Lecture 6

Vector Operator ldentities

In this lecture we look at more complicated identities involving vector operators.
The main thing to appreciate it that the operators behave both as vectors and
as differential operators, so that the usual rules of taking the derivative of, say, a
product must be observed.

There could be a cottage industry inventing vector identities. HLT contains a lot
of them. So why not leave it at that?

First, since grad, div and curl describe key aspects of vectors fields, they arise often
in practice, and so the identities can save you a lot of time and hacking of partial
derivatives, as we will see when we consider Maxwell's equation as an example
later.

Secondly, they help to identify other practically important vector operators. So,
although this material is a bit dry, the relevance of the identities should become
clear later in other Engineering courses.

6.1 Identity 1: curl grad U =0

[ j k
VxVU = | 8/ox 0/0y 0/0z
oU/ox oU/dy 0oU/dz
. { 8°U o°U . -
B l(@y@z a 626y> 10 +k0)
= 0 ,

as 8%/9ydz = 0°/0zdy.
Note that the output is a null vector.
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6.2 Identity 2: divcurla=0

0/0x 0/0y 0/0z
V-Vxa = |0/0x 0/0y 0/0z
ax ay a,

0?a, ©%a, ©%a, ©°a, 0O’a, O%a,

Ox0y ~ 9x0z OyOox * Oy0z * 0z0x  0zO0y
=0

6.3 Identity 3: div and curl of Ua

Suppose that U(r) is a scalar field and that a(r) is a vector field and we are inter-
ested in the product Ua. This is a vector field, so we can compute its divergence
and curl. For example the density p(r) of a fluid is a scalar field, and the instan-
taneous velocity of the fluid w(r) is a vector field, and we are probably interested
in mass flow rates for which we will be interested in p(r)wv(r).

The divergence (a scalar) of the product Ua is given by:

V-(Ua) = U(V-a)+(VU)-a
= Udiva + (gradU) - a

In a similar way, we can take the curl of the vector field Ua, and the result should
be a vector field:

V x (Ua) =UV xa+ (VU) xa .

6.4 Identity 4: divofa xb

Life quickly gets trickier when vector or scalar products are involved: For example,
It is not that obvious that

div(ax b) = curla-b—a-curlb
To show this, use the determinant:

0/0x; 0/0x; 0/0x« 5

o) o
Ay a, a, = &[aybz — a,b,] + a[asz — ayb,] + g[axby — ayby]

= ... bash out the products ...
= curla-b—a- (curl b)
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6.5 Identity 5: curl(a x b)

i j k
curl(a x b) = 0/0x 0/0y 0/0z
ayb, —a,b, a,bx— axb, axb, — a, by

so the 7 component is

5, o)
a(axby — ayby) — E(asz — ayb,)

which can be written as the sum of four terms:

ob, b, da, 0a, 5 o 5 o
x|\ 4., _bx . A_ by — bz— X n. Z'A_ bx
a(8y+82> (8y+8z)+(y8y+ 8Z)a (ay8y+ac'92)

Adding a,(0b,/0x) to the first of these, and subtracting it from the last, and
doing the same with b,(0a,/0x) to the other two terms, we find that (you should
of course check this):

Vx(axb)=(V-b)a—(V-ab+[b-V]a—[a-V]b

where [a - V] can be regarded as new, and very useful, scalar differential operator.

6.6 Definition of the operator [a - V]

This is a scalar operator, but it can obviously can be applied to a scalar field,
resulting in a scalar field, or to a vector field resulting in a vector field:

0 0
+ ay@ + az_

la- V= 0z

O

6.7 Identity 6: curl(curla) for you to derive

The following important identity is stated, and left as an exercise:
curl(curla) = graddiva — V°a
where

VZ%a = V2a,i+ V?%a,j + V2a,k
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& Example of Identity 6: electromagnetic waves

Q: James Clerk Maxwell established a set of four vector equations which are
fundamental to working out how eletromagnetic waves propagate. The entire
telecommunications industry is built on these.

dvD = p
dvB = 0
0
IE = ——B
cur T
0
H = —D
cur J+ 7

In addition, we can assume the following, which should all be familiar to you:
B = u,uoH, J = oE, D = ¢,¢0E,
where all the scalars are constants.

Now show that in a material with zero free charge density, p = 0, and with
zero conductivity, o = 0, the electric field E must be a solution of the wave
equation

V2E = ur,u,oereo(62E/8t2) .

