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Overview

Many of you will know a good deal already about Vector Algebra — how to add and subtract

vectors, how to take scalar and vector products of vectors, and something of how to describe
geometric and physical entities using vectors. This course will remind you about that good stuff,
but goes on to introduce you to the subject of Vector Calculus which, like it says on the can,
combines vector algebra with calculus.

To give you a feeling for the issues, suppose you were interested in the temperature T of water in
a river. Temperature T is a scalar, and will certainly be a function of a position vector x = (x, y, z)
and may also be a function of time t: T = T(x, t). It is a scalar field.

Suppose now that you kept y, z, t constant, and asked what is the change in temperature as you
move a small amount in x? No doubt you'd be interested in calculating 0T /0x. Similarly if you
kept the point fixed, and asked how does the temperature change of time, you would be interested
in 8T /ot.

But why restrict ourselves to movements up-down, left-right, etc? Suppose you wanted to know
what the change in temperature along an arbitrary direction. You would be interested in

oT
Ox

but how would you calculate that? Is 0T /Ox a vector or a scalar?

Now let’s dive into the flow. At each point x in the stream, at each time t, there will be a stream
velocity v(x, t). The local stream velocity can be viewed directly using modern techniques such
as laser Doppler anemometry, or traditional techniques such a throwing twigs in. The point now
is that v is a function that has the same four input variables as temperature did, but its output
result is a vector. We may be interested in places x where the stream suddenly accelerates, or
vortices where the stream curls around dangerously. That is, we will be interested in finding the
acceleration of the stream, the gradient of its velocity. We may be interested in the magnitude of
the acceleration (a scalar). Equally, we may be interested in the acceleration as a vector, so that
we can apply Newton's law and figure out the force.

This is the stuff of vector calculus.



Grey book

Vector algebra: scalar and vector products; scalar and vector triple products; geometric appli-
cations. Differentiation of a vector function; scalar and vector fields. Gradient, divergence and
curl - definitions and physical interpretations; product formulae; curvilinear coordinates. Gauss’
and Stokes' theorems and evaluation of integrals over lines, surfaces and volumes. Derivation
of continuity equations and Laplace’s equation in Cartesian, cylindrical and spherical coordinate
systems.
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e Introduction and revision of elementary concepts, scalar product, vector product.
e Triple products, multiple products, applications to geometry.

e Differentiation and integration of vector functions of a dingle variable.

e Curvilinear coordinate systems. Line, surface and volume integrals.

e \ector operators.
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e Gauss' and Stokes' Theorems.

e Engineering Applications.
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physical systems in terms of this intuition.
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Lecture 1

Vector Algebra

1.1 Vectors

Many physical quantities, such a mass, time, temperature are fully specified by one
number or magnitude. They are scalars. But other quantities require more than
one number to describe them. They are vectors. You have already met vectors in
their more pure mathematical sense in your course on linear algebra (matrices and
vectors), but often in the physical world, these numbers specify a magnitude and
a direction — a total of two numbers in a 2D planar world, and three numbers in
3D.

Obvious examples are velocity, acceleration, electric field, and force. Below, prob-
ably all our examples will be of these “magnitude and direction” vectors, but we
should not forget that many of the results extend to the wider realm of vectors.

There are three slightly different types of vectors:

e Free vectors: |In many situtations only the magnitude and direction of a
vector are important, and we can translate them at will (with 3 degrees of
freedom for a vector in 3-dimensions).

e Sliding vectors: In mechanics the line of action of a force is often important
for deriving moments. The force vector can slide with 1 degree of freedom.

e Bound or position vectors: \When describing lines, curves etc in space, it is
obviously important that the origin and head of the vector are not translated
about arbitrarily. The origins of position vectors all coincide at an overall
origin O.

One the advantages of using vectors is that it frees much of the analysis from
the restriction of arbitrarily imposed coordinate frames. For example, if two free
vectors are equal we need only say that their magnitudes and directions are equal,
and that can be done with a drawing that is independent of any coordinate system.

However, coordinate systems are ultimately useful, so it useful to introduce the
iIdea of vector components. Try to spot things in the notes that are independent
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6 LECTURE 1. VECTOR ALGEBRA

|

Free vectors Sliding vectors Position vectors

Figure 1.1:
of coordinate system.

1.1.1 Vector elements or components in a coordinate frame

A method of representing a vector is to list the values of its elements or components
in a sufficient number of different (preferably mutually perpendicular) directions,
depending on the dimension of the vector. These specified directions define a
coordinate frame. In this course we will mostly restrict our attention to the
3-dimensional Cartesian coordinate frame O(x, y, z). When we come to examine
vector fields later in the course you will use curvilinear coordinate frames, especially
3D spherical and cylindrical polars, and 2D plane polar, coordinate systems.

Figure 1.2: Vector components.

In a Cartesian coordinate frame we write
a=la, @ al=[0—x,o—y1,22—21] or a=]laay,al
as sketched in Figure 1.2. Defining 1,], k as unit vectors in the X, y, z directions

i=[1,0,0] 7=1[0,1,0] k=10,0,1]
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(b)

Figure 1.3: (a) Addition of two vectors is commutative. Note that the coordinate frame is irrele-
vant. (b) subtraction of vectors; (c) Addition of three vectors is associative.

we could also write
a = 317+ 32:[\4‘ a3k

Although we will be most often dealing with vectors in 3-space, you should not
think that general vectors are limited to three components.

