
Le
ture 6Ve
tor Operator IdentitiesIn this le
ture we look at more 
ompli
ated identities involving ve
tor operators.The main thing to appre
iate it that the operators behave both as ve
tors andas di�erential operators, so that the usual rules of taking the derivative of, say, aprodu
t must be observed.There 
ould be a 
ottage industry inventing ve
tor identities. HLT 
ontains a lotof them. So why not leave it at that?First, sin
e grad, div and 
url des
ribe key aspe
ts of ve
tors �elds, they arise oftenin pra
ti
e, and so the identities 
an save you a lot of time and ha
king of partialderivatives, as we will see when we 
onsider Maxwell's equation as an examplelater.Se
ondly, they help to identify other pra
ti
ally important ve
tor operators. So,although this material is a bit dry, the relevan
e of the identities should be
ome
lear later in other Engineering 
ourses.6.1 Identity 1: 
url grad U = 000
rrr�rrrU = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk�=�x �=�y �=�z�U=�x �U=�y �U=�z ∣

∣

∣

∣

∣

∣= {̂{{ ( �2U�y�z � �2U�z�y) + |̂|| () + k̂kk ()= 000 ;as �2=�y�z = �2=�z�y .Note that the output is a null ve
tor. 73



74 LECTURE 6. VECTOR OPERATOR IDENTITIES6.2 Identity 2: div 
url a = 0
rrr � rrr� a = ∣

∣

∣

∣

∣

∣

�=�x �=�y �=�z�=�x �=�y �=�zax ay az ∣

∣

∣

∣

∣

∣= �2az�x�y � �2ay�x�z � �2az�y�x + �2ax�y�z + �2ay�z�x � �2ax�z�y= 06.3 Identity 3: div and 
url of UaSuppose that U(r) is a s
alar �eld and that a(r) is a ve
tor �eld and we are inter-ested in the produ
t Ua. This is a ve
tor �eld, so we 
an 
ompute its divergen
eand 
url. For example the density �(r) of a 
uid is a s
alar �eld, and the instan-taneous velo
ity of the 
uid v(r) is a ve
tor �eld, and we are probably interestedin mass 
ow rates for whi
h we will be interested in �(r)v(r).The divergen
e (a s
alar) of the produ
t Ua is given by:rrr � (Ua) = U(rrr � a) + (rrrU) � a= Udiva+ (gradU) � aIn a similar way, we 
an take the 
url of the ve
tor �eld Ua, and the result shouldbe a ve
tor �eld:rrr� (Ua) = Urrr� a+ (rrrU)� a :6.4 Identity 4: div of a� bLife qui
kly gets tri
kier when ve
tor or s
alar produ
ts are involved: For example,it is not that obvious thatdiv(a� b) = 
urla � b� a � 
urlbTo show this, use the determinant:
∣

∣

∣

∣

∣

∣

�=�xi �=�xj �=�xkax ay azbx by bz ∣

∣

∣

∣

∣

∣

= ��x [aybz � azby ℄ + ��y [azbx � axbz ℄ + ��z [axby � aybx ℄= : : : bash out the produ
ts : : := 
urla � b� a � (curl b)



6.5. IDENTITY 5: CURL(A� B) 756.5 Identity 5: 
url(a� b)
url(a� b) = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk�=�x �=�y �=�zaybz � azby azbx � axbz axby � aybx ∣

∣

∣

∣

∣

∣so the {̂{{ 
omponent is��y (axby � aybx)� ��z (azbx � axbz)whi
h 
an be written as the sum of four terms:ax (�by�y + �bz�z )�bx (�ay�y + �az�z )+(by ��y + bz ��z) ax�(ay ��y + az ��z) bxAdding ax(�bx=�x) to the �rst of these, and subtra
ting it from the last, anddoing the same with bx(�ax=�x) to the other two terms, we �nd that (you shouldof 
ourse 
he
k this):rrr� (a� b) = (rrr � b)a� (rrr � a)b+ [b � rrr℄a� [a � rrr℄bwhere [a � rrr℄ 
an be regarded as new, and very useful, s
alar di�erential operator.6.6 De�nition of the operator [a � rrr℄This is a s
alar operator, but it 
an obviously 
an be applied to a s
alar �eld,resulting in a s
alar �eld, or to a ve
tor �eld resulting in a ve
tor �eld:[a � rrr℄ � [ax ��x + ay ��y + az ��z ] :
6.7 Identity 6: 
url(
urla) for you to deriveThe following important identity is stated, and left as an exer
ise:
url(
urla) = graddiva�r2awherer2a = r2ax {̂{{ +r2ay |̂|| +r2az k̂kk



