywhere ¥ - k = cos 6. Hence

/a+dS :/ / R3cos®6 . R?sin68dfd¢ . cosb
s $=0

- 2mR® r ATRS
2WR5f cos” @sin0do = T; [— (:0559]0 — ?T5
0




Example /ctd

A(ii): To apply Gauss' Theo-
rem, we need (i) to work out ds - '"_
div a / ___ RCsing dodo? _j_

a = z°k, =diva = 322 —

(it) Perform the volume integral. Because dwa involves just z, we can divide the
sphere Into discs of constant z and thickness dz. Then

dV = 7(R? — z%)dz
<ok

R

R
/div adV 3’JT/ zH(R* —.z")dz
V o

R273  751F 4R
3 - 5

Typical: the surface integral is tedious, but volume integral is “straightforward” ...




An Extension to Gauss' Theorem 7.6

e Suppose vector field is a = U(r)c with U(r) a scalar field & ¢ a constant
vector. From Lecture 6 result and noting that dive = O:

dva=gradU-c+Udvec =gradU-c

e Gauss' Theorem tells us that

/Uc-dS=/grad U-cdV
S v

But taking constant ¢ outside ...

c-([gUdS) =c-(/vgradUdV)

e Now c Is arbitrary so result must hold for any vector c.

Hence, this Gauss- T heorem extension:
[sUdS = [, grad UdV




¢ Example using this extension to Gauss' Theorem A dS

Q: U = x?> 4+ y? + 7% is a scalar field, and volume V

is the aylinder x* +y2 < a%, 0< z < h. Compute@
the surface integral [ UdS over the surface of the
cylinder.

" 2=0-

By direct surface integration ...
Symmetry gives zero contribution from curved surface, leaving

Top face:

U=(C4+y?+2)=(?+h?) and dS=rdrddk

a 2m
f (B2 + rd)rdr / dok

=0 $=0

L + 1 a ok = w[h?a® + 33412
> 2" ], 2




& Example /ctd

Bottom face:

U=(x*+y’+2°)=r* & dS = —rdrdok

/Uds— /rdr/ p= T2y
r=0 $=0 2

= Total integral is  w[h?a® + 1a“]k = ',rra ‘k= 7h?a%k.




Example, ctd: the volume integration 7.9

To test the RHS of the extension [ UdS = [, grad UdV we have to compute

/ grad UdV
JV

U=x’+y>+ 7> = grad U =2(xi + yj+ zk)

So the integral is:

f(XI +vi +Zk)r dr dz d¢

f / (rcosd)i‘—l— rsingj+ zk)r dr dz d¢
z=()

a 27
Of + Oj-|—2f zdz/ r drf dok
z=0 F=(] $=0

— mwa’h’k




Further extension to Gauss' Theorem

e Further “extensions’ can be devised ...

e For example, apply Gauss’ theorem to

a(r) =b(r) xc

where ¢ 1s a constant vector ...

. and see what happens.




Stokes' Theorem

e Stokes' Theorem relates a line integral around a closed path ...

... to a surface integral over what Is called a capping surface of the path.

Stokes’ Theorem:
j£a+dr=/curla-d5
C S

where S is any surface capping the curve C.

¢ Note, RHS is of course [(curl a)-dS. Why couldn’t it be [ curl(a - dS)?




Informal proof

e Lecture 5 defined curl as the circulation per unit area, and showed that

> a-dr=dC=(Vxa)-dS .
around elemental loop
e If we add these little loops together, the internal line sections cancel out

because the dr's are in opposite direction but the field a is not. This gives
the larger surface and the larger bounding contour.

b
Y Ty —
y+dy

|

L=,
k3
o

Y dy

(3 (x+d) —=|

dx
o - X+dx

a(y) —

-

—

e In these diagrams the countour appears planar. In general the contour Is a
non-intersecting space curve.