In these notes we will use bold font to represent vectors a, w, In your written work,
underline the vector symbol a, w and be meticulous about doing so. We shall use
the hat to denote a unit vector.

1.1.2 Vector equality

Two free vectors are said to be equal iff their lengths and directions are the same.
If we use a coordinate frame, we might say that corresponding components of
the two vectors must be equal. This definition of equality will also do for position
vectors, but for sliding vectors we must add that the line of action must be identical
too.

1.1.3 Vector magnitude and unit vectors

Provided we use an orthogonal coordinate system, the magnitude of a 3-vector is

a:\a\:\/a%+a§+a§

To find the unit vector in the direction of a, simply divide by its magnitude

. a
a=_—.
a|

1.1.4 Vector Addition and subtraction

Vectors are added/subtracted by adding/subtracting corresponding components,
exactly as for matrices. Thus

a+b:[81+b1, 32+b2, a3+b3]
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Addition follows the parallelogram construction of Figure 1.3(a). Subtraction (a—
b) is defined as the addition (a + (—b)). It is useful to remember that the vector
a — b goes from b to a.

The following results follow immediately from the above definition of vector addi-
tion:

(a) a + b = b + a (commutativity) (Figure 1.3(a))

(b) (@a+b)+c=a+ (b+c)=a+ b+ c (associativity) (Figure 1.3(b))

(c) a+ 0 =0+ a = a, where the zero vector is 0 = [0, 0, 0].

(d)a+ (-a)=0

1.1.5 Multiplication of a vector by a scalar. (NOT the scalar product!)

Just as for matrices, multiplication of a vector a by a scalar ¢ is defined as multi-
plication of each component by ¢, so that

ca = [cay, cap, cas].
It follows that:
lca| = v/(cai1)2 + (ca»)2 + (cas)? = [c]|al.

The direction of the vector will reverse if ¢ is negative, but otherwise is unaffected.
(By the way, a vector where the sign is uncertain is called a director.)

& Example

Q. Coulomb’s law states that the electrostatic force on charged particle Q due
to another charged particle g; Is

F— kO,

where r is the vector from g; to @ and ¥ is the unit vector in that same
direction. (Note that the rule “unlike charges attract, like charges repel” is
built into this formula.) The force between two particles is not modified by
the presence of other charged particles.

Hence write down an expression for the force on Q at R due to N charges g;
at r;.

A. The vector from g; to Q is R — r;,. The unit vector in that direction is
(R—r;)/IR —rj|, so the resultant force is

E(R) — & Qqi
( )_ZKW(R_”)
i=1

Note that F(R) is a vector field.
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1.2 Scalar, dot, or inner product

This is a product of two vectors results in a scalar quantity and is defined as follows
for 3-component vectors:

a-b=aby+ arb, + azbs .
Note that
a-a=a +a,+a;=|a’=2a"
The following laws of multiplication follow immediately from the definition:
(a) a-b=b-a (commutativity)
(b)a-(b+c)=a-b+a-c (distributivity with respect to vector addition)
(c) (Aa)-b=X(a-b) =a-(A\b) scalar multiple of ascalar product of two vectors

1.2.1 Geometrical interpretation of scalar product

a-b

—

Projection of b onto

O a A direction of a
(a) (b)

Figure 1.4: (a) Cosine rule. (b) Projection of b onto a.

Consider the square magnitude of the vector a — b. By the rules of the scalar
product, this is

a—b[* = (a—b)-(a—b)
= a-a+b-b—2(a-b)
= a°+b*>—2(a-b)
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But, by the cosine rule for the triangle OAB (Figure 1.4a), the length AB? is given
by

la —b|? = a°> + b? — 2abcos f
where 6 is the angle between the two vectors. It follows that
a-b=abcosb,

which is independent of the co-ordinate system used, and that |a-b| < ab. Con-
versely, the cosine of the angle between vectors a and b is given by cos6 = a-b/ab.

1.2.2 Projection of one vector onto the other

Another way of describing the scalar product is as the product of the magnitude
of one vector and the component of the other in the direction of the first, since
bcos 6 is the component of b in the direction of a and vice versa (Figure 1.4b).

Projection is particularly useful when the second vector is a unit vector — a -7 is
the component of a in the direction of 1.

Notice that if we wanted the vector component of b in the direction of a we
would write

(b-a)a
22

(b-4a)a =

In the particular case a-b = 0, the angle between the two vectors is a right angle
and the vectors are said to be mutually orthogonal or perpendicular — neither
vector has any component in the direction of the other.

An orthonormal coordinate system is characterised by 1-1=7-J = k -k =1:and
1-]=]-k=k-1=0.
1.2.3 A scalar product is an “inner product”

So far we have been writing our vectors as row vectors a = [a1, a», as]. This is
convenient because it takes up less room than writing column vectors

di
a = d»
az

In matrix algebra vectors are more usually defined as column vectors, as in

Myy My Mis di 41
My My Mys d | = Vo
Mz, Msy, Mss as V3
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and a row vector is written as a'. Now for most of our work we can be quite
relaxed about this minor difference, but here let us be fussy.

Why? Simply to point out at that the scalar product is also the inner product
more commonly used in linear algebra. Defined as a'b when vectors are column
vectors as

by
a-b= aTb = [81, dn, 33] bQ = 81b1 + 82b2 + 83b3 .
bs

Here we treat a n-dimensional column vector as an n x 1 matrix.