76 LECTURE 6. VECTOR OPERATOR IDENTITIES| Example of Identity 6: ele
tromagneti
 wavesQ: James Clerk Maxwell established a set of four ve
tor equations whi
h arefundamental to working out how eletromagneti
 waves propagate. The entiretele
ommuni
ations industry is built on these.divD = �divB = 0
urlE = � ��tB
urlH = J+ ��tDIn addition, we 
an assume the following, whi
h should all be familiar to you:B = �r�0H, J = �E, D = �r�0E,where all the s
alars are 
onstants.Now show that in a material with zero free 
harge density, � = 0, and withzero 
ondu
tivity, � = 0, the ele
tri
 �eld E must be a solution of the waveequationr2E = �r�0�r�0(�2E=�t2) :A: First, a bit of respe
t. Imagine you are the �rst to do this | this is a tinglemoment.divD = div(�r�0E) = �r�0divE = � = 0 ) divE = 0: (a)divB = div(�r�0H) = �r�0divH = 0 ) divB = 0 (b)
urlE = ��B=�t = ��r�0(�H=�t) (
)
urlH = J+ �D=�t = 000 + �r�0(�E=�t) (d)But we know (or rather you worked out in Identity 6) that 
url
url = graddiv�r2, and using (
)
url
urlE = graddivE�r2E = 
url (��r�0(�H=�t))so inter
hanging the order of partial di�erentation, and using (a) divE = 0:�r2E = ��r�0 ��t (
urlH)= ��r�0 ��t (�r�0�E�t ))r2E = �r�0�r�0�2E�t2



6.8. GRAD, DIV, CURL AND r2 IN CURVILINEAR CO-ORDINATE SYSTEMS 77This equation is a
tually three equations, one for ea
h 
omponent:r2Ex = �r�0�r�0�2Ex�t2and so on for Ey and Ez .6.8 Grad, div, 
url and r2 in 
urvilinear 
o-ordinate systemsIt is possible to obtain general expressions for grad, div and 
url in any orthogonal
urvilinear 
o-ordinate system by making use of the h fa
tors whi
h were introdu
edin Le
ture 4.We re
all that the unit ve
tor in the dire
tion of in
reasing u, with v and w beingkept 
onstant, isû = 1hu �r�uwhere r is the position ve
tor, andhu = ∣

∣

∣

∣

�r�u ∣

∣

∣

∣is the metri
 
oeÆ
ient. Similar expressions apply for the other 
o-ordinate dire
-tions. Thendr = huûdu + hv v̂dv + hw ŵdw :6.9 Grad in 
urvilinear 
oordinatesNoting that U = U(r) and U = U(u; v ; w), and using the properties of the gradientof a s
alar �eld obtained previouslyrrrU � dr = dU = �U�u du + �U�v dv + �U�w dwIt follows thatrrrU � (huûdu + hv v̂dv + hw ŵdw) = �U�u du + �U�v dv + �U�w dwThe only way this 
an be satis�ed for independent du, dv , dw is whenrrrU = 1hu �U�u û+ 1hv �U�v v̂ + 1hw �U�w ŵ



78 LECTURE 6. VECTOR OPERATOR IDENTITIES6.10 Divergen
e in 
urvilinear 
oordinatesExpressions 
an be obtained for the divergen
e of a ve
tor �eld in orthogonal
urvilinear 
o-ordinates by making use of the 
ux property.We 
onsider an element of volume dV . If the 
urvilinear 
oordinates are orthogonalthen the little volume is a 
uboid (to �rst order in small quantities) anddV = hu hv hw du dv dw :However, it is not quite a 
uboid: the area of two opposite fa
es will di�er as thes
ale parameters are fun
tions of u, v and w in general.
w

u

y

The scale params are

h  (v) dw
h  (v+dv) dw

h  (v+dv) duh  (v) du
u

w

w

u

h   dvv

functions of u,v,wFigure 6.1: Elemental volume for 
al
ulating divergen
e in orthogonal 
urvilinear 
oordinatesSo the net e�ux from the two fa
es in the v̂ dire
tion shown in Figure 6.1 is= [av + �av�v dv][hu + �hu�v dv][hw + �hw�v dv] dudw � avhuhwdudw= �(avhuhw)�v dudvdwwhi
h is easily shown by multiplying the �rst line out and dropping se
ond orderterms (i.e. (dv)2).By de�nition div is the net e�ux per unit volume, so summing up the other fa
es:diva dV = (�(au hv hw)�u + �(av hu hw)�v + �(aw hu hv)�w ) dudvdw) diva huhvhw dudvdw = (�(au hv hw)�u + �(av hu hw)�v + �(aw hu hv)�w ) dudvdw



6.11. CURL IN CURVILINEAR COORDINATES 79So, �nally,diva = 1huhvhw (�(au hv hw)�u + �(av hu hw)�v + �(aw hu hv)�w )

6.11 Curl in 
urvilinear 
oordinatesRe
all from Le
ture 5 that we 
omputed the z 
omponent of 
url as the 
ir
ulationper unit area fromdC = (�ay�x � �ax�y ) dx dyBy analogy with our derivation of divergen
e, you will realize that for an orthogonal
urvilinear 
oordinate system we 
an write the area as huhvdudw . But the oppositesides are no longer quite of the same length. The lower of the pair in Figure 6.2is length hu(v)du, but the upper is of length hu(v + dv)du
y

y

a

a

u

u u+du

u

u

u

v+dv
(v+dv)

h  (v+dv) du

dv

(v)

h  (v) du

Figure 6.2: Elemental loop for 
al
ulating 
url in orthogonal 
urvilinear 
oordinatesSumming this pair gives a 
ontribution to the 
ir
ulationau(v)hu(v)du � au(v + dv)hu(v + dv)du = ��(huau)�v dvduand together with the other pair:dC = (��(huau)�v + �(hvav)�u ) dudv