A: First, a bit of respect. Imagine you are the first to do this — this is a tingle
moment.
divD = div(e60E) = €,6odivVE=p =0 = divE=10. (a)
divB = div(u,uoH) = p,uodivH=0 = divB =0 (b)
curlE = —0B/0t = —u,uo(OH/0t) (c)
curlH = J+0D/0t = 0+ €,6q(0E/Ot) (d)

But we know (or rather you worked out in Identity 6) that curlcurl = graddiv—
V2, and using (c)

curlcurlE = graddivE — V?E = curl (—pu,uo(0H/0t))

so interchanging the order of partial differentation, and using (a) divE = 0:

0
— 2 — J— R
V°E ,u,,,u,oat(curIH)

N L
- ,U'r,uloat ereoat

0°E
= V’E = ,UJr,UJOGrGOﬁ
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This equation is actually three equations, one for each component:

O°E
v2Ex = Mr r —
Morlbo€r€o 3¢2

and so on for E, and E,.

6.8 Grad, div, curl and V? in curvilinear co-ordinate systems

It is possible to obtain general expressions for grad, div and curl in any orthogonal
curvilinear co-ordinate system by making use of the h factors which were introduced
in Lecture 4.

We recall that the unit vector in the direction of increasing u, with v and w being
kept constant, is

. 1 Or
ui=——
h, ou
where r Is the position vector, and
or
h, = |=—
! ou

is the metric coefficient. Similar expressions apply for the other co-ordinate direc-
tions. Then

dr = h,udu + hyvdv + h,wdw .

6.9 Grad in curvilinear coordinates

Noting that U = U(r) and U = U(u, v, w), and using the properties of the gradient
of a scalar field obtained previously

VU dr=dU = a—UdunLa—Udv%—a—UdW
ou ov ow

It follows that

ou ou ou
VU - (h,adu + hNdv + h,wdw) = Edu + Edv + a—WdW

The only way this can be satisfied for independent du, dv, dw is when

VU — 18UA+ 16UA+ 10U |
_huauu hvﬁvv hW8WW
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6.10 Divergence in curvilinear coordinates

Expressions can be obtained for the divergence of a vector field in orthogonal
curvilinear co-ordinates by making use of the flux property.

We consider an element of volume dV'. If the curvilinear coordinates are orthogonal
then the little volume is a cuboid (to first order in small quantities) and

dv =h, h, h, dudv dw .

However, it is not quite a cuboid: the area of two opposite faces will differ as the
scale parameters are functions of u, v and w in general.

K
hW(V% I hW (v+dv) dw

___! ey
h (v) du /h(u (v+av) du
hv dv /J

u The scale params are
functions of u,v,w

Figure 6.1: Elemental volume for calculating divergence in orthogonal curvilinear coordinates

So the net efflux from the two faces in the v direction shown in Figure 6.1 is

ov ov ov
d(a,h,hy)

= Tdudvdw

which is easily shown by multiplying the first line out and dropping second order
terms (i.e. (dv)?).

By definition div is the net efflux per unit volume, so summing up the other faces:

d(ay h, hy) d(a, h, hy) d(ay hy, hy)
( ou i ov i ow

d(ay h, hy) d(a, h, hy) d(a, hy, hy)
( ou i ov i ow

v hu hW
_ [av , 03 dv] [hu .9 dv] [hw + a—dv] dudw — a,h,hy,dudw

diva dV =

) dudvdw

= diva h,h,h, dudvdw =

) dudvdw



6.11. CURL IN CURVILINEAR COORDINATES 79

So, finally,

diva =

1 d(a, h, hy,) N d(a, h, hy) N d(a, h, h,)
h,h,hy, ou ov ow

6.11 Curl in curvilinear coordinates

Recall from Lecture 5 that we computed the z component of curl as the circulation
per unit area from

da, Oay
dC = (6—x_ 8y> dx dy

By analogy with our derivation of divergence, you will realize that for an orthogonal
curvilinear coordinate system we can write the area as h,h,dudw. But the opposite
sides are no longer quite of the same length. The lower of the pair in Figure 6.2
is length h,(v)du, but the upper is of length h,(v + dv)du

y‘ g, (v+av) —

v+dv
h (v+av) du
f} dv
h,(v) du
Y T TR
a,(\) — =

Figure 6.2: Elemental loop for calculating curl in orthogonal curvilinear coordinates

