
Leture 6Vetor Operator IdentitiesIn this leture we look at more ompliated identities involving vetor operators.The main thing to appreiate it that the operators behave both as vetors andas di�erential operators, so that the usual rules of taking the derivative of, say, aprodut must be observed.There ould be a ottage industry inventing vetor identities. HLT ontains a lotof them. So why not leave it at that?First, sine grad, div and url desribe key aspets of vetors �elds, they arise oftenin pratie, and so the identities an save you a lot of time and haking of partialderivatives, as we will see when we onsider Maxwell's equation as an examplelater.Seondly, they help to identify other pratially important vetor operators. So,although this material is a bit dry, the relevane of the identities should beomelear later in other Engineering ourses.6.1 Identity 1: url grad U = 000
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∣= {̂{{ ( �2U�y�z � �2U�z�y) + |̂|| () + k̂kk ()= 000 ;as �2=�y�z = �2=�z�y .Note that the output is a null vetor. 73



74 LECTURE 6. VECTOR OPERATOR IDENTITIES6.2 Identity 2: div url a = 0
rrr � rrr� a = ∣
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∣= �2az�x�y � �2ay�x�z � �2az�y�x + �2ax�y�z + �2ay�z�x � �2ax�z�y= 06.3 Identity 3: div and url of UaSuppose that U(r) is a salar �eld and that a(r) is a vetor �eld and we are inter-ested in the produt Ua. This is a vetor �eld, so we an ompute its divergeneand url. For example the density �(r) of a uid is a salar �eld, and the instan-taneous veloity of the uid v(r) is a vetor �eld, and we are probably interestedin mass ow rates for whih we will be interested in �(r)v(r).The divergene (a salar) of the produt Ua is given by:rrr � (Ua) = U(rrr � a) + (rrrU) � a= Udiva+ (gradU) � aIn a similar way, we an take the url of the vetor �eld Ua, and the result shouldbe a vetor �eld:rrr� (Ua) = Urrr� a+ (rrrU)� a :6.4 Identity 4: div of a� bLife quikly gets trikier when vetor or salar produts are involved: For example,it is not that obvious thatdiv(a� b) = urla � b� a � urlbTo show this, use the determinant:
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= ��x [aybz � azby ℄ + ��y [azbx � axbz ℄ + ��z [axby � aybx ℄= : : : bash out the produts : : := urla � b� a � (curl b)



6.5. IDENTITY 5: CURL(A� B) 756.5 Identity 5: url(a� b)url(a� b) = ∣
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∣so the {̂{{ omponent is��y (axby � aybx)� ��z (azbx � axbz)whih an be written as the sum of four terms:ax (�by�y + �bz�z )�bx (�ay�y + �az�z )+(by ��y + bz ��z) ax�(ay ��y + az ��z) bxAdding ax(�bx=�x) to the �rst of these, and subtrating it from the last, anddoing the same with bx(�ax=�x) to the other two terms, we �nd that (you shouldof ourse hek this):rrr� (a� b) = (rrr � b)a� (rrr � a)b+ [b � rrr℄a� [a � rrr℄bwhere [a � rrr℄ an be regarded as new, and very useful, salar di�erential operator.6.6 De�nition of the operator [a � rrr℄This is a salar operator, but it an obviously an be applied to a salar �eld,resulting in a salar �eld, or to a vetor �eld resulting in a vetor �eld:[a � rrr℄ � [ax ��x + ay ��y + az ��z ] :
6.7 Identity 6: url(urla) for you to deriveThe following important identity is stated, and left as an exerise:url(urla) = graddiva�r2awherer2a = r2ax {̂{{ +r2ay |̂|| +r2az k̂kk



76 LECTURE 6. VECTOR OPERATOR IDENTITIES| Example of Identity 6: eletromagneti wavesQ: James Clerk Maxwell established a set of four vetor equations whih arefundamental to working out how eletromagneti waves propagate. The entireteleommuniations industry is built on these.divD = �divB = 0urlE = � ��tBurlH = J+ ��tDIn addition, we an assume the following, whih should all be familiar to you:B = �r�0H, J = �E, D = �r�0E,where all the salars are onstants.Now show that in a material with zero free harge density, � = 0, and withzero ondutivity, � = 0, the eletri �eld E must be a solution of the waveequationr2E = �r�0�r�0(�2E=�t2) :A: First, a bit of respet. Imagine you are the �rst to do this | this is a tinglemoment.divD = div(�r�0E) = �r�0divE = � = 0 ) divE = 0: (a)divB = div(�r�0H) = �r�0divH = 0 ) divB = 0 (b)urlE = ��B=�t = ��r�0(�H=�t) ()urlH = J+ �D=�t = 000 + �r�0(�E=�t) (d)But we know (or rather you worked out in Identity 6) that urlurl = graddiv�r2, and using ()urlurlE = graddivE�r2E = url (��r�0(�H=�t))so interhanging the order of partial di�erentation, and using (a) divE = 0:�r2E = ��r�0 ��t (urlH)= ��r�0 ��t (�r�0�E�t ))r2E = �r�0�r�0�2E�t2