(Remember that if you multiply two matrices Mp,x,N,x, then M must have the
same columns as N has rows (here denoted by n) and the result has size (rows x
columns) of m x p. So for n-dimensional column vectors a and b, a” isa 1 x n

matrix and b is n x 1 matrix, so the product a'b is a 1 x 1 matrix, which is (at
last!) a scalar.)

& Examples

Q1. A force F is applied to an object as it moves by a small amount ér. What
work is done on the object by the force?

Al. The work done is equal to the component of force in the direction of the dis-
placement multiplied by the displacement itself. This is just a scalar product:

OW =F - or

Q2. A cube has four diagonals, connecting opposite vertices. What is the angle
between an adjacent pair?

A2. Well, you could plod through using
Pythagoras’ theorem to find the length
of the diagonal from cube vertex to cube [-1,1,1] [1,1,1]
centre, and perhaps you should to check
the following answer.

The directions of the diagonals are k )(
[+1,4+1,4+1]. The ones shown in the
figure are [1,1,1] and [—1,1,1]. The
angle is thus
. [1,1,1]-[-1,1,1]

V12 412 412/ -12 +12 4 1°

1 1

8 = cos™ = COoS ~ —
3
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Q3. A pinball moving in a plane with velocity s bounces (in a purely elastic impact)
from a baffle whose endpoints are p and q. What is the velocity vector after
the bounce?

A3. Best to refer everything to a coordi-
nate frame with principal directions
i along and ¥ perpendicular to the

baffle:
n q—p
u _
lq — p|
vV = ut=[-u, u]

Thus the velocity before impact is

velocity in the direction of the baf-
fle is unchanged and the component
normal to the baffle is negated:

After the impact, the component of ‘l S

Safter = (s.0)01 — (5.V)V

1.2.4 Direction cosines use projection

Direction cosines are commonly used in the field of crystallography. The quantities

represent the cosines of the angles which the vector a makes with the co-ordinate
vectors 1], k and are known as the direction cosines of the vector a. Since
a-i=a etc, it follows immediately that a = a(\i + uj + vk) and A2 + p2 + 12 =
Slal+ a3+ a3l =1

1.3 Vector or cross product

The vector product of two vectors a and b is denoted by a x b and is defined as
follows

axb= (32b3 - a3b2)7+ (a3b1 — albg)j + (albg — agbl)l}.
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AN,

j

Figure 1.5: The direction cosines are cosines of the angles shown.

It is MUCH more easily remembered in terms of the pseudo-determinant

i j k
axb=|a a a3
b1 by, bs

where the top row consists of the vectors i, j, k rather than scalars.

Since a determinant with two equal rows has value zero, it follows that a xa = 0.
It is also easily verified that (axb)-a= (axb)-b =0, so that ax b is orthogonal
(perpendicular) to both a and b, as shown in Figure 1.6.

Note that ix j=k, jx k=1, and k xi=].
The magnitude of the vector product can be obtained by showing that

la x b|> + (a-b)? = a*b?
from which it follows that
la x b| =absinf

which is again independent of the co-ordinate system used. This is left as an
exercise.

Unlike the scalar product, the vector product does not satisfy commutativity but
is in fact anti-commutative, in that a x b = —b x a. Moreover the vector product
does not satisfy the associative law of multiplication either since, as we shall see

later a x (b x c) # (a x b) xc.
Since the vector product is known to be orthogonal to both the vectors which form
the product, it merely remains to specify its sense with respect to these vectors.

Assuming that the co-ordinate vectors form a right-handed set in the order ij, k
it can be seen that the sense of the the vector product is also right handed, i.e
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the vector product has the same sense as the co-ordinate system used.

i j k
I1xJ=110 0|=k
010

In practice, figure out the direction from a right-handed screw twisted from the
first to second vector as shown in Figure 1.6(a).

-1
Axb axb D
O

T in right—hand screw sense
% b

Plane of vectors a and b a

bsin 6

Figure 1.6: (a)The vector product is orthogonal to both a and b. Twist from first to second and
move in the direction of a right-handed screw. (b) Area of parallelogram is absin 6.

1.3.1 Geometrical interpretation of vector product

The magnitude of the vector product (a x b) is equal to the area of the parallelo-
gram whose sides are parallel to, and have lengths equal to the magnitudes of, the
vectors a and b (Figure 1.6b). Its direction is perpendicular to the parallelogram.

& Example
Q. g is vector from A [1,2,3] to B [3,4,5].
£ is the unit vector in the direction from O to A.

Find m, a UNIT vector along g % ZA
Verify that m is is perpendicular to £. A
Find i, the third member of a right-handed coordinate set £, m, i.

A.
g=1[3,45 —[1,23]=[22 2]
L1
2=—"-[1,2,3
Niviaiald
cl= - ;g 12( —L[z —4,7]
J Via| | 5 5| ViAo
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Hence
= ——[2, 2]
V24
and
i=2xm

15
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Lecture 2

Multiple Products. Geometry using Vectors

2.1 Triple and multiple products

Using mixtures of the pairwise scalar product and vector product, it is possible to
derive “triple products” between three vectors, and indeed n-products between n
vectors.

There is nothing about these that you cannot work out from the definitions of pair-
wise scalar and vector products already given, but some have interesting geometric
Interpretations, so it is worth looking at these.