Summing this pair gives a contribution to the circulation

O(hyay) dvdu

a,(v)h,(v)du — a,(v+ dv)h,(v+dv)du= —

and together with the other pair:

JC — (_8(huau) N 5(hvav)) dudy

ov ou
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So the circulation per unit area is

dC 1 (a(hvav) 6(huau))

hoh,dudv — hyhy \ By Av

and hence curl is

curla(u, v, w) =

1 (8(hwaw) a(hvav)>ﬁ+

h,h, ov ow
1 d(hya,) O(hyaw)\ .
hwhy ( dw  du )v i
1 (8(ha,) 08(hau)\ .
h,hy ( du  dv ) W

You should check that this can be written as
Curl in curvilinear coords:

h,a h,N h,Ww

! F )

h h.h ou ov ow
“wrvewel h,a, hya, hyaw

curla(u, v, w) =

6.12 The Laplacian in curvilinear coordinates

Substitution of the components of gradU into the expression for diva immediately
(1*?) gives the following expression for the Laplacian in general orthogonal co-
ordinates:

2y — 1 i hth8_U _'_i h, h, U N o (h,h,oU
~ hy,hyh, |Bu \ h, Ou ov \ h, Ov ow \ h, Ow '

6.13 Grad Div, Curl, V? in cylindrical polars

Here (u, v, w) — (r, ¢, z). The position vector is r = r cos ¢i + r sin ¢j + zk, and
h, = |0r/0r]|, etc.

= h, = +/(cos2¢+ sin?¢p) =1,

hg \/(r2 sin® ¢ 4 r2cos2 ¢) = r,
h, =1
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= gradU
diva

curla

VU

81
B Qgé 18U 8Uk
- or ' 8qb
1 [0(ra;) Oayg 0a,
o ( or 8¢> T3z
_ (10a, Oay) . da, Oa,)\ . 1 (O(rag) Oar\ 2
- (raqb 82>er+<82 ar)e¢+r( ar a0 )X

Tutorial Exercise

6.14 Grad Div, Curl, V? in spherical polars

Here (u, v, w)

— (r,0,¢@). The position vector is ¥ = rsin 6 cos ¢i+ rsin6sin ¢ +

r cos k.
= h = \/(sin2 6(cos2 ¢ + sin® ¢) + cos2 ) = 1
hy = \/(r2 cos26(cos2 ¢ + sin®p) + r2sin®6) = r
hy = \/(r2sin29(sin2q§+cos2q§) = rsind
= gradU = a—Ué +16Ué + ! 6Ué
T = S T T80 T rsin6og !
dva — 10(r’a) 1 O(agsinb) IRNGEN
2 or rsiné 89 rsin@@qﬁ
é, é 0 5} .
curla = pp: ( (apsinB) — 9)) rsm@ (8_(b(ar) — E(ad)rsm 9)) +
E¢ 0
r (ar(agr) ae(ar))
V?U = Tutorial Exercise
& Examples

Q1 Find curla in (i) Cartesians and (ii) Spherical polars when a = x(xi+ yj+ zk).
A1 (i) In Cartesians

curla =

~
A~ ~

] ] k
0/0x 0/0y 0/0z

x° Xy Xz

—Zj+ yk .
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(i) In spherical polars, x = rsin@cos ¢ and r = (xi+ yj + zk). So

a = r’sinfcosqé,
= a, = r’sinfcos¢; ag=0; ag=0.
Hence as

curta =~ (S (apsind) = 2 (an) ) ot ((an) = - (aarsing) ) 428 ( 2 Gaor) - 2520

_ & (0 & ( 0 .
curla = e (a¢(r sm@cosqb)) +- ( 89(r sm@cosqb))
= rsinG( r’sinfsin @) + ; (—r cosf cos¢))

= &y(—rsing) + éy(—rcosbcos @)

Checking: these two results should be the same, but to check we need ex-
pressions for &g, €4 in terms of 7 etc.

Remember that we can work out the unit vectors &, and so on in terms of 7

etc using
. 1 Or . 1 Or . 1 Or . it vitzk
é = ——; €= ——; €, = —— where r =x zk .
" hdr "= 1, do * = L de i

Grinding through we find

é, sinfcos¢ sinfsing cosb 1 1

€ | = | cosfcos¢p cosfsing —sinf J = [R]| ]

€y —sing cos @ 0 k k

Don't be shocked to see a rotation matrix [R]: we are after all rotating one
right-handed orthogonal coord system into another.