6.8. GRAD, DIV, CURL AND r2 IN CURVILINEAR CO-ORDINATE SYSTEMS 77This equation is atually three equations, one for eah omponent:r2Ex = �r�0�r�0�2Ex�t2and so on for Ey and Ez .6.8 Grad, div, url and r2 in urvilinear o-ordinate systemsIt is possible to obtain general expressions for grad, div and url in any orthogonalurvilinear o-ordinate system by making use of the h fators whih were introduedin Leture 4.We reall that the unit vetor in the diretion of inreasing u, with v and w beingkept onstant, isû = 1hu �r�uwhere r is the position vetor, andhu = ∣
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∣is the metri oeÆient. Similar expressions apply for the other o-ordinate dire-tions. Thendr = huûdu + hv v̂dv + hw ŵdw :6.9 Grad in urvilinear oordinatesNoting that U = U(r) and U = U(u; v ; w), and using the properties of the gradientof a salar �eld obtained previouslyrrrU � dr = dU = �U�u du + �U�v dv + �U�w dwIt follows thatrrrU � (huûdu + hv v̂dv + hw ŵdw) = �U�u du + �U�v dv + �U�w dwThe only way this an be satis�ed for independent du, dv , dw is whenrrrU = 1hu �U�u û+ 1hv �U�v v̂ + 1hw �U�w ŵ



78 LECTURE 6. VECTOR OPERATOR IDENTITIES6.10 Divergene in urvilinear oordinatesExpressions an be obtained for the divergene of a vetor �eld in orthogonalurvilinear o-ordinates by making use of the ux property.We onsider an element of volume dV . If the urvilinear oordinates are orthogonalthen the little volume is a uboid (to �rst order in small quantities) anddV = hu hv hw du dv dw :However, it is not quite a uboid: the area of two opposite faes will di�er as thesale parameters are funtions of u, v and w in general.
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functions of u,v,wFigure 6.1: Elemental volume for alulating divergene in orthogonal urvilinear oordinatesSo the net e�ux from the two faes in the v̂ diretion shown in Figure 6.1 is= [av + �av�v dv][hu + �hu�v dv][hw + �hw�v dv] dudw � avhuhwdudw= �(avhuhw)�v dudvdwwhih is easily shown by multiplying the �rst line out and dropping seond orderterms (i.e. (dv)2).By de�nition div is the net e�ux per unit volume, so summing up the other faes:diva dV = (�(au hv hw)�u + �(av hu hw)�v + �(aw hu hv)�w ) dudvdw) diva huhvhw dudvdw = (�(au hv hw)�u + �(av hu hw)�v + �(aw hu hv)�w ) dudvdw



6.11. CURL IN CURVILINEAR COORDINATES 79So, �nally,diva = 1huhvhw (�(au hv hw)�u + �(av hu hw)�v + �(aw hu hv)�w )

6.11 Curl in urvilinear oordinatesReall from Leture 5 that we omputed the z omponent of url as the irulationper unit area fromdC = (�ay�x � �ax�y ) dx dyBy analogy with our derivation of divergene, you will realize that for an orthogonalurvilinear oordinate system we an write the area as huhvdudw . But the oppositesides are no longer quite of the same length. The lower of the pair in Figure 6.2is length hu(v)du, but the upper is of length hu(v + dv)du
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Figure 6.2: Elemental loop for alulating url in orthogonal urvilinear oordinatesSumming this pair gives a ontribution to the irulationau(v)hu(v)du � au(v + dv)hu(v + dv)du = ��(huau)�v dvduand together with the other pair:dC = (��(huau)�v + �(hvav)�u ) dudv



