
1
2A1 Vector Algebra and Calculus

8 Le
tures MT 2008 Ian ReidRev O
t 2008 ian.reid�eng.ox.a
.ukCourse Page www.robots.ox.a
.uk/�ian/Tea
hing/Ve
tors
OverviewMany of you will know a good deal already about Ve
tor Algebra | how to add and subtra
tve
tors, how to take s
alar and ve
tor produ
ts of ve
tors, and something of how to des
ribegeometri
 and physi
al entities using ve
tors. This 
ourse will remind you about that good stu�,but goes on to introdu
e you to the subje
t of Ve
tor Cal
ulus whi
h, like it says on the 
an,
ombines ve
tor algebra with 
al
ulus.To give you a feeling for the issues, suppose you were interested in the temperature T of water ina river. Temperature T is a s
alar, and will 
ertainly be a fun
tion of a position ve
tor x = (x; y ; z)and may also be a fun
tion of time t: T = T (x; t). It is a s
alar �eld.Suppose now that you kept y; z; t 
onstant, and asked what is the 
hange in temperature as youmove a small amount in x? No doubt you'd be interested in 
al
ulating �T=�x . Similarly if youkept the point �xed, and asked how does the temperature 
hange of time, you would be interestedin �T=�t.But why restri
t ourselves to movements up-down, left-right, et
? Suppose you wanted to knowwhat the 
hange in temperature along an arbitrary dire
tion. You would be interested in�T�x ;but how would you 
al
ulate that? Is �T=�x a ve
tor or a s
alar?Now let's dive into the 
ow. At ea
h point x in the stream, at ea
h time t, there will be a streamvelo
ity v(x; t). The lo
al stream velo
ity 
an be viewed dire
tly using modern te
hniques su
has laser Doppler anemometry, or traditional te
hniques su
h a throwing twigs in. The point nowis that v is a fun
tion that has the same four input variables as temperature did, but its outputresult is a ve
tor. We may be interested in pla
es x where the stream suddenly a

elerates, orvorti
es where the stream 
urls around dangerously. That is, we will be interested in �nding thea

eleration of the stream, the gradient of its velo
ity. We may be interested in the magnitude ofthe a

eleration (a s
alar). Equally, we may be interested in the a

eleration as a ve
tor, so thatwe 
an apply Newton's law and �gure out the for
e.This is the stu� of ve
tor 
al
ulus.



2Grey bookVe
tor algebra: s
alar and ve
tor produ
ts; s
alar and ve
tor triple produ
ts; geometri
 appli-
ations. Di�erentiation of a ve
tor fun
tion; s
alar and ve
tor �elds. Gradient, divergen
e and
url - de�nitions and physi
al interpretations; produ
t formulae; 
urvilinear 
oordinates. Gauss'and Stokes' theorems and evaluation of integrals over lines, surfa
es and volumes. Derivationof 
ontinuity equations and Lapla
e's equation in Cartesian, 
ylindri
al and spheri
al 
oordinatesystems.Course Content� Introdu
tion and revision of elementary 
on
epts, s
alar produ
t, ve
tor produ
t.� Triple produ
ts, multiple produ
ts, appli
ations to geometry.� Di�erentiation and integration of ve
tor fun
tions of a dingle variable.� Curvilinear 
oordinate systems. Line, surfa
e and volume integrals.� Ve
tor operators.� Ve
tor Identities.� Gauss' and Stokes' Theorems.� Engineering Appli
ations.Learning Out
omesYou should be 
omfortable with expressing systems (espe
ially those in 2 and 3 dimensions) usingve
tor quantities and manipulating these ve
tors without ne
essarily going ba
k to some underlying
oordinates.You should have a sound grasp of the 
on
ept of a ve
tor �eld, and be able to link this idea todes
riptions various physi
al phenomena.You should have a good intuition of the physi
al meaning of the various ve
tor 
al
ulus operatorsand the important related theorems. You should be able to interpret the formulae des
ribingphysi
al systems in terms of this intuition.Referen
esAlthough these notes 
over the material you need to know you should, wider reading is essen-tial. Di�erent explanations and di�erent diagrams in books will give you the perspe
tive to glueeverything together, and further worked examples give you the 
on�den
e to ta
kle the tute sheets.� J Heading, "Mathemati
al Methods in S
ien
e and Engineering", 2nd ed., Ch.13, (Arnold).� G Stephenson, "Mathemati
al Methods for S
ien
e Students", 2nd ed., Ch.19, (Longman).� E Kreyszig, "Advan
ed Engineering Mathemati
s", 6th ed., Ch.6, (Wiley).� K F Riley, M. P. Hobson and S. J. Ben
e, "Mathemati
al Methods for the Physi
s andEngineering" Chs.6, 8 and 9, (CUP).� A J M Spen
er, et. al. "Engineering Mathemati
s", Vol.1, Ch.6, (Van Nostrand Reinhold).� H M S
hey, \Div, Grad, Curl and all that", Norton
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Le
ture 1Ve
tor Algebra
1.1 Ve
torsMany physi
al quantities, su
h a mass, time, temperature are fully spe
i�ed by onenumber or magnitude. They are s
alars. But other quantities require more thanone number to des
ribe them. They are ve
tors. You have already met ve
tors intheir more pure mathemati
al sense in your 
ourse on linear algebra (matri
es andve
tors), but often in the physi
al world, these numbers spe
ify a magnitude anda dire
tion | a total of two numbers in a 2D planar world, and three numbers in3D.Obvious examples are velo
ity, a