So the result in spherical polars is

curla = (cos6 cos @i+ cosBsin@j — sin 0k)(—rsin @) + (— sin ¢i + cos ¢j)(—r cos 6 cos )
— —rcosfj+ rsinfsin gk
= —Zj+yk

which is exactly the result in Cartesians.

Q2 Find the divergence of the vector field a = rc where ¢ is a constant vector
(i) using Cartesian coordinates and (ii) using Spherical Polar coordinates.
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A2 (i) Using Cartesian coords:

. 0
diva = —(x*>+y° +2)"c + ...
ox

= x.(P+y?+2) Y20+
1

= —fr-C
r

(i) Using Spherical polars
a = a€, + ap€y + ay€y

and our first task is to find a, and so on. We can’t do this by inspection, and
finding their values requires more work than you might think! Recall

é, sinfcos¢p sinfBsing cosH 1 1
€ | = | cosfcosp cosfOsing —sinb ] = [R] | J
&y —sing cos ¢ 0 k k

Now the point Is the same point in space whatever the coordinate system, so

~

are, + ag€p + agly = axl + a,J + ask
and using the inner product

T - - AT -

ar é, EN 1
dp €y = dy J
a¢ é¢ ] | dy i | k i
T ~ = — =T  ~ -
a | [RI|J| = | & ]
a¢ k | B az i | k |
T - o T
dr dx
= | a [R] = ay
a¢ | dy ]
T - - T
a, Ay
_ T
= | d = dy [R]
a¢ | dy ]
a, Ay
= dp = [R] dy
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For our particular problem, a, = rc,, etc, where ¢, is a constant, so now we
can write down

a, = r(sinfcospc, + sinfsingc, + cosbc,)
ag r(cos@cosgcy + cos@singc, — sinfc,)
ag r(—singce + cosgpcy,)

Now all we need to do iIs to bash out

~109(r*a) 1 9(agsinb) 1 Oag
va= = Treng 88 | rsnd ao

In glorious detail this is

diva = 3(sinfcos¢cy + sinBsin¢c, + cosbc,) +

1
g (cos” 6 — sin” ) (cos pcy + sin ¢c,) — 2sinfcosbc,) +
1

s (— cos ¢cy — singcy)

A bit more bashing and you'll find

diva = sinfcos¢c, + sinfsin¢c, + cosbc,
— ér'c

This is EXACTLY what you worked out before of course.

Take home messages from these examples:

e Just as physical vectors are independent of their coordinate systems, so are
differential operators.

e Don’'t forget about the vector geometry you did in the 1st year. Rotation
matrices are useful!

e Spherical polars were NOT a good coordinate system in which to think about
this problem. Let the symmetry guide you.

Revised Oct 2008



Lecture 7

Gauss’ and Stokes’ Theorems

This section finally begins to deliver on why we introduced div grad and curl. Two
theorems, both of them over two hundred years old, are explained:

e Gauss’ Theorem enables an integral taken over a volume to be replaced by
one taken over the surface bounding that volume, and vice versa. Why would
we want to do that? Computational efficiency and/or numerical accuracy!

e Stokes’ Law enables an integral taken around a closed curve to be replaced
by one taken over any surface bounded by that curve.

7.1 Gauss’ Theorem

Suppose that a(r) is a vector field and we want to compute the total flux of the
field across the surface S that bounds a volume V. That is, we are interested In

calculating:

/a-dS
s

ds

ds

Figure 7.1: The surface element dS must stick out of the surface.

85



86 LECTURE 7. GAUSS' AND STOKES' THEOREMS

where recall that dS is normal to the locally planar surface element and must
everywhere point out of the volume as shown in Figure 7.1,

Gauss’ Theorem tells us that we can do this by considering the total flux generated
inside the volume V:

Gauss’ Theorem

/a-dS:/divadV
S %

obtained by integrating the divergence over the entire volume.

7.2 Informal proof

An non-rigorous proof can be realized by recalling that we defined div by considering
the efflux dE from the surfaces of an infinitesimal volume element

dE =a-dS
and defining it as
dvadV = dE = a-dS.