80 LECTURE 6. VECTOR OPERATOR IDENTITIESSo the irulation per unit area isdChuhvdudv = 1huhv (�(hvav)�u � �(huau)�v )

and hene url isurla(u; v ; w) = 1hvhw (�(hwaw)�v � �(hvav)�w ) û +1hwhu (�(huau)�w � �(hwaw)�u ) v̂ +1huhv (�(hvav)�u � �(huau)�v ) ŵYou should hek that this an be written asCurl in urvilinear oords:urla(u; v ; w) = 1huhvhw ∣
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∣6.12 The Laplaian in urvilinear oordinatesSubstitution of the omponents of gradU into the expression for diva immediately(!*?) gives the following expression for the Laplaian in general orthogonal o-ordinates:r2U = 1huhvhw [ ��u (hvhwhu �U�u) + ��v (hwhuhv �U�v ) + ��w (huhvhw �U�w)] :6.13 Grad Div, Curl, r2 in ylindrial polarsHere (u; v ; w)! (r; �; z). The position vetor is r = r os �̂{{{ + r sin �̂||| + zk̂kk , andhr = j�r=�r j, et.) hr = √(os2 �+ sin2�) = 1;h� = √(r 2 sin2 �+ r 2 os2 �) = r;hz = 1



6.14. GRAD DIV, CURL, r2 IN SPHERICAL POLARS 81) gradU = �U�r êr + 1r �U�� ê� + �U�z k̂kkdiva = 1r (�(rar)�r + �a��� ) + �az�zurla = (1r �az�� � �a��z ) êr + (�ar�z � �az�r ) ê� + 1r (�(ra�)�r � �ar��) k̂kkr2U = Tutorial Exerise6.14 Grad Div, Curl, r2 in spherial polarsHere (u; v ; w)! (r; �; �). The position vetor is r = r sin � os �̂{{{+ r sin � sin �̂|||+r os �k̂kk.) hr = √(sin2 �(os2 �+ sin2 �) + os2 �) = 1h� = √(r 2 os2 �(os2 �+ sin2 �) + r 2 sin2 �) = rh� = √(r 2 sin2 �(sin2 �+ os2 �) = r sin �) gradU = �U�r êr + 1r �U�� ê� + 1r sin � �U�� ê�diva = 1r 2 �(r 2ar)�r + 1r sin � �(a� sin �)�� + 1r sin � �a���urla = êrr sin � ( ���(a� sin �)� ���(a�)) + ê�r sin � ( ���(ar)� ��r (a�r sin �)) +ê�r ( ��r (a�r)� ���(ar))r2U = Tutorial Exerise| ExamplesQ1 Find urla in (i) Cartesians and (ii) Spherial polars when a = x(x {̂{{+y |̂||+zk̂kk).A1 (i) In Cartesiansurla = ∣
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82 LECTURE 6. VECTOR OPERATOR IDENTITIES(ii) In spherial polars, x = r sin � os� and r = (x {̂{{ + y |̂|| + zk̂kk). Soa = r 2 sin � os�êr) ar = r 2 sin � os�; a� = 0; a� = 0 :Hene asurla = êrr sin � ( ��� (a� sin �)� ���(a�))+ ê�r sin � ( ���(ar )� ��r (a�r sin �))+ ê�r ( ��r (a�r)� ��� (ar ))urla = ê�r sin � ( ���(r 2 sin � os�)) + ê�r (� ���(r 2 sin � os�))= ê�r sin �(�r 2 sin � sin�) + ê�r (�r 2 os � os�))= ê�(�r sin�) + ê�(�r os � os�)Cheking: these two results should be the same, but to hek we need ex-pressions for ê�; ê� in terms of {̂{{ et.Remember that we an work out the unit vetors êr and so on in terms of {̂{{et usingêr = 1h1 �rdr ; ê� = 1h2 �rd� ; ê� = 1h3 �rd� where r = x {̂{{+y |̂||+zk̂kk :Grinding through we �nd




êrê�ê� 

 = 



sin � os� sin � sin� os �os � os� os � sin� � sin �� sin� os� 0 







{̂{{̂|||̂kkk 

 = [R℄ {̂{{̂|||̂kkk 

Don't be shoked to see a rotation matrix [R℄: we are after all rotating oneright-handed orthogonal oord system into another.So the result in spherial polars isurla = (os � os �̂{{{ + os � sin �̂||| � sin �k̂kk)(�r sin�) + (� sin �̂{{{ + os �̂|||)(�r os � os�)= �r os �|̂|| + r sin � sin�k̂kk= �z |̂|| + y k̂kkwhih is exatly the result in Cartesians.Q2 Find the divergene of the vetor �eld a = r where  is a onstant vetor(i) using Cartesian oordinates and (ii) using Spherial Polar oordinates.