2.1.1 Scalar triple product

This is the scalar product of a vector product and a third vector, i.e. a- (b x c).
Using the pseudo-determinant expression for the vector product, we see that the
scalar triple product can be represented as the true determinant

di dp ajs
a- (b X C) = b1 b2 b3
G & G

You will recall that if you swap a pair of rows of a determinant, its sign changes;
hence if you swap two pairs, its sign stays the same.

di dp ajs Ci G (3 i & C3

b1 b2 b3 1st SWAP b1 bQ b3 2nd SWAP di dp ajs

G & G di dz a3 by by bs
- -~ -

This says that
(i)a-(bxc)=b-(cxa)=c-(axb) (Called cyclic permutation.)

17
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(i) a-(bxc)=—b-(axc)andso on. (Called anti-cyclic permutation.)

(iii) The fact that a- (b x ¢) = (a x b) - c allows the scalar triple product to be
written as [a, b, c]. This notation is not very helpful, and we will try to avoid
it below.

2.1.2 Geometrical interpretation of scalar triple product

The scalar triple product gives the volume of the parallelopiped whose sides are
represented by the vectors a, b, and c.

We saw earlier that the vector product (a x b) has magnitude equal to the area
of the base, and direction perpendicular to the base. The component of ¢ in this
direction is equal to the height of the parallelopiped shown in Figure 2.1(a).

An

Figure 2.1: (a) Scalar triple product equals volume of parallelopiped. (b) Coplanarity yields zero
scalar triple product.

2.1.3 Linearly dependent vectors

If the scalar triple product of three vectors is zero
a-(bxc)=0

then the vectors are linearly dependent. That is, one can be expressed as a linear
combination of the others. For example,

a= b+ uc
where X\ and u are scalar coefficients.
You can see this immediately in two ways:

e [he determinant would have one row that was a linear combination of the
others. You'll remember that by doing row operations, you could reach a row
of zeros, and so the determinant is zero.

e [he parallelopiped would have zero volume if squashed flat. In this case all
three vectors lie in a plane, and so any one is a linear combination of the
other two. (Figure 2.1b.)
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2.1.4 Vector triple product

This is defined as the vector product of a vector with a vector product, ax (b x c).
Now, the vector triple product a x (b x ¢) must be perpendicular to (b x c), which
in turn is perpendicular to both b and c. Thus a x (b x ¢) can have no component
perpendicular to b and ¢, and hence must be coplanar with them. It follows that
the vector triple product must be expressible as a linear combination of b and c:

ax(bxc)=Xb+uc.

The values of the coefficients can be obtained by multiplying out in component
form. Only the first component need be evaluated, the others then being obtained
by symmetry. That is

(ax (bxc)); = axbxc)s—as(b xc)
= 82(b1C2 — b2C1) + 33(b1C3 — b3C1)
= (32C2 + 33C3)b1 — (32b2 + a3b3)c1
= (a1 + @ + a3c3) by — (a1by + axbo + azbs)cy
= (a-c)by —(a-b)g

The equivalents must be true for the 2nd and 3rd components, so we arrive at the
identity

ax(bxc)=(a-c)b—(a-b)c.

a
bxc _ o
f In arbitrary direction

K >

ax (bx c)

Figure 2.2: Vector triple product.

2.1.5 Projection using vector triple product

An example of the application of this formula is as follows. Suppose v is a vector
and we want its projection into the xy-plane. The component of v in the z

direction is v - k, so the projection we seek is v — (v - k)k. Writing k « a, v < b,
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ax(bxc) = (a-c)b—(a-b)c

~

k-v)k

kx(vxk) = (k-kwv

= v—(v-

(
k

»>

)
Sov—(v-k)k =k x (vxk).

(Hot stuff! But the expression v — (v - k)k is much easier to understand, and
cheaper to compute!)

2.1.6 Other repeated products

Many combinations of vector and scalar products are possible, but we consider only
one more, namely the vector quadruple product (a x b) x (¢ x d). By regarding
a X b as a single vector, we see that this vector must be representable as a linear
combination of ¢ and d. On the other hand, regarding ¢ x d as a single vector, we
see that it must also be a linear combination of a and b. This provides a means
of expressing one of the vectors, say d, as linear combination of the other three,
as follows:

(axb)x(ecxd) = [(axb)-dlc—[(axb)-c]d
= [(cxd)-a]lb—[(c xd)-b]a

Hence
[(@axb)-cJd=[(bxc)-dla+[(cxa)-db+[(axb)-d]c
or
[(bxc)-dla+[(cxa)-db+[(axb)-d]c
[(a xb) -]

This is not something to remember off by heart, but it is worth remembering that
the projection of a vector on any arbitrary basis set is unique.

d =

= aa+Bb+ yc .

& Example

Q1 Use the quadruple vector product to express the vector d = [3, 2, 1] in terms
of the vectorsa =1[1,2,3], b=[2,3,1] and c = [3, 1, 2].

A1l Grinding away at the determinants, we find
[(axb)-c] =-18; [(bxc)-d]=6; [(cxa)-d=-12; [(axb)-d] =—-12
So,d = (—a+2b+ 2c)/3.
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a

b
-

Figure 2.3: The projection of a (3-)vector onto a set of (3) basis vectors is unique. le in d =
aa + Bb + vyc, the set {a, 8,7} is unique.

2.2 Geometry using vectors: lines, planes

2.2.1 The equation of a line

The equation of the line passing through the point whose position vector is a and
lying in the direction of vector b is

r=a+ b

where \ is a scalar parameter. If you make b a unit vector, r = a + Ab then A will
represent metric length.

For a line defined by two points a; and a»
r—=a; + )\(32 - al)
or for the unit version

(ay —ay)

r:al—i—)\
|a, — ay|

Point r traces
out line.