80 LECTURE 6. VECTOR OPERATOR IDENTITIESSo the 
ir
ulation per unit area isdChuhvdudv = 1huhv (�(hvav)�u � �(huau)�v )

and hen
e 
url is
urla(u; v ; w) = 1hvhw (�(hwaw)�v � �(hvav)�w ) û +1hwhu (�(huau)�w � �(hwaw)�u ) v̂ +1huhv (�(hvav)�u � �(huau)�v ) ŵYou should 
he
k that this 
an be written asCurl in 
urvilinear 
oords:
urla(u; v ; w) = 1huhvhw ∣

∣

∣

∣

∣

∣

huû hv v̂ hw ŵ��u ��v ��whuau hvav hwaw ∣

∣

∣

∣

∣

∣6.12 The Lapla
ian in 
urvilinear 
oordinatesSubstitution of the 
omponents of gradU into the expression for diva immediately(!*?) gives the following expression for the Lapla
ian in general orthogonal 
o-ordinates:r2U = 1huhvhw [ ��u (hvhwhu �U�u) + ��v (hwhuhv �U�v ) + ��w (huhvhw �U�w)] :6.13 Grad Div, Curl, r2 in 
ylindri
al polarsHere (u; v ; w)! (r; �; z). The position ve
tor is r = r 
os �̂{{{ + r sin �̂||| + zk̂kk , andhr = j�r=�r j, et
.) hr = √(
os2 �+ sin2�) = 1;h� = √(r 2 sin2 �+ r 2 
os2 �) = r;hz = 1



6.14. GRAD DIV, CURL, r2 IN SPHERICAL POLARS 81) gradU = �U�r êr + 1r �U�� ê� + �U�z k̂kkdiva = 1r (�(rar)�r + �a��� ) + �az�z
urla = (1r �az�� � �a��z ) êr + (�ar�z � �az�r ) ê� + 1r (�(ra�)�r � �ar��) k̂kkr2U = Tutorial Exer
ise6.14 Grad Div, Curl, r2 in spheri
al polarsHere (u; v ; w)! (r; �; �). The position ve
tor is r = r sin � 
os �̂{{{+ r sin � sin �̂|||+r 
os �k̂kk.) hr = √(sin2 �(
os2 �+ sin2 �) + 
os2 �) = 1h� = √(r 2 
os2 �(
os2 �+ sin2 �) + r 2 sin2 �) = rh� = √(r 2 sin2 �(sin2 �+ 
os2 �) = r sin �) gradU = �U�r êr + 1r �U�� ê� + 1r sin � �U�� ê�diva = 1r 2 �(r 2ar)�r + 1r sin � �(a� sin �)�� + 1r sin � �a���
urla = êrr sin � ( ���(a� sin �)� ���(a�)) + ê�r sin � ( ���(ar)� ��r (a�r sin �)) +ê�r ( ��r (a�r)� ���(ar))r2U = Tutorial Exer
ise| ExamplesQ1 Find 
urla in (i) Cartesians and (ii) Spheri
al polars when a = x(x {̂{{+y |̂||+zk̂kk).A1 (i) In Cartesians
urla = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk�=�x �=�y �=�zx2 xy xz ∣

∣

∣

∣

∣

∣

= �z |̂|| + y k̂kk :



82 LECTURE 6. VECTOR OPERATOR IDENTITIES(ii) In spheri
al polars, x = r sin � 
os� and r = (x {̂{{ + y |̂|| + zk̂kk). Soa = r 2 sin � 
os�êr) ar = r 2 sin � 
os�; a� = 0; a� = 0 :Hen
e as
urla = êrr sin � ( ��� (a� sin �)� ���(a�))+ ê�r sin � ( ���(ar )� ��r (a�r sin �))+ ê�r ( ��r (a�r)� ��� (ar ))
urla = ê�r sin � ( ���(r 2 sin � 
os�)) + ê�r (� ���(r 2 sin � 
os�))= ê�r sin �(�r 2 sin � sin�) + ê�r (�r 2 
os � 
os�))= ê�(�r sin�) + ê�(�r 
os � 
os�)Che
king: these two results should be the same, but to 
he
k we need ex-pressions for ê�; ê� in terms of {̂{{ et
.Remember that we 
an work out the unit ve
tors êr and so on in terms of {̂{{et
 usingêr = 1h1 �rdr ; ê� = 1h2 �rd� ; ê� = 1h3 �rd� where r = x {̂{{+y |̂||+zk̂kk :Grinding through we �nd




êrê�ê� 

 = 



sin � 
os� sin � sin� 
os �
os � 
os� 
os � sin� � sin �� sin� 
os� 0 







{̂{{̂|||̂kkk 

 = [R℄ {̂{{̂|||̂kkk 

Don't be sho
ked to see a rotation matrix [R℄: we are after all rotating oneright-handed orthogonal 
oord system into another.So the result in spheri
al polars is
urla = (
os � 
os �̂{{{ + 
os � sin �̂||| � sin �k̂kk)(�r sin�) + (� sin �̂{{{ + 
os �̂|||)(�r 
os � 
os�)= �r 
os �|̂|| + r sin � sin�k̂kk= �z |̂|| + y k̂kkwhi
h is exa
tly the result in Cartesians.Q2 Find the divergen
e of the ve
tor �eld a = r
 where 
 is a 
onstant ve
tor(i) using Cartesian 
oordinates and (ii) using Spheri
al Polar 
oordinates.