6.14. GRAD DIV, CURL, r2 IN SPHERICAL POLARS 83A2 (i) Using Cartesian oords:diva = ��x (x2 + y 2 + z2)1=2x + : : := x:(x2 + y 2 + z2)�1=2x + : : := 1r r �  :(ii) Using Spherial polarsa = ar êr + a�ê� + a�ê�and our �rst task is to �nd ar and so on. We an't do this by inspetion, and�nding their values requires more work than you might think! Reall
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{̂{{̂|||̂kkk 

 = [R℄ {̂{{̂|||̂kkk 

Now the point is the same point in spae whatever the oordinate system, soar êr + a�ê� + a�ê� = ax {̂{{ + ay |̂|| + az k̂kkand using the inner produt
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84 LECTURE 6. VECTOR OPERATOR IDENTITIESFor our partiular problem, ax = rx , et, where x is a onstant, so now wean write downar = r(sin � os�x + sin � sin�y + os �z)a� = r(os � os�x + os � sin�y � sin �z)a� = r(� sin�x + os�y)Now all we need to do is to bash outdiva = 1r 2 �(r 2ar)�r + 1r sin � �(a� sin �)�� + 1r sin � �a���In glorious detail this isdiva = 3 (sin � os�x + sin � sin�y + os �z) +1sin � (os2 � � sin2 �)(os�x + sin�y)� 2 sin � os �z) +1sin � (� os�x � sin�y)A bit more bashing and you'll �nddiva = sin � os�x + sin � sin�y + os �z= êr � This is EXACTLY what you worked out before of ourse.Take home messages from these examples:� Just as physial vetors are independent of their oordinate systems, so aredi�erential operators.� Don't forget about the vetor geometry you did in the 1st year. Rotationmatries are useful!� Spherial polars were NOT a good oordinate system in whih to think aboutthis problem. Let the symmetry guide you.
Revised Ot 2008



Leture 7Gauss' and Stokes' TheoremsThis setion �nally begins to deliver on why we introdued div grad and url. Twotheorems, both of them over two hundred years old, are explained:� Gauss' Theorem enables an integral taken over a volume to be replaed byone taken over the surfae bounding that volume, and vie versa. Why wouldwe want to do that? Computational eÆieny and/or numerial auray!� Stokes' Law enables an integral taken around a losed urve to be replaedby one taken over any surfae bounded by that urve.7.1 Gauss' TheoremSuppose that a(r) is a vetor �eld and we want to ompute the total ux of the�eld aross the surfae S that bounds a volume V . That is, we are interested inalulating:
∫S a � dS

dS
dS

dS

dS

dS

Figure 7.1: The surfae element dS must stik out of the surfae.85



86 LECTURE 7. GAUSS' AND STOKES' THEOREMSwhere reall that dS is normal to the loally planar surfae element and musteverywhere point out of the volume as shown in Figure 7.1.Gauss' Theorem tells us that we an do this by onsidering the total ux generatedinside the volume V :
Gauss' Theorem

∫S a � dS = ∫V div a dVobtained by integrating the divergene over the entire volume.
7.2 Informal proofAn non-rigorous proof an be realized by realling that we de�ned div by onsideringthe e�ux dE from the surfaes of an in�nitesimal volume elementdE = a � dSand de�ning it asdiv a dV = dE = a � dS :If we sum over the volume elements, this results in a sum over the surfae elements.But if two elemental surfae touh, their dS vetors are in opposing diretion andanel as shown in Figure 7.2. Thus the sum over surfae elements gives theoverall bounding surfae.

Figure 7.2: When two elements touh, the dS vetors at the ommon surfae anel out. Onean imagine building the entire volume up from the in�nitesimal units.



7.2. INFORMAL PROOF 87| Example of Gauss' TheoremThis is a typial example, in whih the surfae integral is rather tedious, whereasthe volume integral is straightforward.Q Derive ∫S a � dS where a = z3k̂kk and S is the surfae of a sphere of radius Rentred on the origin:1. diretly;2. by applying Gauss' Theorem
z
3

k

R

R sin d
2

θ θ dφ r
dz
z

R

Figure 7.3:A (1) On the surfae of the sphere, a = R3 os3 �k̂kk and dS = R2 sin �d�d�̂r.Everywhere r̂ � k̂kk = os �.) ∫S a � dS = ∫ 2��=0 ∫ ��=0R3 os3 � : R2 sin �d�d�êr � k̂kk= ∫ 2��=0 ∫ ��=0R3 os3 � : R2 sin �d�d� : os �= 2�R5 ∫ �0 os4 � sin �d�= 2�R55 [� os5 �]�0 = 4�R55(2) To apply Gauss' Theorem, we need to �gure out div a and deide how toompute the volume integral. The �rst is easy:diva = 3z2