eleration, ele
tri
 �eld, and for
e. Below, prob-ably all our examples will be of these \magnitude and dire
tion" ve
tors, but weshould not forget that many of the results extend to the wider realm of ve
tors.There are three slightly di�erent types of ve
tors:� Free ve
tors: In many situtations only the magnitude and dire
tion of ave
tor are important, and we 
an translate them at will (with 3 degrees offreedom for a ve
tor in 3-dimensions).� Sliding ve
tors: In me
hani
s the line of a
tion of a for
e is often importantfor deriving moments. The for
e ve
tor 
an slide with 1 degree of freedom.� Bound or position ve
tors: When des
ribing lines, 
urves et
 in spa
e, it isobviously important that the origin and head of the ve
tor are not translatedabout arbitrarily. The origins of position ve
tors all 
oin
ide at an overallorigin O.One the advantages of using ve
tors is that it frees mu
h of the analysis fromthe restri
tion of arbitrarily imposed 
oordinate frames. For example, if two freeve
tors are equal we need only say that their magnitudes and dire
tions are equal,and that 
an be done with a drawing that is independent of any 
oordinate system.However, 
oordinate systems are ultimately useful, so it useful to introdu
e theidea of ve
tor 
omponents. Try to spot things in the notes that are independent5
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r r2 3
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Free vectors Sliding vectors Position vectorsFigure 1.1:of 
oordinate system.1.1.1 Ve
tor elements or 
omponents in a 
oordinate frameA method of representing a ve
tor is to list the values of its elements or 
omponentsin a suÆ
ient number of di�erent (preferably mutually perpendi
ular) dire
tions,depending on the dimension of the ve
tor. These spe
i�ed dire
tions de�ne a
oordinate frame. In this 
ourse we will mostly restri
t our attention to the3-dimensional Cartesian 
oordinate frame O(x; y ; z). When we 
ome to examineve
tor �elds later in the 
ourse you will use 
urvilinear 
oordinate frames, espe
ially3D spheri
al and 
ylindri
al polars, and 2D plane polar, 
oordinate systems.
x2
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Figure 1.2: Ve
tor 
omponents.In a Cartesian 
oordinate frame we writea = [a1; a2; a3℄ = [x2 � x1; y2 � y1; z2 � z1℄ or a = [ax ; ay ; az ℄as sket
hed in Figure 1.2. De�ning {̂{{; |̂||; k̂kk as unit ve
tors in the x; y ; z dire
tions{̂{{ = [1; 0; 0℄ |̂|| = [0; 1; 0℄ k̂kk = [0; 0; 1℄
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(a) (b)Figure 1.3: (a) Addition of two ve
tors is 
ommutative. Note that the 
oordinate frame is irrele-vant. (b) subtra
tion of ve
tors; (
) Addition of three ve
tors is asso
iative.we 
ould also writea = a1̂{{{ + a2̂||| + a3k̂kk :Although we will be most often dealing with ve
tors in 3-spa
e, you should notthink that general ve
tors are limited to three 
omponents.In these notes we will use bold font to represent ve
tors a; !!!, In your written work,underline the ve
tor symbol a; ! and be meti
ulous about doing so. We shall usethe hat to denote a unit ve
tor.1.1.2 Ve
tor equalityTwo free ve
tors are said to be equal i� their lengths and dire
tions are the same.If we use a 
oordinate frame, we might say that 
orresponding 
omponents ofthe two ve
tors must be equal. This de�nition of equality will also do for positionve
tors, but for sliding ve
tors we must add that the line of a
tion must be identi
altoo.1.1.3 Ve
tor magnitude and unit ve
torsProvided we use an orthogonal 
oordinate system, the magnitude of a 3-ve
tor isa = jaj = √a21 + a22 + a23To �nd the unit ve
tor in the dire
tion of a, simply divide by its magnitudeâ = ajaj :1.1.4 Ve
tor Addition and subtra
tionVe
tors are added/subtra
ted by adding/subtra
ting 
orresponding 
omponents,exa
tly as for matri
es. Thusa+ b = [a1 + b1; a2 + b2; a3 + b3℄