If we sum over the volume elements, this results in a sum over the surface elements.
But if two elemental surface touch, their dS vectors are in opposing direction and
cancel as shown in Figure 7.2. Thus the sum over surface elements gives the
overall bounding surface.

Figure 7.2: When two elements touch, the dS vectors at the common surface cancel out. One
can imagine building the entire volume up from the infinitesimal units.
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& Example of Gauss’ Theorem

This is a typical example, in which the surface integral is rather tedious, whereas
the volume integral is straightforward.

Q Derive [.a- dS where a = 7%k and S is the surface of a sphere of radius R
centred on the origin:

1. directly;
2. by applying Gauss’ Theorem
3A
z k

2 A
R sin@ dBdor

\/

Figure 7.3:

A (1) On the surface of the sphere, a = R3cos? 0k and dS = R?sin 8d0dt.
Everywhere ¥ - k = cosé.

:>/a-dS = / / R3cos® @ . R?sin0dod¢e, - k
s $=0 Jo—0

:/ / R3cos®6 . R?sin8dfd¢ . cosh
$—0Jo—0

= 27rR5/ cos*Osin6d6
0

5 5
_ 2TR [_ cos5 Q]g _ 4R
5 5

(2) To apply Gauss’ Theorem, we need to figure out div a and decide how to
compute the volume integral. The first is easy:

diva = 32°
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For the second, because diva involves just z, we can divide the sphere into
discs of constant z and thickness dz, as shown in Fig. 7.3. Then

dV = 7(R? — z2%)dz

and

R
/div adV = 37r/ 7*(R* — 2°)dz
VvV _

R

R?z%3  Z°
[
B AT R®
5

7.3 Surface versus volume integrals

At first sight, it might seem that with a computer performing surface integrals
might be better than a volume integral, perhaps because there are, somehow,
“fewer elements”. However, this is not the case. Imagine doing a surface integral
over a wrinkly surface, say that of the moon. All the elements involved in the
integration are “difficult” and must be modelled correctly. With a volume integral,
most of the elements are not at the surface, and so the bulk of the integral is
done without accurate modelling. The computation easier, faster, and better
conditioned numerically.

7.4 Extension to Gauss’ Theorem

Suppose the vector field a(r) is of the form a = U(r)c, where U(r) as scalar field
and c is a constant vector. Then, as we showed in the previous lecture,

diva = gradU-c+ Udiv c
= gradU - c

since dive = 0 because ¢ is constant.
Gauss’ Theorem becomes

/Uc-dS:/grad U-cdV
s V

or, alternatively, taking the constant c out of the integrals

c-</SUdS>:c-</Vgrad Udv>
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This is still a scalar equation but we now note that the vector c is arbitrary so
that the result must be true for any vector ¢. This can be true only if the vector
equation

/UdS:/grad udv
S v

Is satisfied.

If you think this is fishy, just write ¢ = i, then ¢ = J, and ¢ = k in turn, and you
must obtain the three components of fs UdS in turn.

Further “extensions” can be obtained of course. For example one might be able
to write the vector field of interest as

a(r) =b(r) xc

where ¢ is a constant vector.

& Example of extension to Gauss’ Theorem
Q U = x?+ y? + z% is a scalar field,

and volume V is the cylinder x? +
y? < a% 0 < z < h. Compute the
surface integral

/UdS
s

over the surface of the cylinder.

It Is immediately clear from sym-
metry that there is no contribution
from the curved surface of the cylin-
der since for every vector surface el-
ement there exists an equal and op-
posite element with the same value
of U. We therefore need consider
only the top and bottom faces.

Top face:

SO

U=x>+y?>+2z>=r>+h> and dS = rdrdok

=0

a 2 R R 1
/UdS = / (h? + r2)27rrdr/ dopk = kT [hzr2 + §r4]
r=0 ¢

dS

a

0

A

AdS

1 ~
= w[h*a® + 534]k
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Bottom face:
U=r?and dS = —rdrdpk

The contribution from this face is thus —”7347(, and the total integral is wh2a’k.

On the other hand, using Gauss' Theorem we have to compute
/grad udv
Vv
In this case, grad U = 2r,
2/(x7+ylA(+ZIA()r dr dz d¢
v

The integrations over x and y are zero by symmetry, so that the only remaining
part Is

h a 2T R R
2/ Zdz/ r dr/ dok = wa’h’k
z=0 r=0 ¢=0

7.5 Stokes’ Theorem

Stokes’ Theorem relates a line integral around a closed path to a surface integral
over what Is called a capping surface of the path.