88 LECTURE 7. GAUSS' AND STOKES' THEOREMSFor the seond, beause diva involves just z , we an divide the sphere intodiss of onstant z and thikness dz , as shown in Fig. 7.3. ThendV = �(R2 � z2)dzand
∫V div adV = 3� ∫ R�R z2(R2 � z2)dz= 3� [R2z33 � z55 ]R�R= 4�R557.3 Surfae versus volume integralsAt �rst sight, it might seem that with a omputer performing surfae integralsmight be better than a volume integral, perhaps beause there are, somehow,\fewer elements". However, this is not the ase. Imagine doing a surfae integralover a wrinkly surfae, say that of the moon. All the elements involved in theintegration are \diÆult" and must be modelled orretly. With a volume integral,most of the elements are not at the surfae, and so the bulk of the integral isdone without aurate modelling. The omputation easier, faster, and betteronditioned numerially.7.4 Extension to Gauss' TheoremSuppose the vetor �eld a(r) is of the form a = U(r), where U(r) as salar �eldand  is a onstant vetor. Then, as we showed in the previous leture,div a = gradU � + Udiv = gradU � sine div = 0 beause  is onstant.Gauss' Theorem beomes

∫S U � dS = ∫V grad U � dVor, alternatively, taking the onstant  out of the integrals � (∫S UdS) =  � (∫V grad UdV )



7.4. EXTENSION TO GAUSS' THEOREM 89This is still a salar equation but we now note that the vetor  is arbitrary sothat the result must be true for any vetor . This an be true only if the vetorequation
∫S UdS = ∫V grad UdVis satis�ed.If you think this is �shy, just write  = {̂{{, then  = |̂||, and  = k̂kk in turn, and youmust obtain the three omponents of ∫S UdS in turn.Further \extensions" an be obtained of ourse. For example one might be ableto write the vetor �eld of interest asa(r) = b(r)� where  is a onstant vetor.| Example of extension to Gauss' TheoremQ U = x2 + y 2 + z2 is a salar �eld,and volume V is the ylinder x2 +y 2 � a2; 0 � z � h. Compute thesurfae integral

∫S UdSover the surfae of the ylinder.A It is immediately lear from sym-metry that there is no ontributionfrom the urved surfae of the ylin-der sine for every vetor surfae el-ement there exists an equal and op-posite element with the same valueof U. We therefore need onsideronly the top and bottom faes.
d

z=0

z=h

dS

S

z

Top fae:U = x2 + y 2 + z2 = r 2 + h2 and dS = rdrd�k̂kkso
∫ UdS = ∫ ar=0(h2+ r 2)2�rdr ∫ 2��=0 d�k̂kk = k̂kk� [h2r 2 + 12r 4]a0 = �[h2a2+ 12a4℄k̂kk



90 LECTURE 7. GAUSS' AND STOKES' THEOREMSBottom fae:U = r 2 and dS = �rdrd�k̂kkThe ontribution from this fae is thus ��a42 k̂kk , and the total integral is �h2a2k̂kk .On the other hand, using Gauss' Theorem we have to ompute
∫V grad UdVIn this ase, grad U = 2r,2 ∫V (x {̂{{ + y k̂kk + zk̂kk)r dr dz d�The integrations over x and y are zero by symmetry, so that the only remainingpart is2 ∫ hz=0 zdz ∫ ar=0 r dr ∫ 2��=0 d�k̂kk = �a2h2k̂kk

7.5 Stokes' TheoremStokes' Theorem relates a line integral around a losed path to a surfae integralover what is alled a apping surfae of the path.Stokes' Theorem states:
∮C a � d l = ∫S url a � dSwhere S is any surfae apping the urve C.

Why have we used d l rather than dr, where r is the position vetor?There is no good reason for this, as d l = dr. It just seems to be ommon usagein line integrals!