8 LECTURE 1. VECTOR ALGEBRAAddition follows the parallelogram 
onstru
tion of Figure 1.3(a). Subtra
tion (a�b) is de�ned as the addition (a+ (�b)). It is useful to remember that the ve
tora� b goes from b to a.The following results follow immediately from the above de�nition of ve
tor addi-tion:(a) a + b = b + a (
ommutativity) (Figure 1.3(a))(b) (a + b) + 
 = a + (b + 
) = a + b + 
 (asso
iativity) (Figure 1.3(b))(
) a + 0 = 0 + a = a, where the zero ve
tor is 0 = [0; 0; 0℄.(d) a + (-a) = 01.1.5 Multipli
ation of a ve
tor by a s
alar. (NOT the s
alar produ
t!)Just as for matri
es, multipli
ation of a ve
tor a by a s
alar 
 is de�ned as multi-pli
ation of ea
h 
omponent by 
 , so that
a = [
a1; 
a2; 
a3℄:It follows that:j
aj = √(
a1)2 + (
a2)2 + (
a3)2 = j
 jjaj:The dire
tion of the ve
tor will reverse if 
 is negative, but otherwise is una�e
ted.(By the way, a ve
tor where the sign is un
ertain is 
alled a dire
tor.)| ExampleQ. Coulomb's law states that the ele
trostati
 for
e on 
harged parti
le Q dueto another 
harged parti
le q1 isF = KQq1r 2 êrwhere r is the ve
tor from q1 to Q and r̂ is the unit ve
tor in that samedire
tion. (Note that the rule \unlike 
harges attra
t, like 
harges repel" isbuilt into this formula.) The for
e between two parti
les is not modi�ed bythe presen
e of other 
harged parti
les.Hen
e write down an expression for the for
e on Q at R due to N 
harges qiat ri .A. The ve
tor from qi to Q is R � ri . The unit ve
tor in that dire
tion is(R� ri)=jR� ri j, so the resultant for
e isF(R) = N
∑i=1 K QqijR� ri j3(R� ri) :Note that F(R) is a ve
tor �eld.



1.2. SCALAR, DOT, OR INNER PRODUCT 91.2 S
alar, dot, or inner produ
tThis is a produ
t of two ve
tors results in a s
alar quantity and is de�ned as followsfor 3-
omponent ve
tors:a � b = a1b1 + a2b2 + a3b3 :Note thata � a = a21 + a22 + a23 = jaj2 = a2:The following laws of multipli
ation follow immediately from the de�nition:(a) a � b = b � a (
ommutativity)(b) a � (b+ 
) = a � b+ a � 
 (distributivity with respect to vector addition)(
) (�a) �b = �(a �b) = a � (�b) scalar multiple of a scalar product of two vectors1.2.1 Geometri
al interpretation of s
alar produ
t

θ

b

B

a−b

a
AO

θ

b

direction of a
Projection of b onto

a

(a) (b)Figure 1.4: (a) Cosine rule. (b) Proje
tion of b onto a.Consider the square magnitude of the ve
tor a � b. By the rules of the s
alarprodu
t, this isja� bj2 = (a� b) � (a� b)= a � a+ b � b� 2(a � b)= a2 + b2 � 2(a � b)



10 LECTURE 1. VECTOR ALGEBRABut, by the 
osine rule for the triangle OAB (Figure 1.4a), the length AB2 is givenby ja� bj2 = a2 + b2 � 2ab 
os �where � is the angle between the two ve
tors. It follows thata � b = ab 
os �;whi
h is independent of the 
o-ordinate system used, and that ja � bj � ab. Con-versely, the 
osine of the angle between ve
tors a and b is given by 
os � = a�b=ab.1.2.2 Proje
tion of one ve
tor onto the otherAnother way of des
ribing the s
alar produ
t is as the produ
t of the magnitudeof one ve
tor and the 
omponent of the other in the dire
tion of the �rst, sin
eb 
os � is the 
omponent of b in the dire
tion of a and vi
e versa (Figure 1.4b).Proje
tion is parti
ularly useful when the se
ond ve
tor is a unit ve
tor | a � {̂{{ isthe 
omponent of a in the dire
tion of {̂{{.Noti
e that if we wanted the ve
tor 
omponent of b in the dire
tion of a wewould write(b � â)â = (b � a)aa2 :In the parti
ular 
ase a � b = 0, the angle between the two ve
tors is a right angleand the ve
tors are said to be mutually orthogonal or perpendi
ular | neitherve
tor has any 
omponent in the dire
tion of the other.An orthonormal 
oordinate system is 
hara
terised by {̂{{ � {̂{{ = |̂|| � |̂|| = k̂kk � k̂kk = 1; and{̂{{ � |̂|| = |̂|| � k̂kk = k̂kk � {̂{{ = 0.1.2.3 A s
alar produ
t is an \inner produ
t"So far we have been writing our ve
tors as row ve
tors a = [a1; a2; a3℄. This is
onvenient be
ause it takes up less room than writing 
olumn ve
torsa = 



a1a2a3 

 :In matrix algebra ve
tors are more usually de�ned as 
olumn ve
tors, as in




M11 M12 M13M21 M22 M23M31 M32 M33 







a1a2a3 

 = 



v1v2v3 





1.2. SCALAR, DOT, OR INNER PRODUCT 11and a row ve
tor is written as a>. Now for most of our work we 
an be quiterelaxed about this minor di�eren
e, but here let us be fussy.Why? Simply to point out at that the s
alar produ
t is also the inner produ
tmore 
ommonly used in linear algebra. De�ned as a>b when ve
tors are 
olumnve
tors asa � b = a>b = [a1; a2; a3℄ b1b2b3 