6.14. GRAD DIV, CURL, r2 IN SPHERICAL POLARS 83A2 (i) Using Cartesian 
oords:diva = ��x (x2 + y 2 + z2)1=2
x + : : := x:(x2 + y 2 + z2)�1=2
x + : : := 1r r � 
 :(ii) Using Spheri
al polarsa = ar êr + a�ê� + a�ê�and our �rst task is to �nd ar and so on. We 
an't do this by inspe
tion, and�nding their values requires more work than you might think! Re
all




êrê�ê� 

 = 



sin � 
os� sin � sin� 
os �
os � 
os� 
os � sin� � sin �� sin� 
os� 0 







{̂{{̂|||̂kkk 

 = [R℄ {̂{{̂|||̂kkk 

Now the point is the same point in spa
e whatever the 
oordinate system, soar êr + a�ê� + a�ê� = ax {̂{{ + ay |̂|| + az k̂kkand using the inner produ
t




ara�a� 



> 



êrê�ê� 

 = 



axayaz 



> 



{̂{{̂|||̂kkk 







ara�a� 



> [R℄ {̂{{̂|||̂kkk 

 = 



axayaz 



> 



{̂{{̂|||̂kkk 



) 



ara�a� 



> [R℄ = 



axayaz 



>
) 



ara�a� 



> = 



axayaz 



> [R℄>) 



ara�a� 

 = [R℄ axayaz 





84 LECTURE 6. VECTOR OPERATOR IDENTITIESFor our parti
ular problem, ax = r
x , et
, where 
x is a 
onstant, so now we
an write downar = r(sin � 
os�
x + sin � sin�
y + 
os �
z)a� = r(
os � 
os�
x + 
os � sin�
y � sin �
z)a� = r(� sin�
x + 
os�
y)Now all we need to do is to bash outdiva = 1r 2 �(r 2ar)�r + 1r sin � �(a� sin �)�� + 1r sin � �a���In glorious detail this isdiva = 3 (sin � 
os�
x + sin � sin�
y + 
os �
z) +1sin � (
os2 � � sin2 �)(
os�
x + sin�
y)� 2 sin � 
os �
z) +1sin � (� 
os�
x � sin�
y)A bit more bashing and you'll �nddiva = sin � 
os�
x + sin � sin�
y + 
os �
z= êr � 
This is EXACTLY what you worked out before of 
ourse.Take home messages from these examples:� Just as physi
al ve
tors are independent of their 
oordinate systems, so aredi�erential operators.� Don't forget about the ve
tor geometry you did in the 1st year. Rotationmatri
es are useful!� Spheri
al polars were NOT a good 
oordinate system in whi
h to think aboutthis problem. Let the symmetry guide you.
Revised O
t 2008



Le
ture 7Gauss' and Stokes' TheoremsThis se
tion �nally begins to deliver on why we introdu
ed div grad and 
url. Twotheorems, both of them over two hundred years old, are explained:� Gauss' Theorem enables an integral taken over a volume to be repla
ed byone taken over the surfa
e bounding that volume, and vi
e versa. Why wouldwe want to do that? Computational eÆ
ien
y and/or numeri
al a

ura
y!� Stokes' Law enables an integral taken around a 
losed 
urve to be repla
edby one taken over any surfa
e bounded by that 
urve.7.1 Gauss' TheoremSuppose that a(r) is a ve
tor �eld and we want to 
ompute the total 
ux of the�eld a
ross the surfa
e S that bounds a volume V . That is, we are interested in
al
ulating:
∫S a � dS

dS
dS

dS

dS

dS

Figure 7.1: The surfa
e element dS must sti
k out of the surfa
e.85



86 LECTURE 7. GAUSS' AND STOKES' THEOREMSwhere re
all that dS is normal to the lo
ally planar surfa
e element and musteverywhere point out of the volume as shown in Figure 7.1.Gauss' Theorem tells us that we 
an do this by 
onsidering the total 
ux generatedinside the volume V :
Gauss' Theorem

∫S a � dS = ∫V div a dVobtained by integrating the divergen
e over the entire volume.
7.2 Informal proofAn non-rigorous proof 
an be realized by re
alling that we de�ned div by 
onsideringthe e�ux dE from the surfa
es of an in�nitesimal volume elementdE = a � dSand de�ning it asdiv a dV = dE = a � dS :If we sum over the volume elements, this results in a sum over the surfa
e elements.But if two elemental surfa
e tou
h, their dS ve
tors are in opposing dire
tion and
an
el as shown in Figure 7.2. Thus the sum over surfa
e elements gives theoverall bounding surfa
e.

Figure 7.2: When two elements tou
h, the dS ve
tors at the 
ommon surfa
e 
an
el out. One
an imagine building the entire volume up from the in�nitesimal units.