Stokes’ Theorem states:

j{a-dlz/curl a-ds
C S

where S is any surface capping the curve C.

Why have we used dl rather than dr, where r is the position vector?

There is no good reason for this, as dl = dr. It just seems to be common usage
In line integrals!
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7.6 Informal proof

You will recall that in Lecture 5 that we defined curl as the circulation per unit
area, and showed that

> a-dl=dC=(Vxa)-dS

around elemental loop

Now if we add these little loops together, the internal line sections cancel out
because the dI's are in opposite direction but the field a is not. This gives the
larger surface and the larger bounding contour as shown in Fig. 7.4.

i
Sl\ D D
3
<
X+dx >
.

Figure 7.4: An example of an elementary loop, and how they combine together.

For a given contour, the capping surface can be ANY surface bound by
the contour. The only requirement is that the surface element vectors point in

the “general direction” of a right-handed screw with respect to the sense of the
contour integral. See Fig. 7.5.

Front

Figure 7.5: For a given contour, the bounding surface can be any shape. dS’'s must have a positive
component in the sense of a r-h screw wrt the contour sense.
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& Example of Stokes’ Theorem

In practice, (and especially in exam questions!) the bounding contour is often
planar, and the capping surface flat or hemispherical or cylindrical.

Q Vector field a = x3j— y%i and C is the circle of radius R centred on the origin.
Derive

%a-dl
C

directly and (ii) using Stokes’ theorem where the surface is the planar surface
bounded by the contour.

A(i) Directly. On the circle of radius R

a = R3(—sin®6i + cos® )

and
dl = Rd6(— sin 61 + cos 6])
so that:
2T 37.[.
% a-dl= / R*(sin* 6 + cos* 8)df = —R*,
c 0 2
since

2 2
3
/ sin® 0d6 :/ cos*0dg = ="
0 0 4

A(ii) Using Stokes’ theorem ...

] k
cul a=| 5 5 & |=30+y)k=3rk
—y3 x> 0

We choose area elements to be circular strips of radius r thickness dr. Then

~ R 3T
dS = 2rrdrk and /Curl a-ds = 67r/ ridr = 7/?4
S 0
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7.7 An Extension to Stokes’ Theorem

Just as we considered one extension to Gauss' theorem (not really an extension,
more of a re-expression), so we will try something similar with Stoke’s Theorem.

Again let a(r) = U(r)c, where c is a constant vector. Then
curl @ = Ucurl ¢+ grad U x c)

Again, curl c is zero. Stokes’ Theorem becomes in this case:

%U(c-dl):/(gradch-dS:/c-(degrad U)
C s s

or, rearranging the triple scalar products and taking the constant ¢ out of the
Integrals gives

c-j{UdI:—c-/gradedS
C S

But c is arbitrary and so

%Udlz—/gradedS
C s

7.8 & Example of extension to Stokes’ Theorem

Q Derive ¢-Udr (i) directly and (ii) using Stokes’,
where U = x° + y? 4+ z? and the line integral is taken
around C the circle (x — a)? + y> = a? and z = 0.

} i
Note that, for no special reason, we have used dr a
here not dl.

A(i) First some preamble.

If the circle were centred at the origin, we would write dr = ad6éy =
ad@(— sin 01+ cos 6]). For such a circle the magnitude r = |r| = a, a constant
and so dr = 0.

However, in this example dr is not always in the direction of &g, and dr # 0.
Could you write down dr? If not, revise Lecture 3, where we saw that in plane
polars x = rcos@, y = rsin@ and the general expression is

dr = dxi1+ dy) = (cos@dr — rsin8d0)i+ (sinfdr + r cos0do)]
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To avoid having to find an expression for r in terms of 8, we will perform a
coordinate transformation by writing r = [a,0]" + p. So, x = (a+ pcosa)
and y = psina, and on the circle itself where p = a

r=a(l+cosa)i+asinaj |,
dr = ada(—sinail + cosaj) ,
and, as z = 0 on the circle,
U= a*(1+cosa)®+ a’sina = 2a*(1 + cosa) .

The line integral becomes

2w

%Udr = 233/ (1 + cosa)(— sinai+ cosaj)da = 2ma’]j
a=0

A(ii) Now using Stokes' ...