Figure 2.4: Equation of a line. With b a unit vector, X is in the length units established by the
definition of a.
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2.2.2 The shortest distance from a point to a line

Referring to Figure 2.5(a) the vector p from c to any point on the line is p =
a-+ b —c = (a—c)+ Ab which has length squared p?> = (a—¢)?> + \*> + 2\(a —
c)-b . Rather than minimizing length, it is easier to minimize length-squared. The
minumum is found when d p?/dX = 0, ie when

A=—(a—c)-b.
So the minimum length vector is
p=(a—c)—((a—c)-b)b.

You might spot that is the component of (a—c) perpendicular to b (as expected!).
Furthermore, using the result of Section 2.1.5,

p=Dbx[(a—c)xb].

Because b is a unit vector, and is orthogonal to [(a — ¢) x b], the modulus of the
vector can be written rather more simply as just

Pmin = \(a—c) XB‘ .

Figure 2.5: (a) Shortest distance point to line. (b) Shortest distance, line to line.

2.2.3 The shortest distance between two straight lines

If the shortest distance between a point and a line is along the perpendicular, then

the shortest distance between the two straight lines r = a + A\b and r = ¢ + ud
must be found as the length of the vector which is mutually perpendicular to the
lines.

The unit vector along the mutual perpendicular is
p=(bxd)/|bxd.
(Yes, don't forget that b x d is NOT a unit vector. b and d are not orthogonal,
so there is a sin @ lurking!)
The minimum length is therefore the component of a — ¢ in this direction

Pmin = ‘(a_c)(ﬁxa)/‘ﬁxa” .
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& Example

Q Two long straight pipes are specified using Cartesian co-ordinates as follows:
Pipe A has diameter 0.8 and its axis passes through points (2,5,3) and
(7,10, 8).

Pipe B has diameter 1.0 and its axis passes through the points (0, 6, 3) and
(—12,0,9).
Determine whether the pipes need to be realigned to avoid intersection.

A Each pipe axis is defined using two points. The vector equation of the axis
of pipe A is

r=1[2,53]+\[55,5 =[25,3] +A[1,1,1]/V3
The equation of the axis of pipe B is

r=1[0,6,3] + u'[12,6,6] = [0,6,3] + u[-2, —1,1]/V6
The perpendicular to the two axes has direction

i ] k
[1,1,1] x[-2,-1,1]=| 1 1 1|=[2,-3,1]=p
-2 -1 1
The length of the mutual perpendicular is
[2, -3, 1] [2, -3, 1]
a-¢c)——=1[2,-1,0-———=1.87.
@-e) gy 2L

But the sum of the radii of the two pipes is 0.4 4+ 0.5 = 0.9. Hence the pipes
do not intersect

2.2.4 The equation of a plane

There are a number of ways of specifying the equation of a plane.

1. If b and c are two non-parallel vectors (ie b x ¢ # 0), then the equation of
the plane passing through the point a and parallel to the vectors b and ¢ may
be written in the form

r=a+ Ab+ uc
where A, i are scalar parameters. Note that b and c are free vectors, so don't
have to lie in the plane (Figure 2.6(a).)

2. Figure 2.6(b) shows the plane defined by three non-collinear points a, b and
c in the plane (note that the vectors b and c are position vectors, not free
vectors as in the previous case). The equation might be written as

r=a+ Xb—a)+ u(c—a)
3. Figure 2.6(c) illustrates another description is in terms of the unit normal to
the plane n and a point a in the plane
r-in=a-n.
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parallel to the plane, noj
necessarily in the plane

e

Figure 2.6: (a) Plane defined using point and two lines. (b) Plane defined using three points. (c)
Plane defined using point and normal. Vector r is the position vector of a general point in the
plane.

2.2.5 The shortest distance from a point to a plane

The shortest distance from a point d to the plane is along the perpendicular.
Depending on how the plane is defined, this can be written as

(d—a)-(bxc)
b x c

D=|d-a)-a] or D =

2.3 Solution of vector equations

It Is sometimes required to obtain the most general vector which satisfies a given
vector relationship. This is very much like obtaining the locus of a point. The best
method of proceeding in such a case is as follows:

(i) Decide upon a system of three co-ordinate vectors using two non-parallel vectors
appearing in the vector relationship. These might be a, b and their vector product
(a x b).

(ii) Express the unknown vector x as a linear combination of these vectors
x=MXa+ub+vaxbhb

where X\, u, v are scalars to be found.

(iii) Substitute the above expression for x into the vector relationship to determine
the constraints on A, u and v for the relationship to be satisfied.

& Example

Q Solve the vector equation x = x x a + b.

A Step (i): Set up basis vectors a, b and their vector product a x b.
Step (ii): x = Xa + ub + va x b.
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Step (iii): Bung this expression for x into the equation!

AMa+ub+vaxb = (Aa+ub+vaxb)xa+b
= 0+ubxa)+v(axb)xa+b
— —v(a-b)a+ (va®>+1)b—pu(axb)
We have learned that any vector has a unique expression in terms of a basis

set, so that the coefficients of a, b and a x b on either side of the equation
much be equal.

=X = —v(a-b)
w o= vas+1
vo= —u
so that
1 1 N a-b
= UV = — = i
=12 14 a° 1+ a2
So finally the solution is the single point:
1
X=17> ((a-b)a+b—(axh))

2.4 Rotation, angular velocity/acceleration and moments

A rotation can represented by a vector whose direction is along the axis of rotation
in the sense of a r-h screw, and whose magnitude is proportional to the size of
the rotation (Fig. 2.7). The same idea can be extended to the derivatives, that
Is, angular velocity w and angular acceleration w.