Capping Surface 7.13

e The previous argument says that for a given contour, the capping surface can
be ANY surface bound by the contour.

e Only requirement:
the surface element vectors point in the “general direction” of a r-h screw
w.r.t. to the sense of the contour integral.

Front

e |n practice, (in exam questions?!) the bounding contour is often planar, and
the capping surface either flat, or hemispherical, or cylindrical.




& Example of Stokes’ Theorem 7.14

Question: Vector field a = x3j — y31 and C is the circle of radius A centred on
the origin.

Derive ¢-a- dr (i) directly and (i) using Stokes' with a planar surface.
Answer Direct: On the circle of radius A

a = A°(—sin® 61 + cos® 6))

and
dr = AdB(— sin 61 + cos 6))

so that:

X . i 37
jéa iy = / A*(sin* @ + cos* 0)d = —A*,
C 0 2

2 2T
/ sin* 0do = / cos* 0df =
Jo Jo




Example /ctd

Answer Using Stokes’ theorem [ curla- dS over planar disc ...

Y

curl a= = 3(x* + y)k = 3r’k

We choose area elements to be circular strips of radius r
thickness dr. Then

dS = rdrdok

2m A
3
/curla-dS:3/ dd)/ PRdr = 21 At
S $=0 r=0 2




An Extension to Stokes' Theorem

e Try similar “extension” with Stokes ...

e Again let a(r) = U(r)c, where c is a constant vector. Then

curla = Ucurl c+grad U X ¢

But curl ¢ i1s zero. Stokes' Theorem becomes:

fU(c-dr):fgradch-dS=/c-(degrad U)
C S S

e Re-arranging and taking constant c out ...

c-j{Udrz—c-/gradedS +
c S

But c is arbitrary and so

An extension to Stokes’: ¢-Udr = — [cgrad U x dS




& Example of extension to Stokes’ Theorem

Question: Derive ¢ Udr

where U = x? + y? + z? and

C is the circle (x — a)*>+ y* = a*, z =0,

(i) directly and (ii) using Stokes with a planar capping
surface.

A(i) Directly: On the circle r = a(1 + cos )i + asin aj, so
U = a*(1 + cosa)? + a*sin® a = 2a*(1 + cos a)

dr=a da(—sinal + cosaj) .

2T
%Udr =0 / (14 cosa)(—sinai + cos af)da = 2wa’}
a=0

(It is worth checking that a zero T component is indeed what you would expect
from symmetry.)




Example /ctd 7.18

N\
i d8=[3d(1 dpk

A(ii) Using Stokes’ ... Using the xy-planar surface

dS = pdp dak
grad U = gradr? = 2r
= 2(a+ pcosa)i+2psinaj ,

so that

dS x gradU = p dp da[2(a+ pcosa)(k x 1) + 2psin a(k x j)]
= p dp da[—2psinai+ 2(a + pcos a)j]
and as [ sinada =0 and [, cosada = 0

- | 2m
/dS X gradU / f p dp da(2a))
S p=0 Ja=0
2

d
27r§(2a]“) = 27a’j




| don't why understand why you used p,a in the last example ...7.19

N

by / dS=pda dpk

It I1s simply a coordinate transformation to decouple the coordinates. In the plane
the general position is

r=xi+yj=rcosbi+ rsinfj=(a+ pcosa)i+ +psinaj
Going round the circumference, both r and 6 change, so
dr = (cos8dr — rsin8dé)i + (sin@dr + r cos 0do)j
whereas because |p| = a is constant

dp = (—asinada)i+ (acosada)j




Summary

In this lecture, we have developed

/diva d\/:/a-dS
V S

If you sum up the §(Effluxes) from each d(Volume) in an object, you must
end up with the overall efflux from the surface.

?ga-drz/curla-ds
JC Js

which says if you add up the §(Circulations) per unit area over an open surface,
you end up with the Circulation around the rim

e Gauss’ Theorem

¢ Stokes’ Theorem

e We've seen how to verify and apply the theorems to simple surfaces and
volumes using Cartesians, cylindrical and spherical polars.