For a planar surface covering the disc, the surface element can be written
using the new parametrization as

dS = p dp dak
Remember that U = x? 4+ y? + z? = r?, and as z = 0 in the plane
grad U = 2(xi+ yj + zk) = 2(a+ pcosa)i+ 2psinaj .

Be careful to note that x, y are specified for any point on the disc, not on its
circular boundary!

So

~

] k
dSxgradU = 2p dp da 0 1 | =2p[—psinad+(a+pcosa)j] dp da
(a+ pcosa) psina O

O

Both [ sinada =0 and [;" cosada = 0, so we are left with

a 2m
/ dS x gradU = / / 20aj dp do = 2ma’j
S p=0 Ja=0
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Lecture 8

Engineering applications

In Lecture 6 we saw one classic example of the application of vector calculus to
Maxwell’s equation.

In this lecture we explore a few more examples from fluid mechanics and heat
transfer. As with Maxwell’s eqgations, the examples show how vector calculus
provides a powerful way of representing underlying physics.

The power come from the fact that div, grad and curl have a significance or
meaning which is more immediate than a collection of partial derivatives. Vector
calculus will, with practice, become a convenient shorthand for you.

e Electricity — Ampere’'s Law

Fluid Mechanics - The Continuity Equation

Thermo: The Heat Conduction Equation

Mechanics/Electrostatics - Conservative fields

The Inverse Square Law of force

Gravitational field due to distributed mass

Gravitational field inside body

Pressure forces in non-uniform flows

95
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8.1 Electricity — Ampeére’s Law

If the frequency Is low, the displacement current in Maxwell's equation curlH =
J + 0D/0t is negligible, and we find

curlH = J

Hence

/curIH-dS:/J-dS
S S
%H-dI:/J-dS

S

where fs J - dS is total current through the surface.

Now consider the H around a straight wire carrying current /. Symmetry tells us
the H is in the &, direction, in a rhs screw sense with respect to the current. (You
might check this against Biot-Savart’s law.)

Suppose we asked what is the magnitude of H?

1
_ r} H

I

i W

: ‘ : i ) ;
Top view  |nwire ' Outside wire
for r<a

Inside the wire, the bounding contour only encloses a fraction (7r?)/(mwa?) of the
current, and so

H2mr = /J-dS: 1(r?/A?)
= H = Ir/2mA?
whereas outside we enclose all the current, and so
H2mr = /J-dS:/
= H = [/27r

A plot is shown in the Figure.
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8.2 Fluid Mechanics - The Continuity Equation

The Continuity Equation expresses the condition of conservation of mass in a
fluid flow. The continuity principle applied to any volume (called a control volume)
may be expressed in words as follows:

“The net rate of mass flow of fluid out of the control volume must equal
the rate of decrease of the mass of fluid within the control volume”

dS

Control Volume V

Figure 8.1:

To express the above as a mathematical equation, we denote the velocity of the
fluid at each point of the flow by q(r) (a vector field) and the density by p(r) (a

scalar field). The element of rate-of-volume-loss through surface dS is dV = q-dS,
so the rate of mass loss is

dM = pq - dS,

so that the total rate of mass loss from the volume is

0
~ 5t p(r)dV /qu - dS.

Assuming that the volume of interest is fixed, this is the same as

/—dV /pq-dS.
S

Now we use Gauss' Theorem to transform the RHS into a volume integral

/—dV /Vdiv (pq)dV .

The two volume integrals can be equal for any control volume V only if the two
integrands are equal at each point of the flow. This leads to the mathematical
formulation of
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The Continuity Equation:
ot

Notice that if the density doesn’t vary with time, div (pq) = 0, and if the density
doesn’t vary with position then

div (pq) =

The Continuity Equation for uniform, time-invariant density:

div(q) =0

In this last case, we can say that the flow q is solenoidal.

8.3 Thermodynamics - The Heat Conduction Equation

Flow of heat is very similar to flow of fluid, and heat flow satisfies a similar con-
tinuity equation. The flow is characterized by the heat current density q(r) (heat
flow per unit area and time), sometimes misleadingly called heat flux.