7.2. INFORMAL PROOF 87| Example of Gauss' TheoremThis is a typi
al example, in whi
h the surfa
e integral is rather tedious, whereasthe volume integral is straightforward.Q Derive ∫S a � dS where a = z3k̂kk and S is the surfa
e of a sphere of radius R
entred on the origin:1. dire
tly;2. by applying Gauss' Theorem
z
3

k

R

R sin d
2

θ θ dφ r
dz
z

R

Figure 7.3:A (1) On the surfa
e of the sphere, a = R3 
os3 �k̂kk and dS = R2 sin �d�d�̂r.Everywhere r̂ � k̂kk = 
os �.) ∫S a � dS = ∫ 2��=0 ∫ ��=0R3 
os3 � : R2 sin �d�d�êr � k̂kk= ∫ 2��=0 ∫ ��=0R3 
os3 � : R2 sin �d�d� : 
os �= 2�R5 ∫ �0 
os4 � sin �d�= 2�R55 [� 
os5 �]�0 = 4�R55(2) To apply Gauss' Theorem, we need to �gure out div a and de
ide how to
ompute the volume integral. The �rst is easy:diva = 3z2



88 LECTURE 7. GAUSS' AND STOKES' THEOREMSFor the se
ond, be
ause diva involves just z , we 
an divide the sphere intodis
s of 
onstant z and thi
kness dz , as shown in Fig. 7.3. ThendV = �(R2 � z2)dzand
∫V div adV = 3� ∫ R�R z2(R2 � z2)dz= 3� [R2z33 � z55 ]R�R= 4�R557.3 Surfa
e versus volume integralsAt �rst sight, it might seem that with a 
omputer performing surfa
e integralsmight be better than a volume integral, perhaps be
ause there are, somehow,\fewer elements". However, this is not the 
ase. Imagine doing a surfa
e integralover a wrinkly surfa
e, say that of the moon. All the elements involved in theintegration are \diÆ
ult" and must be modelled 
orre
tly. With a volume integral,most of the elements are not at the surfa
e, and so the bulk of the integral isdone without a

urate modelling. The 
omputation easier, faster, and better
onditioned numeri
ally.7.4 Extension to Gauss' TheoremSuppose the ve
tor �eld a(r) is of the form a = U(r)
, where U(r) as s
alar �eldand 
 is a 
onstant ve
tor. Then, as we showed in the previous le
ture,div a = gradU � 
+ Udiv 
= gradU � 
sin
e div
 = 0 be
ause 
 is 
onstant.Gauss' Theorem be
omes

∫S U
 � dS = ∫V grad U � 
dVor, alternatively, taking the 
onstant 
 out of the integrals
 � (∫S UdS) = 
 � (∫V grad UdV )



7.4. EXTENSION TO GAUSS' THEOREM 89This is still a s
alar equation but we now note that the ve
tor 
 is arbitrary sothat the result must be true for any ve
tor 
. This 
an be true only if the ve
torequation
∫S UdS = ∫V grad UdVis satis�ed.If you think this is �shy, just write 
 = {̂{{, then 
 = |̂||, and 
 = k̂kk in turn, and youmust obtain the three 
omponents of ∫S UdS in turn.Further \extensions" 
an be obtained of 
ourse. For example one might be ableto write the ve
tor �eld of interest asa(r) = b(r)� 
where 
 is a 
onstant ve
tor.| Example of extension to Gauss' TheoremQ U = x2 + y 2 + z2 is a s
alar �eld,and volume V is the 
ylinder x2 +y 2 � a2; 0 � z � h. Compute thesurfa
e integral

∫S UdSover the surfa
e of the 
ylinder.A It is immediately 
lear from sym-metry that there is no 
ontributionfrom the 
urved surfa
e of the 
ylin-der sin
e for every ve
tor surfa
e el-ement there exists an equal and op-posite element with the same valueof U. We therefore need 
onsideronly the top and bottom fa
es.
d

z=0

z=h

dS

S

z

Top fa
e:U = x2 + y 2 + z2 = r 2 + h2 and dS = rdrd�k̂kkso
∫ UdS = ∫ ar=0(h2+ r 2)2�rdr ∫ 2��=0 d�k̂kk = k̂kk� [h2r 2 + 12r 4]a0 = �[h2a2+ 12a4℄k̂kk



90 LECTURE 7. GAUSS' AND STOKES' THEOREMSBottom fa
e:U = r 2 and dS = �rdrd�k̂kkThe 
ontribution from this fa
e is thus ��a42 k̂kk , and the total integral is �h2a2k̂kk .On the other hand, using Gauss' Theorem we have to 
ompute
∫V grad UdVIn this 
ase, grad U = 2r,2 ∫V (x {̂{{ + y k̂kk + zk̂kk)r dr dz d�The integrations over x and y are zero by symmetry, so that the only remainingpart is2 ∫ hz=0 zdz ∫ ar=0 r dr ∫ 2��=0 d�k̂kk = �a2h2k̂kk

7.5 Stokes' TheoremStokes' Theorem relates a line integral around a 
losed path to a surfa
e integralover what is 
alled a 
apping surfa
e of the path.Stokes' Theorem states:
∮C a � d l = ∫S 
url a � dSwhere S is any surfa
e 
apping the 
urve C.

Why have we used d l rather than dr, where r is the position ve
tor?There is no good reason for this, as d l = dr. It just seems to be 
ommon usagein line integrals!