Angular accelerations arise because of a moment (or torque) on a body. In me-
chanics, the moment of a force F about a point Q is defined to have magnitude
M = Fd, where d is the perpendicular distance between @ and the line of action
L of F.

The vector equation for moment is
M=rxF

where r is the vector from @ to any point on the line of action L of force F.
The resulting angular acceleration vector is in the same direction as the moment
vector.

The instantaneous velocity of any point P on a rigid body undergoing pure rotation
can be defined by a vector product as follows. The angular velocity vector w has
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A

w
in right—-hand screw sense

i L

Figure 2.7: The angular velocity vector w is along the axis of rotation and has magnitude equal to
the rate of rotation.

magnitude equal to the angular speed of rotation of the body and with direction
the same as that of the r-h screw. If r is the vector OP, where the origin O can
be taken to be any point on the axis of rotation, then the velocity v of P due to
the rotation is given, in both magnitude and direction, by the vector product

V=W XTVT.

_-—— = ~ v

Figure 2.8:

Revised Oct 2008



Lecture 3

Differentiating Vector Functions of a Single
Variable

Your experience of differentiation and integration has extended as far as scalar
functions of single and multiple variables — functions like f(x) and f(x, y, t).

It should be no great surprise that we often wish differentiate vector functions. For
example, suppose you were driving along a wiggly road with position r(t) at time
t. Differentiating r(t) wrt time should yield your velocity v(t), and differentiating
v(t) should yield your acceleration. Let's see how to do this.

3.1 Differentiation of a vector

The derivative of a vector function a(p) of a single parameter p is

al(p) — 6';@() a(p + 65; B a(p) .

~

If we write a in terms of components relative to a FIXED coordinate system (1, ], k
constant)

a(p) = a1(p)i+ ax(p)j + as(p)k
then

That is, in order to differentiate a vector function, one simply differentiates each
component separately. This means that all the familiar rules of differentiation
apply, and they don't get altered by vector operations like scalar product and
vector products.

Thus, for example:
da db

d da db d
—(axb)=—xb — —(a-b)=— -b+a-— .
dp(a X b) b x b+ a x ap dp(a ) s + a e

27
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Note that da/dp has a different direction and a different magnitude from a.

Likewise, as you might expect, the chain rule still applies. Ifa = a(u) and v = u(t),
say:

d_ dadu
dte " dudt
& Examples

Q A 3D vector a of constant magnitude is varying over time. What can you say
about the direction of a?

A Using intuition: if only the direction is changing, then the vector must be
tracing out points on the surface of a sphere. We would guess that the
derivative a is orthogonal to a.

To prove this write

d(a a)=a da+da a=212a da
dt T dt dt dt

But (a-a) = a? which we are told is constant. So

d(a a)=0 = 2a da—O
dt B dt

and hence a and da/dt must be perpendicular.

Q The position of a vehicle is r(u) where u is the amount of fuel consumed by
some time t. Write down an expression for the acceleration.n

A The velocity is
dr dr du

VU4t dudt

ddr  d’ (du>2 dr d’u

A= gidt _dwe\dr) Taude

3.1.1 Geometrical interpretation of vector derivatives

Let r(p) be a position vector tracing a space curve as some parameter p varies.
The vector dr is a secant to the curve, and dr/dp lies in the same direction. (See
Fig. 3.1.) In the limit as dp tends to zero ér/dp = dr/dp becomes a tangent to
the space curve. If the magnitude of this vector is 1 (i.e. a unit tangent), then
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|dr| = dp so the parameter p is arc-length (metric distance). More generally,
however, p will not be arc-length and we will have:

dr  drds

dp dsdp

So, the direction of the derivative is that of a tangent to the curve, and its
magnitude is |ds/dp|, the rate of change of arc length w.r.t the parameter.
Of course if that parameter p is time, the magnitude |dr/dt| is the speed.

& Example
Q Draw the curve
S hs ~
r=acos(———=)1 + asin(——)J ——k
Vasw) Vesw! T Vrer

where s is arc length and h, a are constants. Show that the tangent dr/ds
to the curve has a constant elevation angle w.r.t the xy-plane, and determine
its magnitude.

A
ar _ _#Sin()/i_*_#COS()A_*_Lk
ds  Va+h va’+ h? I Vva’+ h?

The projection on the xy plane has magnitude a/+v/a’>+ h? and in the z
direction h/v/a? + h?, so the elevation angle is a constant, tan '(h/a).

We are expecting dr/ds = 1, and indeed

\/a2 sin?() + a2 cos?() + h?2/v/ a2 + h? = 1.

3.1.2 Arc length is a special parameter!

It might seem that we can be completely relaxed about saying that any old pa-
rameter p is arc length, but this is not the case. Why not? The reason is that arc
length is special is that, whatever the parameter p,

/p dr
S =
Po

dp
Perhaps another way to grasp the significance of this is using Pythagoras’ theorem
on a short piece of curve: in the limit as dx etc tend to zero,

ds® = dx* 4+ dy® + dz* .

dp .
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or or
r r(s
Q r(p+ op) (s) r(s+ ds)
dr ds dr
— == — =1
dp dp ds

Figure 3.1: Left: dr is a secant to the curve but, in the limit as §p — 0, becomes a tangent.
Right: if the parameter is arc length s, then |dr| = ds.