 = a1b1 + a2b2 + a3b3 :Here we treat a n-dimensional 
olumn ve
tor as an n � 1 matrix.(Remember that if you multiply two matri
es Mm�nNn�p then M must have thesame 
olumns as N has rows (here denoted by n) and the result has size (rows �
olumns) of m � p. So for n-dimensional 
olumn ve
tors a and b, a> is a 1 � nmatrix and b is n � 1 matrix, so the produ
t a>b is a 1 � 1 matrix, whi
h is (atlast!) a s
alar.)| ExamplesQ1. A for
e F is applied to an obje
t as it moves by a small amount Ær. Whatwork is done on the obje
t by the for
e?A1. The work done is equal to the 
omponent of for
e in the dire
tion of the dis-pla
ement multiplied by the displa
ement itself. This is just a s
alar produ
t:ÆW = F � Ær :Q2. A 
ube has four diagonals, 
onne
ting opposite verti
es. What is the anglebetween an adja
ent pair?A2. Well, you 
ould plod through usingPythagoras' theorem to �nd the lengthof the diagonal from 
ube vertex to 
ube
entre, and perhaps you should to 
he
kthe following answer.The dire
tions of the diagonals are[�1;�1;�1℄. The ones shown in the�gure are [1; 1; 1℄ and [�1; 1; 1℄. Theangle is thus� = 
os�1 [1; 1; 1℄ � [�1; 1; 1℄p12 + 12 + 12p�12 + 12 + 12 = 
os�1 13
k

i

j

[−1,1,1] [1,1,1]



12 LECTURE 1. VECTOR ALGEBRAQ3. A pinball moving in a plane with velo
ity s boun
es (in a purely elasti
 impa
t)from a ba�e whose endpoints are p and q. What is the velo
ity ve
tor afterthe boun
e?A3. Best to refer everything to a 
oordi-nate frame with prin
ipal dire
tionsû along and v̂ perpendi
ular to theba�e:̂u = q� pjq� pjv̂ = u? = [�uy ; ux ℄Thus the velo
ity before impa
t issbefore = (s:û)û+ (s:v̂)v̂After the impa
t, the 
omponent ofvelo
ity in the dire
tion of the baf-
e is un
hanged and the 
omponentnormal to the ba�e is negated:safter = (s:û)û� (s:v̂)v̂

^

^

p

v

u

q

s

1.2.4 Dire
tion 
osines use proje
tionDire
tion 
osines are 
ommonly used in the �eld of 
rystallography. The quantities� = a � {̂{{a ; � = a � |̂||a ; � = a � k̂kkarepresent the 
osines of the angles whi
h the ve
tor a makes with the 
o-ordinateve
tors {̂{{ ,̂|||, k̂kk and are known as the dire
tion 
osines of the ve
tor a. Sin
ea � {̂{{ = a1 et
, it follows immediately that a = a(�̂{{{ +�|̂|| + �k̂kk) and �2+�2+ �2 =1a2 [a21 + a22 + a23℄ = 11.3 Ve
tor or 
ross produ
tThe ve
tor produ
t of two ve
tors a and b is denoted by a � b and is de�ned asfollowsa� b = (a2b3 � a3b2)̂{{{ + (a3b1 � a1b3)̂||| + (a1b2 � a2b1)k̂kk:
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i

k

j

Figure 1.5: The dire
tion 
osines are 
osines of the angles shown.It is MUCH more easily remembered in terms of the pseudo-determinanta� b = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kka1 a2 a3b1 b2 b3 ∣

∣

∣

∣

∣

∣where the top row 
onsists of the ve
tors {̂{{, |̂||, k̂kk rather than s
alars.Sin
e a determinant with two equal rows has value zero, it follows that a� a = 0.It is also easily veri�ed that (a�b) �a = (a�b) �b = 0, so that a�b is orthogonal(perpendi
ular) to both a and b, as shown in Figure 1.6.Note that {̂{{ � |̂|| = k̂kk , |̂|| � k̂kk = {̂{{, and k̂kk � {̂{{ = |̂||.The magnitude of the ve
tor produ
t 
an be obtained by showing thatja� bj2 + (a � b)2 = a2b2from whi
h it follows thatja� bj = ab sin � ;whi
h is again independent of the 
o-ordinate system used. This is left as anexer
ise.Unlike the s
alar produ
t, the ve
tor produ
t does not satisfy 
ommutativity butis in fa
t anti-
ommutative, in that a� b = �b� a. Moreover the ve
tor produ
tdoes not satisfy the asso
iative law of multipli
ation either sin
e, as we shall seelater a� (b� 
) 6= (a� b)� 
.Sin
e the ve
tor produ
t is known to be orthogonal to both the ve
tors whi
h formthe produ
t, it merely remains to spe
ify its sense with respe
t to these ve
tors.Assuming that the 
o-ordinate ve
tors form a right-handed set in the order {̂{{ ,̂|||, k̂kkit 
an be seen that the sense of the the ve
tor produ
t is also right handed, i.e



14 LECTURE 1. VECTOR ALGEBRAthe ve
tor produ
t has the same sense as the 
o-ordinate system used.{̂{{ � |̂|| = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk1 0 00 1 0 ∣

∣

∣

∣

∣

∣

= k̂kk :In pra
ti
e, �gure out the dire
tion from a right-handed s
rew twisted from the�rst to se
ond ve
tor as shown in Figure 1.6(a).
in right−hand screw sense