7.6. INFORMAL PROOF 917.6 Informal proofYou will re
all that in Le
ture 5 that we de�ned 
url as the 
ir
ulation per unitarea, and showed that
∑around elemental loopa � d l = dC = (rrr� a) � dS :Now if we add these little loops together, the internal line se
tions 
an
el outbe
ause the d l's are in opposite dire
tion but the �eld a is not. This gives thelarger surfa
e and the larger bounding 
ontour as shown in Fig. 7.4.

ax (y)

a
(x

)
y

ax (y+dy)

a y
(x

+
dx

)

dx

dy

y

y
x x+dx

y+dy

Figure 7.4: An example of an elementary loop, and how they 
ombine together.For a given 
ontour, the 
apping surfa
e 
an be ANY surfa
e bound bythe 
ontour. The only requirement is that the surfa
e element ve
tors point inthe \general dire
tion" of a right-handed s
rew with respe
t to the sense of the
ontour integral. See Fig. 7.5.

Front

Back

Back
Front

Figure 7.5: For a given 
ontour, the bounding surfa
e 
an be any shape. dS's must have a positive
omponent in the sense of a r-h s
rew wrt the 
ontour sense.



92 LECTURE 7. GAUSS' AND STOKES' THEOREMS| Example of Stokes' TheoremIn pra
ti
e, (and espe
ially in exam questions!) the bounding 
ontour is oftenplanar, and the 
apping surfa
e 
at or hemispheri
al or 
ylindri
al.Q Ve
tor �eld a = x 3̂|||�y 3̂{{{ and C is the 
ir
le of radius R 
entred on the origin.Derive
∮C a � d ldire
tly and (ii) using Stokes' theorem where the surfa
e is the planar surfa
ebounded by the 
ontour.A(i) Dire
tly. On the 
ir
le of radius Ra = R3(� sin3 �̂{{{ + 
os3 �|̂||)and d l = Rd�(� sin �̂{{{ + 
os �|̂||)so that:
∮C a � d l = ∫ 2�0 R4(sin4 � + 
os4 �)d� = 3�2 R4;sin
e
∫ 2�0 sin4 �d� = ∫ 2�0 
os4 �d� = 3�4A(ii) Using Stokes' theorem ...
url a = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk��x ��y ��z�y 3 x3 0 ∣

∣

∣

∣

∣

∣

= 3(x2 + y 2)k̂kk = 3r 2k̂kkWe 
hoose area elements to be 
ir
ular strips of radius r thi
kness dr . ThendS = 2�rdr k̂kk and ∫S curl a � dS = 6� ∫ R0 r 3dr = 3�2 R4



7.7. AN EXTENSION TO STOKES' THEOREM 937.7 An Extension to Stokes' TheoremJust as we 
onsidered one extension to Gauss' theorem (not really an extension,more of a re-expression), so we will try something similar with Stoke's Theorem.Again let a(r) = U(r)
, where 
 is a 
onstant ve
tor. Then
url a = U
url 
+ grad U � 
)Again, 
url 
 is zero. Stokes' Theorem be
omes in this 
ase:
∮C U(
 � d l) = ∫S(grad U � 
 � dS = ∫S 
 � (dS� grad U)or, rearranging the triple s
alar produ
ts and taking the 
onstant 
 out of theintegrals gives
 � ∮C Ud l = �
 � ∫S gradU � dS :But 
 is arbitrary and so
∮C Ud l = � ∫S grad U � dS

7.8 | Example of extension to Stokes' TheoremQ Derive ∮C Udr (i) dire
tly and (ii) using Stokes',where U = x2+ y 2+ z2 and the line integral is takenaround C the 
ir
le (x � a)2 + y 2 = a2 and z = 0.Note that, for no spe
ial reason, we have used drhere not d l. x

y

a

d r
r ρ

α

d= ρ

A(i) First some preamble.If the 
ir
le were 
entred at the origin, we would write dr = ad�ê� =ad�(� sin �̂{{{+
os �|̂||). For su
h a 
ir
le the magnitude r = jrj = a, a 
onstantand so dr = 0.However, in this example dr is not always in the dire
tion of ê�, and dr 6= 0.Could you write down dr? If not, revise Le
ture 3, where we saw that in planepolars x = r 
os �, y = r sin � and the general expression isdr = dx {̂{{ + dy |̂|| = (
os �dr � r sin �d�)̂{{{ + (sin �dr + r 
os �d�)̂|||



94 LECTURE 7. GAUSS' AND STOKES' THEOREMSTo avoid having to �nd an expression for r in terms of �, we will perform a
oordinate transformation by writing r = [a; 0℄> + ���. So, x = (a + � 
os�)and y = � sin�, and on the 
ir
le itself where � = ar = a(1 + 
os�)̂{{{ + a sin�|̂|| ;dr = ad�(� sin�{̂{{ + 
os�|̂||) ;and, as z = 0 on the 
ir
le,U = a2(1 + 
os�)2 + a2 sin2� = 2a2(1 + 
os�) :The line integral be
omes
∮ Udr = 2a3 ∫ 2��=0(1 + 
os�)(� sin�{̂{{ + 
os�|̂||)d� = 2�a3|̂||A(ii) Now using Stokes' ...For a planar surfa
e 
overing the dis
, the surfa
e element 
an be writtenusing the new parametrization asdS = � d� d�k̂kkRemember that U = x2 + y 2 + z2 = r 2, and as z = 0 in the planegrad U = 2(x {̂{{ + y |̂|| + zk̂kk) = 2(a + � 
os�)̂{{{ + 2� sin�|̂|| :Be 
areful to note that x; y are spe
i�ed for any point on the dis
, not on its
ir
ular boundary!SodS�gradU = 2� d� d� ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk0 0 1(a + � 
os�) � sin� 0 ∣