So if a curve is parameterized in terms of p

ds dx2+_dy2+_d22
dp  \dp dp  dp

As an example, suppose in our earlier example we had parameterized our helix as
r=acospl + asinp] + hpk

It would be easy just to say that p was arclength, but it would not be correct
because

ds dx?> dy? dz?
dp dp dp dp
= \/a2sin2p+32cos2p—l—h2:\/a2+h2

If p really was arclength, ds/dp = 1. So p/v/a’ + h? is arclength, not p.

3.2 Integration of a vector function

The integration of a vector function of a single scalar variable can be regarded
simply as the reverse of differentiation. In other words

P2 da(p)
d
/pl dp "

For example the integral of the acceleration vector of a point over an interval of
time is equal to the change in the velocity vector during the same time interval.
However, many other, more interesting and useful, types of integral are possible,
especially when the vector is a function of more than one variable. This requires
the introduction of the concepts of scalar and vector fields. See later!




3.3. CURVES IN 3 DIMENSIONS 31

3.3 Curves in 3 dimensions

In the examples above, parameter p has been either arc length s or time t. It
doesn’t have to be, but these are the main two of interest. Later we shall look
at some important results when differentiating w.r.t. time, but now let use look
more closely at 3D curves defined in terms of arc length, s.

Take a piece of wire, and bend it into some arbitrary non-planar curve. This is a
space curve. We can specify a point on the wire by specifying r(s) as a function
of distance or arc length s along the wire.

3.3.1 The Frénet-Serret relationships

We are now going to introduce a local orthogonal coordinate frame for each point
s along the curve, ie one with its origin at r(s). To specify a coordinate frame we
need three mutually perpendicular directions, and these should be intrinsic to the
curve, not fixed in an external reference frame. The ideas were first suggested by
two French mathematicians, F-J. Frénet and J. A. Serret.

1. Tangent t

There is an obvious choice for the first direction at the point r(s), namely the
unit tangent t. We already know that

dr(s)

it =
ds

2. Principal Normal i

Recall that earlier we proved that if a was a vector of constant magnitude
that varies in direction over time then da/dt was perpendicular to it. Because

t has constant magnitude but varies over s, dt/ds must be perpendicular to

t.

Hence the principal normal A is
dt )
— = kh: where k >0 .
ds

K is the curvature, and k = 0 for a straight line. The plane containing t and
n is called the osculating plane.

3. The Binormal b
The local coordinate frame is completed by defining the binormal

b(s) =&(s) x (s) .
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Sinceb-t=0,
b

. . dt db . .
from which
LIPS
ds

where T Is the torsion, and the negative sign is a matter of convention.
Differentiating i - £ = 0 and A - b = 0, we find

% = —k(s)E(s) + T(s)b(s).

The Frénet-Serret relationships:
dt/ds = kh
di/ds = —k(s)E(s)+ 7(s)b(s)
db/ds = —7(s)i(s)

& Example
Q Derive k(s) and 7(s) for the helix

r(s) = acos <%)7+asin (%)j+h<%) k: B =+va’+h

and comment on their values.

A We found the unit tangent earlier as

Differentiation gives

. dt a s a . (s
/m:%:[—ﬁcos<5), —ﬁsm(E), O]
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Curvature Is always positive, so

i e[ ()

So the curvature is constant, and the normal is parallel to the xy-plane.

Now use
o-tea-| s e ofo |- [n(3). ~3ee(3). 3

and differentiate b to find an expression for the torsion

db [ h s h . (s —h,
E:[ﬁcos (E>, Esm <E), O]:ﬁn

so the torsion is
B h
N

again a constant.

T

3.4 Radial and tangential components in plane polars

In plane polar coordinates, the radius vector
of any point P is given by

r = rcos@i+ rsingj
= ré, &
where we have introduced the unit radial vec- é,

tor

€ = cosfl+sin6] .

-
P

-
D

The other “natural” (we'll see why in a later
lecture) unit vector in plane polars is orthog- -
onal to &, and Is

€y = —sin61+ cosb)

sothat é,-&, =¢€3-é& =1 and &, - &5 = 0.
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Now suppose P is moving so that r is a function of time t. Its velocity is

= d(ré) = dré + rdér
Cdts T dt dt
d de
= d—;ér + rﬁ(—sinm—l—cost)
ara 1 %%
dt dt °
= radial 4 tangential

r

The radial and tangential components of velocity of P are therefore dr/dt and
rdf/dt, respectively.

Differentiating a second time gives the acceleration of P
d?r drdf, drdf d?6 dode

—&, + ——€ + ——€ +r——€& —r——=¢
e Tt ar T gt ars T ae® T Tar gt

| [(dey’ o o [pdrdo . %],
~ g "\dr) | T dtdt " qe2|
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3.5 Rotating systems

Consider a body which is rotating with constant angular velocity w about some
axis passing through the origin. Assume the origin is fixed, and that we are sitting
in a fixed coordinate system Oxyz.

If p is a vector of constant magnitude and constant direction in the rotating system,
then its representation r in the fixed system must be a function of t.

r(t) = R(t)p

At any instant as observed in the fixed system

dr :

— = Rp + R¢

Jt p p

but the second term is zero since we assumed p to be constant so we have
dr

— =RR'
dt f

Note that:

dr/dt will have fixed magnitude;

dr/dt will always be perpendicular to the axis of rotation;

dr/dt will vary in direction within those constraints;

r(t) will move in a plane in the fixed system.