Plane of vectors a and b

a x b

b

a
θ

xa b b

bsin θ

aFigure 1.6: (a)The ve
tor produ
t is orthogonal to both a and b. Twist from �rst to se
ond andmove in the dire
tion of a right-handed s
rew. (b) Area of parallelogram is ab sin �.1.3.1 Geometri
al interpretation of ve
tor produ
tThe magnitude of the ve
tor produ
t (a� b) is equal to the area of the parallelo-gram whose sides are parallel to, and have lengths equal to the magnitudes of, theve
tors a and b (Figure 1.6b). Its dire
tion is perpendi
ular to the parallelogram.| ExampleQ. g is ve
tor from A [1,2,3℄ to B [3,4,5℄.^̀̀̀ is the unit ve
tor in the dire
tion from O to A.Find m̂, a UNIT ve
tor along g� ^̀̀̀Verify that m̂ is is perpendi
ular to ^̀̀̀.Find n̂, the third member of a right-handed 
oordinate set ^̀̀̀; m̂; n̂.A. g = [3; 4; 5℄� [1; 2; 3℄ = [2; 2; 2℄^̀̀̀ = 1p14[1; 2; 3℄g� ^̀̀̀= 1p14 ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk2 2 21 2 3 ∣

∣

∣

∣

∣

∣

= 1p14[2;�4; 2℄
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êm = � 1p24[2;�4; 2℄and n̂ = ^̀̀̀� m̂

Revised O
t 2008
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Le
ture 2Multiple Produ
ts. Geometry using Ve
tors
2.1 Triple and multiple produ
tsUsing mixtures of the pairwise s
alar produ
t and ve
tor produ
t, it is possible toderive \triple produ
ts" between three ve
tors, and indeed n-produ
ts between nve
tors.There is nothing about these that you 
annot work out from the de�nitions of pair-wise s
alar and ve
tor produ
ts already given, but some have interesting geometri
interpretations, so it is worth looking at these.2.1.1 S
alar triple produ
tThis is the s
alar produ
t of a ve
tor produ
t and a third ve
tor, i.e. a � (b � 
).Using the pseudo-determinant expression for the ve
tor produ
t, we see that thes
alar triple produ
t 
an be represented as the true determinant

a � (b� 
) = ∣

∣

∣

∣

∣

∣

a1 a2 a3b1 b2 b3
1 
2 
3 ∣

∣

∣

∣

∣

∣You will re
all that if you swap a pair of rows of a determinant, its sign 
hanges;hen
e if you swap two pairs, its sign stays the same.
∣

∣

∣

∣

∣

∣

a1 a2 a3b1 b2 b3
1 
2 
3 ∣

∣

∣

∣

∣

∣

1st SWAP ∣

∣

∣

∣

∣

∣


1 
2 
3b1 b2 b3a1 a2 a3 ∣

∣

∣

∣

∣

∣

2nd SWAP ∣

∣

∣

∣

∣

∣


1 
2 
3a1 a2 a3b1 b2 b3 ∣

∣

∣

∣

∣

∣+ � +This says that(i) a � (b� 
) = b � (
� a) = 
 � (a� b) (Called 
y
li
 permutation.)17



18 LECTURE 2. MULTIPLE PRODUCTS. GEOMETRY USING VECTORS(ii) a � (b� 
) = �b � (a� 
) and so on. (Called anti-
y
li
 permutation.)(iii) The fa
t that a � (b � 
) = (a � b) � 
 allows the s
alar triple produ
t to bewritten as [a;b; 
℄. This notation is not very helpful, and we will try to avoidit below.2.1.2 Geometri
al interpretation of s
alar triple produ
tThe s
alar triple produ
t gives the volume of the parallelopiped whose sides arerepresented by the ve
tors a, b, and 
.We saw earlier that the ve
tor produ
t (a � b) has magnitude equal to the areaof the base, and dire
tion perpendi
ular to the base. The 
omponent of 
 in thisdire
tion is equal to the height of the parallelopiped shown in Figure 2.1(a).
β

βcosc

b

c

a

b
c

a

n

Figure 2.1: (a) S
alar triple produ
t equals volume of parallelopiped. (b) Coplanarity yields zeros
alar triple produ
t.2.1.3 Linearly dependent ve
torsIf the s
alar triple produ
t of three ve
tors is zeroa � (b� 
) = 0then the ve
tors are linearly dependent. That is, one 
an be expressed as a linear
ombination of the others. For example,a = �b+ �
where � and � are s
alar 
oeÆ
ients.You 
an see this immediately in two ways:� The determinant would have one row that was a linear 
ombination of theothers. You'll remember that by doing row operations, you 
ould rea
h a rowof zeros, and so the determinant is zero.� The parallelopiped would have zero volume if squashed 
at. In this 
ase allthree ve
tors lie in a plane, and so any one is a linear 
ombination of theother two. (Figure 2.1b.)