∣

∣

∣

∣

∣

= 2�[�� sin�{̂{{+(a+� 
os�)̂|||℄ d� d�Both ∫ 2�0 sin�d� = 0 and ∫ 2�0 
os�d� = 0, so we are left with
∫S dS� gradU = ∫ a�=0 ∫ 2��=0 2�â||| d� d� = 2�a3̂|||
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Le
ture 8Engineering appli
ationsIn Le
ture 6 we saw one 
lassi
 example of the appli
ation of ve
tor 
al
ulus toMaxwell's equation.In this le
ture we explore a few more examples from 
uid me
hani
s and heattransfer. As with Maxwell's eqations, the examples show how ve
tor 
al
ulusprovides a powerful way of representing underlying physi
s.The power 
ome from the fa
t that div, grad and 
url have a signi�
an
e ormeaning whi
h is more immediate than a 
olle
tion of partial derivatives. Ve
tor
al
ulus will, with pra
ti
e, be
ome a 
onvenient shorthand for you.� Ele
tri
ity { Amp�ere's Law� Fluid Me
hani
s - The Continuity Equation� Thermo: The Heat Condu
tion Equation� Me
hani
s/Ele
trostati
s - Conservative �elds� The Inverse Square Law of for
e� Gravitational �eld due to distributed mass� Gravitational �eld inside body� Pressure for
es in non-uniform 
ows

95



96 LECTURE 8. ENGINEERING APPLICATIONS8.1 Ele
tri
ity { Amp�ere's LawIf the frequen
y is low, the displa
ement 
urrent in Maxwell's equation 
urlH =J+ �D=�t is negligible, and we �nd
urlH = JHen
e
∫S 
urlH � dS = ∫S J � dSor
∮ H � d l = ∫S J � dSwhere ∫S J � dS is total 
urrent through the surfa
e.Now 
onsider the H around a straight wire 
arrying 
urrent I. Symmetry tells usthe H is in the ê� dire
tion, in a rhs s
rew sense with respe
t to the 
urrent. (Youmight 
he
k this against Biot-Savart's law.)Suppose we asked what is the magnitude of H?

H

In wire

r

Outside wire

��������

������

a

r

H

Top view
for r<a

Current

H
C H

I

r

Front

Back

Inside the wire, the bounding 
ontour only en
loses a fra
tion (�r 2)=(�a2) of the
urrent, and soH2�r = ∫ J � dS = I(r 2=A2)) H = Ir=2�A2whereas outside we en
lose all the 
urrent, and soH2�r = ∫ J � dS = I) H = I=2�rA plot is shown in the Figure.



8.2. FLUID MECHANICS - THE CONTINUITY EQUATION 978.2 Fluid Me
hani
s - The Continuity EquationThe Continuity Equation expresses the 
ondition of 
onservation of mass in a
uid 
ow. The 
ontinuity prin
iple applied to any volume (
alled a 
ontrol volume)may be expressed in words as follows:\The net rate of mass 
ow of 
uid out of the 
ontrol volume must equalthe rate of de
rease of the mass of 
uid within the 
ontrol volume"
qSd

Control Volume VFigure 8.1:To express the above as a mathemati
al equation, we denote the velo
ity of the
uid at ea
h point of the 
ow by q(r) (a ve
tor �eld) and the density by �(r) (as
alar �eld). The element of rate-of-volume-loss through surfa
e dS is d _V = q�dS,so the rate of mass loss isd _M = �q � dS;so that the total rate of mass loss from the volume is� ��t ∫V �(r)dV = ∫S �q � dS:Assuming that the volume of interest is �xed, this is the same as� ∫V ���t dV = ∫S �q � dS :Now we use Gauss' Theorem to transform the RHS into a volume integral� ∫V ���t dV = ∫V div (�q)dV :The two volume integrals 
an be equal for any 
ontrol volume V only if the twointegrands are equal at ea
h point of the 
ow. This leads to the mathemati
alformulation of



98 LECTURE 8. ENGINEERING APPLICATIONSThe Continuity Equation:div (�q) = ����tNoti
e that if the density doesn't vary with time, div (�q) = 0, and if the densitydoesn't vary with position thenThe Continuity Equation for uniform, time-invariant density:div (q) = 0 :In this last 
ase, we 
an say that the 
ow q is solenoidal.8.3 Thermodynami
s - The Heat Condu
tion EquationFlow of heat is very similar to 
ow of 
uid, and heat 
ow satis�es a similar 
on-tinuity equation. The 
ow is 
hara
terized by the heat 
urrent density q(r) (heat
ow per unit area and time), sometimes misleadingly 
alled heat 
ux.Assuming that there is no mass 
ow a
ross the boundary of the 
ontrol volume andno sour
e of heat inside it, the rate of 
ow of heat out of the 
ontrol volume by
ondu
tion must equal the rate of de
rease of internal energy (
onstant volume)or enthalpy (
onstant pressure) within it. This leads to the equationdiv q = ��
 �T�t ;where � is the density of the 
ondu
ting medium, 
 its spe
i�
 heat (both areassumed 
onstant) and T is the temperature.In order to solve for the temperature �eld another equation is required, linking qto the temperature gradient. This isq = ��grad T;where � is the thermal 
ondu
tivity of the medium. Combining the two equationsgives the heat 
ondu
tion equation:�div q = �div grad T = �r2T = �
 �T�twhere it has been assumed that � is a 
onstant. In steady 
ow the temperature�eld satis�es Lapla
e's Equation r2T = 0.