W

\ "\

</

€
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Now let's consider the term RR'. First, note that RR' = | (the identity), so
differentiating both sides yields

RRT +RR' = 0
RRT = —RR

T

Thus RR" is anti-symmetric:

0 —z vy
RRT=|2z 0 —x
-y x 0

Now you can verify for yourself that application of a matrix of this form to an
arbitrary vector has precisely the same effect as the cross product operator, wx,
where w = [xyz]". Loh-and-behold, we then we have

Fr—w Xr

matching the equation at the end of lecture 2, v = w xr, as we would hope /expect.

3.5.1 Rotation: Part 2

Now suppose p is the position vector of a point P which moves in the rotating
frame. There will be two contributions to motion with respect to the fixed frame,
one due to its motion within the rotating frame, and one due to the rotation itself.
So, returning to the equations we derived earlier:

r(t) = R(t)p(1)

and the instantaenous differential with respect to time:

d . )
E%:Rp+Rp:RW}+Rp

Now p is not constant, so its differential is not zero; hence rewriting this last
equations we have that

The instantaneous velocity of P in the fixed frame is

dr
— = R¢
at pt+wXr

The second term of course, is the contribution from the rotating frame which we
saw previously. The first is the linear velocity measured in the rotating frame p,
referred to the fixed frame (via the rotation matrix R which aligns the two frames)
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3.5.2 Rotation 3: Instantaneous acceleration

Our previous result is a general one relating the time derivatives of any vector in
rotating and non-rotating frames. Let us now consider the second differential:

F=wxr+wxi+Rp+Rp

We shall assume that the angular acceleration is zero, which kills off the first term,
and so now, substituting for r we have

P = wx (wxr+Rp)+Rp+Rp

= wx (Wxr)+wxRp+Rp+Rp
wx (wxr)+wxRp+R(R'R)p+Rp
= wx (wxr)+2wx (Rp)+Rp

The instantaneous acceleration is therefore

¥ = Ro+ 2w x (Rp) + wx (wxr)

e The first term Is the acceleration of the point P in the rotating frame mea-
sured in the rotating frame, but referred to the fixed frame by the rotation
R

e The last term is the centripetal acceleration to due to the rotation. (Yes! Its
magnitude is w?r and its direction is that of —r. Check it out.)
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Figure 3.2: Coriolis example.

e The middle term is an extra term which arises because of the velocity of P
in the rotating frame. It is known as the Coriolis acceleration, named after
the French engineer who first identified it.

Because of the rotation of the earth, the Coriolis acceleration is of great im-
portance in meteorology and accounts for the occurrence of high pressure anti-
cyclones and low pressure cyclones in the northern hemisphere, in which the Coriolis
acceleration is produced by a pressure gradient. It is also a very important compo-
nent of the acceleration (hence the force exerted) by a rapidly moving robot arm,
whose links whirl rapidly about rotary joints.

& Example

Q Find the instantaneous acceleration of a projectile fired along a line of longi-
tude (with angular velocity of 4y constant relative to the sphere) if the sphere
Is rotating with angular velocity w.

A Consider a coordinate frame defined by mutually orthogonal unit vectors,

2, and @, as shown in Fig. 3.2. We shall assume, without loss of generality,
that the fixed and rotating frames are instantaneously aligned at the moment
shown in the diagram, so that R =1, the identity, and hence r = p.

In the rotating frame

p=9xp  and p=9XxXp=9x(yxp)

So the in the fixed reference frame, because these two frames are instanta-
neously aligned

F = yx(yxp) + 2wx(yxp) + wx(wxr).

The first term is the centripetal acceleration due to the projectile moving
around the sphere — which it does because of the gravitational force. The
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last term is the centripetal acceleration resulting from the rotation of the
sphere. The middle term is the Coriolis acceleration.

Using Fig. 3.2, at some instant t
r(t) = p(t) = rcos(yt)m + rsin(yt)i

and
v =4

Then
Yx(yxp)=O-pY-YP=-7p=—77r,

Check the direction — the negative sign means it points towards the centre
of the sphere, which is as expected.

Likewise the last term can be obtained as
w X (w x r) = —w?rsin(yt)h

Note that it is perpendicular to the axis of rotation m, and because of the
minus sign, directed towards the axis)

The Coriolis term is derived as:

2wx p = 2w X (¢ xp)

0 v 0
= 2 |w| X 0| x [rcosvyt

0 0 rsin<yt
= 2w’yrc05fyt2

Instead of a projectile, now consider a rocket on rails which stretch north
from the equator. As the rocket travels north it experiences the Coriolis force
(exerted by the rails):

2 ¥ w Rcosvyt l
+ve -ve +Hve +ve

Hence the coriolis force is in the direction opposed to £ (i.e. in the opposite
direction to the earth’s rotation). In the absence of the rails (or atmosphere)
the rocket's tangetial speed (relative to the surface of the earth) is greater
than the speed of the surface of the earth underneath it (since the radius
of successive lines of latitude decreases) so it would (to an observer on the
earth) appear to deflect to the east. The rails provide a coriolis force keeping
It on the same meridian.

Revised Oct 2008
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Rocket’s velocity in direction of meridian
Tangential velocity of earth’s surface

Tangential component of velocity
(NB instantaneously common to earth’s surface and rocket)

Figure 3.3: Rocket example
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Figure 3.4: Coriolis effect giving rise to weather systems

41
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