Assuming that there is no mass flow across the boundary of the control volume and
no source of heat inside it, the rate of flow of heat out of the control volume by
conduction must equal the rate of decrease of internal energy (constant volume)
or enthalpy (constant pressure) within it. This leads to the equation

g oT
v q=—pCc—,
q P a1
where p is the density of the conducting medium, c its specific heat (both are
assumed constant) and T is the temperature.

In order to solve for the temperature field another equation is required, linking g
to the temperature gradient. This is
q= —kgrad T,

where K is the thermal conductivity of the medium. Combining the two equations
gives the heat conduction equation:

. . 5 oT
—divg=kdiv grad T =kV*T = pca
where it has been assumed that kK is a constant. In steady flow the temperature
field satisfies Laplace's Equation V2T = 0.
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8.4 Mechanics - Conservative fields of force

A conservative field of force is one for which the work done

B
/ F - dr,
A

moving from A to B is indep. of path taken. As we saw in Lecture 4, conservative
fields must satisfy the condition

%F-dr:O,
C

Stokes’ tells us that this is

/curIF-dS:O,
S

where S is any surface bounded by C.
But if true for any C containing A and B, it must be that

curl F=0

Conservative fields are irrotational
All radial fields are irrotational

One way (actually the only way) of satisfying this condition is for
F=VU

The scalar field U(r) is the Potential Function
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8.5 The Inverse Square Law of force

Radial forces are found in electrostatics and gravitation — so they are certainly
irrotational and conservative.

But in nature these radial forces are also inverse square laws. One reason why this
may be so is that it turns out to be the only central force field which is solenoidal,
l.e. has zero divergence.

If F=f(r)r,
div F =3f(r) + rf'(r).

For div F = 0 we conclude

ar +3f =0
I — =
dr
or
df dr
— +3— =0.
f r
Integrating with respect to r gives fr3 = const = A, so that
Ar A

The condition of zero divergence of the inverse square force field applies everywhere
except at r = 0, where the divergence is infinite.

To show this, calculate the outward normal flux out of a sphere of radius R centered
on the origin when F = F¥. This is

/F-dS:F/ f-dS:F/ d = FATR? = 4w A = Constant.
S Sphere Sphere

Gauss tells us that this flux must be equal to

R
/div FdV :/ div Farmridr
4 0

where we have done the volume integral as a summation over thin shells of surface
area 4mr? and thickness dr.

But for all finite r, divF = 0, so divF must be infinite at the origin.
The flux integral is thus
e zero — for any volume which does not contain the origin

e 41 A for any volume which does contain it.
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8.6 Gravitational field due to distributed mass: Poisson’s Equa-
tion

If one tried the same approach as §8.4 for the gravitational field, A = Gm, where
m is the mass at the origin and G the universal gravitational constant, one would
run into the problem that there is no such thing as point mass.

We can make progress though by considering distributed mass.

The mass contained in each small volume element dV is pdV/ and this will make a
contribution —4mpGdV to the flux integral from the control volume. Mass outside
the control volume makes no contribution, so that we obtain the equation

/F-dS:—47rG/pd\/.
s %

Transforming the left hand integral by Gauss' Theorem gives

/div FdV:—47rG/pdV
v v

which, since it is true for any V, implies that
—div F = 4mpG.

Since the gravitational field is also conservative (i.e. irrotational) it must have
an associated potential function U, so that F = grad U. It follows that the
gravitational potential U satisfies

Poisson’s Equation

VU = 47pG .

Using the integral form of Poisson’s equation, it is possible to calculate the gravi-
tational field inside a spherical body whose density is a function of radius only. We
have

R
ATR?F = 47TG/ Amrlpdr,
0

where F = |F|, or

G [f MG
‘F‘:ﬁ/o 47rrpdr:ﬁ,

where M is the total mass inside radius R. For the case of uniform density, this is
equal to M = SmpR® and |F| = £mpGR.
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8.7 Pressure forces in non-uniform flows

When a body is immersed in a flow it experiences a net pressure force

F, = —/pdS,
5

where S is the surface of the body. If the pressure p is non-uniform, this integral
is not zero. The integral can be transformed using Gauss’ Theorem to give the
alternative expression

Fp:—/gradpd\/,
%

where V' is the volume of the body. In the simple hydrostatic case p + pgz =
constant, so that

grad p = —pgk

and the net pressure force is simply

F, gﬁ/pdv
Vv

which, in agreement with Archimedes’ principle, is equal to the weight of fluid

displaced.
Z A

"
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