8.4. MECHANICS - CONSERVATIVE FIELDS OF FORCE 998.4 Me
hani
s - Conservative �elds of for
eA 
onservative �eld of for
e is one for whi
h the work done
∫ BA F � dr;moving from A to B is indep. of path taken. As we saw in Le
ture 4, 
onservative�elds must satisfy the 
ondition
∮C F � dr = 0;Stokes' tells us that this is
∫S 
url F � dS = 0;where S is any surfa
e bounded by C.But if true for any C 
ontaining A and B, it must be that
url F = 000 Conservative �elds are irrotationalAll radial �elds are irrotationalOne way (a
tually the only way) of satisfying this 
ondition is forF = rrr U The s
alar �eld U(r) is the Potential Fun
tion



100 LECTURE 8. ENGINEERING APPLICATIONS8.5 The Inverse Square Law of for
eRadial for
es are found in ele
trostati
s and gravitation | so they are 
ertainlyirrotational and 
onservative.But in nature these radial for
es are also inverse square laws. One reason why thismay be so is that it turns out to be the only 
entral for
e �eld whi
h is solenoidal,i.e. has zero divergen
e.If F = f (r)r,div F = 3f (r) + r f 0(r):For div F = 0 we 
on
luder dfdr + 3f = 0or dff + 3drr = 0:Integrating with respe
t to r gives f r 3 = 
onst = A, so thatF = Arr 3 ; jFj = Ar 2 :The 
ondition of zero divergen
e of the inverse square for
e �eld applies everywhereex
ept at r = 000, where the divergen
e is in�nite.To show this, 
al
ulate the outward normal 
ux out of a sphere of radius R 
enteredon the origin when F = F r̂. This is
∫S F � dS = F ∫Sphere r̂ � dS = F ∫Sphere d = F4�R2 = 4�A = Constant:Gauss tells us that this 
ux must be equal to
∫V div FdV = ∫ R0 div F4�r 2drwhere we have done the volume integral as a summation over thin shells of surfa
earea 4�r 2 and thi
kness dr .But for all �nite r , divF = 0, so divF must be in�nite at the origin.The 
ux integral is thus� zero | for any volume whi
h does not 
ontain the origin� 4�A for any volume whi
h does 
ontain it.



8.6. GRAVITATIONAL FIELD DUE TO DISTRIBUTED MASS: POISSON'S EQUATION 1018.6 Gravitational �eld due to distributed mass: Poisson's Equa-tionIf one tried the same approa
h as x8.4 for the gravitational �eld, A = Gm, wherem is the mass at the origin and G the universal gravitational 
onstant, one wouldrun into the problem that there is no su
h thing as point mass.We 
an make progress though by 
onsidering distributed mass.The mass 
ontained in ea
h small volume element dV is �dV and this will make a
ontribution �4��GdV to the 
ux integral from the 
ontrol volume. Mass outsidethe 
ontrol volume makes no 
ontribution, so that we obtain the equation
∫S F � dS = �4�G ∫V �dV:Transforming the left hand integral by Gauss' Theorem gives
∫V div FdV = �4�G ∫V �dVwhi
h, sin
e it is true for any V , implies that�div F = 4��G:Sin
e the gravitational �eld is also 
onservative (i.e. irrotational) it must havean asso
iated potential fun
tion U, so that F = grad U. It follows that thegravitational potential U satis�esPoisson's Equationr2U = 4��G :Using the integral form of Poisson's equation, it is possible to 
al
ulate the gravi-tational �eld inside a spheri
al body whose density is a fun
tion of radius only. Wehave4�R2F = 4�G ∫ R0 4�r 2�dr;where F = jFj, orjF j = GR2 ∫ R0 4�r 2�dr = MGR2 ;where M is the total mass inside radius R. For the 
ase of uniform density, this isequal to M = 43��R3 and jF j = 43��GR.



102 LECTURE 8. ENGINEERING APPLICATIONS8.7 Pressure for
es in non-uniform 
owsWhen a body is immersed in a 
ow it experien
es a net pressure for
eFp = � ∫S pdS;where S is the surfa
e of the body. If the pressure p is non-uniform, this integralis not zero. The integral 
an be transformed using Gauss' Theorem to give thealternative expressionFp = � ∫V grad p dV;where V is the volume of the body. In the simple hydrostati
 
ase p + �gz =
onstant, so thatgrad p = ��gkand the net pressure for
e is simplyFp = gk̂∫V �dVwhi
h, in agreement with Ar
himedes' prin
iple, is equal to the weight of 
uiddispla
ed.
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