7.6. INFORMAL PROOF 917.6 Informal proofYou will reall that in Leture 5 that we de�ned url as the irulation per unitarea, and showed that
∑around elemental loopa � d l = dC = (rrr� a) � dS :Now if we add these little loops together, the internal line setions anel outbeause the d l's are in opposite diretion but the �eld a is not. This gives thelarger surfae and the larger bounding ontour as shown in Fig. 7.4.
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Figure 7.4: An example of an elementary loop, and how they ombine together.For a given ontour, the apping surfae an be ANY surfae bound bythe ontour. The only requirement is that the surfae element vetors point inthe \general diretion" of a right-handed srew with respet to the sense of theontour integral. See Fig. 7.5.
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Figure 7.5: For a given ontour, the bounding surfae an be any shape. dS's must have a positiveomponent in the sense of a r-h srew wrt the ontour sense.



92 LECTURE 7. GAUSS' AND STOKES' THEOREMS| Example of Stokes' TheoremIn pratie, (and espeially in exam questions!) the bounding ontour is oftenplanar, and the apping surfae at or hemispherial or ylindrial.Q Vetor �eld a = x 3̂|||�y 3̂{{{ and C is the irle of radius R entred on the origin.Derive
∮C a � d ldiretly and (ii) using Stokes' theorem where the surfae is the planar surfaebounded by the ontour.A(i) Diretly. On the irle of radius Ra = R3(� sin3 �̂{{{ + os3 �|̂||)and d l = Rd�(� sin �̂{{{ + os �|̂||)so that:
∮C a � d l = ∫ 2�0 R4(sin4 � + os4 �)d� = 3�2 R4;sine
∫ 2�0 sin4 �d� = ∫ 2�0 os4 �d� = 3�4A(ii) Using Stokes' theorem ...url a = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk��x ��y ��z�y 3 x3 0 ∣

∣

∣

∣

∣

∣

= 3(x2 + y 2)k̂kk = 3r 2k̂kkWe hoose area elements to be irular strips of radius r thikness dr . ThendS = 2�rdr k̂kk and ∫S curl a � dS = 6� ∫ R0 r 3dr = 3�2 R4



7.7. AN EXTENSION TO STOKES' THEOREM 937.7 An Extension to Stokes' TheoremJust as we onsidered one extension to Gauss' theorem (not really an extension,more of a re-expression), so we will try something similar with Stoke's Theorem.Again let a(r) = U(r), where  is a onstant vetor. Thenurl a = Uurl + grad U � )Again, url  is zero. Stokes' Theorem beomes in this ase:
∮C U( � d l) = ∫S(grad U �  � dS = ∫S  � (dS� grad U)or, rearranging the triple salar produts and taking the onstant  out of theintegrals gives � ∮C Ud l = � � ∫S gradU � dS :But  is arbitrary and so
∮C Ud l = � ∫S grad U � dS

7.8 | Example of extension to Stokes' TheoremQ Derive ∮C Udr (i) diretly and (ii) using Stokes',where U = x2+ y 2+ z2 and the line integral is takenaround C the irle (x � a)2 + y 2 = a2 and z = 0.Note that, for no speial reason, we have used drhere not d l. x

y

a

d r
r ρ

α

d= ρ

A(i) First some preamble.If the irle were entred at the origin, we would write dr = ad�ê� =ad�(� sin �̂{{{+os �|̂||). For suh a irle the magnitude r = jrj = a, a onstantand so dr = 0.However, in this example dr is not always in the diretion of ê�, and dr 6= 0.Could you write down dr? If not, revise Leture 3, where we saw that in planepolars x = r os �, y = r sin � and the general expression isdr = dx {̂{{ + dy |̂|| = (os �dr � r sin �d�)̂{{{ + (sin �dr + r os �d�)̂|||



94 LECTURE 7. GAUSS' AND STOKES' THEOREMSTo avoid having to �nd an expression for r in terms of �, we will perform aoordinate transformation by writing r = [a; 0℄> + ���. So, x = (a + � os�)and y = � sin�, and on the irle itself where � = ar = a(1 + os�)̂{{{ + a sin�|̂|| ;dr = ad�(� sin�{̂{{ + os�|̂||) ;and, as z = 0 on the irle,U = a2(1 + os�)2 + a2 sin2� = 2a2(1 + os�) :The line integral beomes
∮ Udr = 2a3 ∫ 2��=0(1 + os�)(� sin�{̂{{ + os�|̂||)d� = 2�a3|̂||A(ii) Now using Stokes' ...For a planar surfae overing the dis, the surfae element an be writtenusing the new parametrization asdS = � d� d�k̂kkRemember that U = x2 + y 2 + z2 = r 2, and as z = 0 in the planegrad U = 2(x {̂{{ + y |̂|| + zk̂kk) = 2(a + � os�)̂{{{ + 2� sin�|̂|| :Be areful to note that x; y are spei�ed for any point on the dis, not on itsirular boundary!SodS�gradU = 2� d� d� ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk0 0 1(a + � os�) � sin� 0 ∣