2.1. TRIPLE AND MULTIPLE PRODUCTS 192.1.4 Ve
tor triple produ
tThis is de�ned as the ve
tor produ
t of a ve
tor with a ve
tor produ
t, a�(b�
).Now, the ve
tor triple produ
t a� (b� 
) must be perpendi
ular to (b� 
), whi
hin turn is perpendi
ular to both b and 
. Thus a� (b� 
) 
an have no 
omponentperpendi
ular to b and 
, and hen
e must be 
oplanar with them. It follows thatthe ve
tor triple produ
t must be expressible as a linear 
ombination of b and 
:a� (b� 
) = �b+ �
 :The values of the 
oeÆ
ients 
an be obtained by multiplying out in 
omponentform. Only the �rst 
omponent need be evaluated, the others then being obtainedby symmetry. That is(a� (b� 
))1 = a2(b� 
)3 � a3(b� 
)2= a2(b1
2 � b2
1) + a3(b1
3 � b3
1)= (a2
2 + a3
3)b1 � (a2b2 + a3b3)
1= (a1
1 + a2
2 + a3
3)b1 � (a1b1 + a2b2 + a3b3)
1= (a � 
)b1 � (a � b)
1The equivalents must be true for the 2nd and 3rd 
omponents, so we arrive at theidentitya� (b� 
) = (a � 
)b� (a � b)
 :

xxa c )( b 

b

c

a
b x c

In arbitrary direction

Figure 2.2: Ve
tor triple produ
t.2.1.5 Proje
tion using ve
tor triple produ
tAn example of the appli
ation of this formula is as follows. Suppose v is a ve
torand we want its proje
tion into the xy -plane. The 
omponent of v in the zdire
tion is v � k̂kk , so the proje
tion we seek is v� (v � k̂kk)k̂kk . Writing k̂kk  a, v b,



20 LECTURE 2. MULTIPLE PRODUCTS. GEOMETRY USING VECTORSk̂kk  
,a� (b� 
) = (a � 
)b� (a � b)
# # #k̂kk � (v � k̂kk) = (k̂kk � k̂kk)v � (k̂kk � v)k̂kk= v � (v � k̂kk)k̂kkSo v � (v � k̂kk)k̂kk = k̂kk � (v � k̂kk).(Hot stu�! But the expression v � (v � k̂kk)k̂kk is mu
h easier to understand, and
heaper to 
ompute!)2.1.6 Other repeated produ
tsMany 
ombinations of ve
tor and s
alar produ
ts are possible, but we 
onsider onlyone more, namely the ve
tor quadruple produ
t (a � b) � (
 � d). By regardinga� b as a single ve
tor, we see that this ve
tor must be representable as a linear
ombination of 
 and d. On the other hand, regarding 
�d as a single ve
tor, wesee that it must also be a linear 
ombination of a and b. This provides a meansof expressing one of the ve
tors, say d, as linear 
ombination of the other three,as follows:(a� b)� (
� d) = [(a� b) � d℄
� [(a� b) � 
℄d= [(
� d) � a℄b� [(
� d) � b℄aHen
e[(a� b) � 
℄d = [(b� 
) � d℄ a+ [(
� a) � d℄b+ [(a� b) � d℄ 
or d = [(b� 
) � d℄ a+ [(
� a) � d℄b+ [(a� b) � d℄ 
[(a� b) � 
℄ = �a+ �b+ 

 :This is not something to remember o� by heart, but it is worth remembering thatthe proje
tion of a ve
tor on any arbitrary basis set is unique.| ExampleQ1 Use the quadruple ve
tor produ
t to express the ve
tor d = [3; 2; 1℄ in termsof the ve
tors a = [1; 2; 3℄, b = [2; 3; 1℄ and 
 = [3; 1; 2℄.A1 Grinding away at the determinants, we �nd[(a�b) �
℄ = �18; [(b�
) �d℄ = 6; [(
�a) �d℄ = �12; [(a�b) �d℄ = �12So, d = (�a+ 2b+ 2
)=3.
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b

c

a
d

Figure 2.3: The proje
tion of a (3-)ve
tor onto a set of (3) basis ve
tors is unique. Ie in d =�a+ �b+ 

, the set f�; �; 
g is unique.2.2 Geometry using ve
tors: lines, planes2.2.1 The equation of a lineThe equation of the line passing through the point whose position ve
tor is a andlying in the dire
tion of ve
tor b isr = a+ �bwhere � is a s
alar parameter. If you make b a unit ve
tor, r = a+ �b̂ then � willrepresent metri
 length.For a line de�ned by two points a1 and a2r = a1 + �(a2 � a1)or for the unit versionr = a1 + �(a2 � a1)ja2 � a1j
a

b

r

λ
Point r traces
out line.

^

Figure 2.4: Equation of a line. With b̂ a unit ve
tor, � is in the length units established by thede�nition of a.



22 LECTURE 2. MULTIPLE PRODUCTS. GEOMETRY USING VECTORS2.2.2 The shortest distan
e from a point to a lineReferring to Figure 2.5(a) the ve
tor p from 
 to any point on the line is p =a+ �b̂� 
 = (a� 
) + �b̂ whi
h has length squared p2 = (a� 
)2 + �2 +2�(a�
) � b̂ : Rather than minimizing length, it is easier to minimize length-squared. Theminumum is found when d p2=d� = 0, ie when� = �(a� 
) � b̂ :So the minimum length ve
tor isp = (a� 
)� ((a� 
) � b̂)b̂:You might spot that is the 
omponent of (a�
) perpendi
ular to b̂ (as expe
ted!).Furthermore, using the result of Se
tion 2.1.5,p = b̂� [(a� 
)� b̂℄ :Be
ause b̂ is a unit ve
tor, and is orthogonal to [(a� 
)� b̂℄, the modulus of theve
tor 
an be written rather more simply as justpmin = j(a� 
)� b̂j :
a

b

r

λ

c

r-c

bλ

a

c

dµ

P

Q(a) (b)Figure 2.5: (a) Shortest distan
e point to line. (b) Shortest distan
e, line to line.2.2.3 The shortest distan
e between two straight linesIf the shortest distan
e between a point and a line is along the perpendi
ular, thenthe shortest distan
e between the two straight lines r = a + �b̂ and r = 
 + �d̂must be found as the length of the ve
tor whi
h is mutually perpendi
ular to thelines.The unit ve
tor along the mutual perpendi
ular isp̂ = (b̂� d̂)=jb̂� d̂j :(Yes, don't forget that b̂ � d̂ is NOT a unit ve
tor. b̂ and d̂ are not orthogonal,so there is a sin � lurking!)The minimum length is therefore the 
omponent of a� 
 in this dire
tionpmin = ∣

∣(a� 
) � (b̂� d̂)=jb̂� d̂j∣∣ :



2.2. GEOMETRY USING VECTORS: LINES, PLANES 23| ExampleQ Two long straight pipes are spe
i�ed using Cartesian 
o-ordinates as follows:Pipe A has diameter 0:8 and its axis passes through points (2; 5; 3) and(7; 10; 8).Pipe B has diameter 1:0 and its axis passes through the points (0; 6; 3) and(�12; 0; 9).Determine whether the pipes need to be realigned to avoid interse
tion.A Ea
h pipe axis is de�ned using two points. The ve
tor equation of the axisof pipe A isr = [2; 5; 3℄ + �0[5; 5; 5℄ = [2; 5; 3℄ + �[1; 1; 1℄=p3The equation of the axis of pipe B isr = [0; 6; 3℄ + �0[12; 6; 6℄ = [0; 6; 3℄ + �[�2;�1; 1℄=p6The perpendi
ular to the two axes has dire
tion[1; 1; 1℄� [�2;�1; 1℄ = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk1 1 1�2 �1 1 ∣

∣

∣

∣

∣

∣

= [2;�3; 1℄ = pThe length of the mutual perpendi
ular is(a� 
) � [2;�3; 1℄p14 = [2;�1; 0℄ � [2;�3; 1℄p14 = 1:87 :But the sum of the radii of the two pipes is 0:4+0:5 = 0:9. Hen
e the pipesdo not interse
t.2.2.4 The equation of a planeThere are a number of ways of spe
ifying the equation of a plane.1. If b and 
 are two non-parallel ve
tors (ie b � 
 6= 0), then the equation ofthe plane passing through the point a and parallel to the ve
tors b and 
 maybe written in the formr = a+ �b+ �
where �; � are s
alar parameters. Note that b and 
 are free ve
tors, so don'thave to lie in the plane (Figure 2.6(a).)2. Figure 2.6(b) shows the plane de�ned by three non-
ollinear points a, b and
 in the plane (note that the ve
tors b and 
 are position ve
tors, not freeve
tors as in the previous 
ase). The equation might be written asr = a+ �(b� a) + �(
� a)3. Figure 2.6(
) illustrates another des
ription is in terms of the unit normal tothe plane n̂ and a point a in the planer � n̂ = a � n̂ :
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O b

c
a

NB that these are
parallel to the plane, not
necessarily in the plane

r

O

a

b

cr

O

a

n̂

r

(a) (b) (
)Figure 2.6: (a) Plane de�ned using point and two lines. (b) Plane de�ned using three points. (
)Plane de�ned using point and normal. Ve
tor r is the position ve
tor of a general point in theplane.2.2.5 The shortest distan
e from a point to a planeThe shortest distan
e from a point d to the plane is along the perpendi
ular.Depending on how the plane is de�ned, this 
an be written asD = j(d� a) � n̂j or D = j(d� a) � (b� 
)jjb� 
j :2.3 Solution of ve
tor equationsIt is sometimes required to obtain the most general ve
tor whi
h satis�es a givenve
tor relationship. This is very mu
h like obtaining the lo
us of a point. The bestmethod of pro
eeding in su
h a 
ase is as follows:(i) De
ide upon a system of three 
o-ordinate ve
tors using two non-parallel ve
torsappearing in the ve
tor relationship. These might be a, b and their ve
tor produ
t(a� b).(ii) Express the unknown ve
tor x as a linear 
ombination of these ve
torsx = �a+ �b+ �a� bwhere �; �; � are s
alars to be found.(iii) Substitute the above expression for x into the ve
tor relationship to determinethe 
onstraints on �; � and � for the relationship to be satis�ed.| ExampleQ Solve the ve
tor equation x = x� a+ b.A Step (i): Set up basis ve
tors a, b and their ve
tor produ
t a� b.Step (ii): x = �a+ �b+ �a� b.