∣

∣

∣

∣

∣

= 2�[�� sin�{̂{{+(a+� os�)̂|||℄ d� d�Both ∫ 2�0 sin�d� = 0 and ∫ 2�0 os�d� = 0, so we are left with
∫S dS� gradU = ∫ a�=0 ∫ 2��=0 2�â||| d� d� = 2�a3̂|||
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Leture 8Engineering appliationsIn Leture 6 we saw one lassi example of the appliation of vetor alulus toMaxwell's equation.In this leture we explore a few more examples from uid mehanis and heattransfer. As with Maxwell's eqations, the examples show how vetor alulusprovides a powerful way of representing underlying physis.The power ome from the fat that div, grad and url have a signi�ane ormeaning whih is more immediate than a olletion of partial derivatives. Vetoralulus will, with pratie, beome a onvenient shorthand for you.� Eletriity { Amp�ere's Law� Fluid Mehanis - The Continuity Equation� Thermo: The Heat Condution Equation� Mehanis/Eletrostatis - Conservative �elds� The Inverse Square Law of fore� Gravitational �eld due to distributed mass� Gravitational �eld inside body� Pressure fores in non-uniform ows
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96 LECTURE 8. ENGINEERING APPLICATIONS8.1 Eletriity { Amp�ere's LawIf the frequeny is low, the displaement urrent in Maxwell's equation urlH =J+ �D=�t is negligible, and we �ndurlH = JHene
∫S urlH � dS = ∫S J � dSor
∮ H � d l = ∫S J � dSwhere ∫S J � dS is total urrent through the surfae.Now onsider the H around a straight wire arrying urrent I. Symmetry tells usthe H is in the ê� diretion, in a rhs srew sense with respet to the urrent. (Youmight hek this against Biot-Savart's law.)Suppose we asked what is the magnitude of H?
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Inside the wire, the bounding ontour only enloses a fration (�r 2)=(�a2) of theurrent, and soH2�r = ∫ J � dS = I(r 2=A2)) H = Ir=2�A2whereas outside we enlose all the urrent, and soH2�r = ∫ J � dS = I) H = I=2�rA plot is shown in the Figure.



8.2. FLUID MECHANICS - THE CONTINUITY EQUATION 978.2 Fluid Mehanis - The Continuity EquationThe Continuity Equation expresses the ondition of onservation of mass in auid ow. The ontinuity priniple applied to any volume (alled a ontrol volume)may be expressed in words as follows:\The net rate of mass ow of uid out of the ontrol volume must equalthe rate of derease of the mass of uid within the ontrol volume"
qSd

Control Volume VFigure 8.1:To express the above as a mathematial equation, we denote the veloity of theuid at eah point of the ow by q(r) (a vetor �eld) and the density by �(r) (asalar �eld). The element of rate-of-volume-loss through surfae dS is d _V = q�dS,so the rate of mass loss isd _M = �q � dS;so that the total rate of mass loss from the volume is� ��t ∫V �(r)dV = ∫S �q � dS:Assuming that the volume of interest is �xed, this is the same as� ∫V ���t dV = ∫S �q � dS :Now we use Gauss' Theorem to transform the RHS into a volume integral� ∫V ���t dV = ∫V div (�q)dV :The two volume integrals an be equal for any ontrol volume V only if the twointegrands are equal at eah point of the ow. This leads to the mathematialformulation of



98 LECTURE 8. ENGINEERING APPLICATIONSThe Continuity Equation:div (�q) = ����tNotie that if the density doesn't vary with time, div (�q) = 0, and if the densitydoesn't vary with position thenThe Continuity Equation for uniform, time-invariant density:div (q) = 0 :In this last ase, we an say that the ow q is solenoidal.8.3 Thermodynamis - The Heat Condution EquationFlow of heat is very similar to ow of uid, and heat ow satis�es a similar on-tinuity equation. The ow is haraterized by the heat urrent density q(r) (heatow per unit area and time), sometimes misleadingly alled heat ux.Assuming that there is no mass ow aross the boundary of the ontrol volume andno soure of heat inside it, the rate of ow of heat out of the ontrol volume byondution must equal the rate of derease of internal energy (onstant volume)or enthalpy (onstant pressure) within it. This leads to the equationdiv q = �� �T�t ;where � is the density of the onduting medium,  its spei� heat (both areassumed onstant) and T is the temperature.In order to solve for the temperature �eld another equation is required, linking qto the temperature gradient. This isq = ��grad T;where � is the thermal ondutivity of the medium. Combining the two equationsgives the heat ondution equation:�div q = �div grad T = �r2T = � �T�twhere it has been assumed that � is a onstant. In steady ow the temperature�eld satis�es Laplae's Equation r2T = 0.



8.4. MECHANICS - CONSERVATIVE FIELDS OF FORCE 998.4 Mehanis - Conservative �elds of foreA onservative �eld of fore is one for whih the work done
∫ BA F � dr;moving from A to B is indep. of path taken. As we saw in Leture 4, onservative�elds must satisfy the ondition
∮C F � dr = 0;Stokes' tells us that this is
∫S url F � dS = 0;where S is any surfae bounded by C.But if true for any C ontaining A and B, it must be thaturl F = 000 Conservative �elds are irrotationalAll radial �elds are irrotationalOne way (atually the only way) of satisfying this ondition is forF = rrr U The salar �eld U(r) is the Potential Funtion



100 LECTURE 8. ENGINEERING APPLICATIONS8.5 The Inverse Square Law of foreRadial fores are found in eletrostatis and gravitation | so they are ertainlyirrotational and onservative.But in nature these radial fores are also inverse square laws. One reason why thismay be so is that it turns out to be the only entral fore �eld whih is solenoidal,i.e. has zero divergene.If F = f (r)r,div F = 3f (r) + r f 0(r):For div F = 0 we onluder dfdr + 3f = 0or dff + 3drr = 0:Integrating with respet to r gives f r 3 = onst = A, so thatF = Arr 3 ; jFj = Ar 2 :The ondition of zero divergene of the inverse square fore �eld applies everywhereexept at r = 000, where the divergene is in�nite.To show this, alulate the outward normal ux out of a sphere of radius R enteredon the origin when F = F r̂. This is
∫S F � dS = F ∫Sphere r̂ � dS = F ∫Sphere d = F4�R2 = 4�A = Constant:Gauss tells us that this ux must be equal to
∫V div FdV = ∫ R0 div F4�r 2drwhere we have done the volume integral as a summation over thin shells of surfaearea 4�r 2 and thikness dr .But for all �nite r , divF = 0, so divF must be in�nite at the origin.The ux integral is thus� zero | for any volume whih does not ontain the origin� 4�A for any volume whih does ontain it.



8.6. GRAVITATIONAL FIELD DUE TO DISTRIBUTED MASS: POISSON'S EQUATION 1018.6 Gravitational �eld due to distributed mass: Poisson's Equa-tionIf one tried the same approah as x8.4 for the gravitational �eld, A = Gm, wherem is the mass at the origin and G the universal gravitational onstant, one wouldrun into the problem that there is no suh thing as point mass.We an make progress though by onsidering distributed mass.The mass ontained in eah small volume element dV is �dV and this will make aontribution �4��GdV to the ux integral from the ontrol volume. Mass outsidethe ontrol volume makes no ontribution, so that we obtain the equation
∫S F � dS = �4�G ∫V �dV:Transforming the left hand integral by Gauss' Theorem gives
∫V div FdV = �4�G ∫V �dVwhih, sine it is true for any V , implies that�div F = 4��G:Sine the gravitational �eld is also onservative (i.e. irrotational) it must havean assoiated potential funtion U, so that F = grad U. It follows that thegravitational potential U satis�esPoisson's Equationr2U = 4��G :Using the integral form of Poisson's equation, it is possible to alulate the gravi-tational �eld inside a spherial body whose density is a funtion of radius only. Wehave4�R2F = 4�G ∫ R0 4�r 2�dr;where F = jFj, orjF j = GR2 ∫ R0 4�r 2�dr = MGR2 ;where M is the total mass inside radius R. For the ase of uniform density, this isequal to M = 43��R3 and jF j = 43��GR.



102 LECTURE 8. ENGINEERING APPLICATIONS8.7 Pressure fores in non-uniform owsWhen a body is immersed in a ow it experienes a net pressure foreFp = � ∫S pdS;where S is the surfae of the body. If the pressure p is non-uniform, this integralis not zero. The integral an be transformed using Gauss' Theorem to give thealternative expressionFp = � ∫V grad p dV;where V is the volume of the body. In the simple hydrostati ase p + �gz =onstant, so thatgrad p = ��gkand the net pressure fore is simplyFp = gk̂∫V �dVwhih, in agreement with Arhimedes' priniple, is equal to the weight of uiddisplaed.
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