2.4. ROTATION, ANGULAR VELOCITY/ACCELERATION AND MOMENTS 25Step (iii): Bung this expression for x into the equation!�a+ �b+ �a� b = (�a+ �b+ �a� b)� a+ b= 0+ �(b� a) + �(a� b)� a+ b= ��(a � b)a+ (�a2 + 1)b� �(a� b)We have learned that any ve
tor has a unique expression in terms of a basisset, so that the 
oeÆ
ients of a, b and a� b on either side of the equationmu
h be equal.) � = ��(a � b)� = �a2 + 1� = ��so that� = 11 + a2 � = � 11 + a2 � = a � b1 + a2 :So �nally the solution is the single point:x = 11 + a2 ((a � b)a+ b� (a� b))2.4 Rotation, angular velo
ity/a

eleration and momentsA rotation 
an represented by a ve
tor whose dire
tion is along the axis of rotationin the sense of a r-h s
rew, and whose magnitude is proportional to the size ofthe rotation (Fig. 2.7). The same idea 
an be extended to the derivatives, thatis, angular velo
ity !!! and angular a

eleration _!!!.Angular a

elerations arise be
ause of a moment (or torque) on a body. In me-
hani
s, the moment of a for
e F about a point Q is de�ned to have magnitudeM = Fd , where d is the perpendi
ular distan
e between Q and the line of a
tionL of F.The ve
tor equation for moment isM = r � Fwhere r is the ve
tor from Q to any point on the line of a
tion L of for
e F.The resulting angular a

eleration ve
tor is in the same dire
tion as the momentve
tor.The instantaneous velo
ity of any point P on a rigid body undergoing pure rotation
an be de�ned by a ve
tor produ
t as follows. The angular velo
ity ve
tor !!! has
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ω

θd δt

in right−hand screw sense

d tFigure 2.7: The angular velo
ity ve
tor !!! is along the axis of rotation and has magnitude equal tothe rate of rotation.magnitude equal to the angular speed of rotation of the body and with dire
tionthe same as that of the r-h s
rew. If r is the ve
tor OP , where the origin O 
anbe taken to be any point on the axis of rotation, then the velo
ity v of P due tothe rotation is given, in both magnitude and dire
tion, by the ve
tor produ
tv = !!! � r:

v�
M !

rF r
Figure 2.8:
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Le
ture 3Di�erentiating Ve
tor Fun
tions of a SingleVariableYour experien
e of di�erentiation and integration has extended as far as s
alarfun
tions of single and multiple variables | fun
tions like f (x) and f (x; y ; t).It should be no great surprise that we often wish di�erentiate ve
tor fun
tions. Forexample, suppose you were driving along a wiggly road with position r(t) at timet. Di�erentiating r(t) wrt time should yield your velo
ity v(t), and di�erentiatingv(t) should yield your a

eleration. Let's see how to do this.3.1 Di�erentiation of a ve
torThe derivative of a ve
tor fun
tion a(p) of a single parameter p isa0(p) = limÆp!0 a(p + Æp)� a(p)Æp :If we write a in terms of 
omponents relative to a FIXED 
oordinate system (̂{{{; |̂||; k̂kk
onstant)a(p) = a1(p)̂{{{ + a2(p)̂||| + a3(p)k̂kkthen a0(p) = da1dp {̂{{ + da2dp |̂|| + da3dp k̂kk :That is, in order to di�erentiate a ve
tor fun
tion, one simply di�erentiates ea
h
omponent separately. This means that all the familiar rules of di�erentiationapply, and they don't get altered by ve
tor operations like s
alar produ
t andve
tor produ
ts.Thus, for example:ddp(a� b) = dadp � b+ a� dbdp ddp(a � b) = dadp � b+ a � dbdp :27



28 LECTURE 3. DIFFERENTIATING VECTOR FUNCTIONS OF A SINGLE VARIABLENote that da=dp has a di�erent dire
tion and a di�erent magnitude from a.Likewise, as you might expe
t, the 
hain rule still applies. If a = a(u) and u = u(t),say: ddt a = dadu dudt
| ExamplesQ A 3D ve
tor a of 
onstant magnitude is varying over time. What 
an you sayabout the dire
tion of _a?A Using intuition: if only the dire
tion is 
hanging, then the ve
tor must betra
ing out points on the surfa
e of a sphere. We would guess that thederivative _a is orthogonal to a.To prove this writeddt (a � a) = a � dadt + dadt � a = 2a � dadt :But (a � a) = a2 whi
h we are told is 
onstant. Soddt (a � a) = 0 ) 2a � dadt = 0and hen
e a and da=dt must be perpendi
ular.Q The position of a vehi
le is r(u) where u is the amount of fuel 
onsumed bysome time t. Write down an expression for the a

eleration.nA The velo
ity isv = drdt = drdu dudta = ddt drdt = d2rdu2 (dudt)2 + drdu d2udt23.1.1 Geometri
al interpretation of ve
tor derivativesLet r(p) be a position ve
tor tra
ing a spa
e 
urve as some parameter p varies.The ve
tor Ær is a se
ant to the 
urve, and Ær=Æp lies in the same dire
tion. (SeeFig. 3.1.) In the limit as Æp tends to zero Ær=Æp = dr=dp be
omes a tangent tothe spa
e 
urve. If the magnitude of this ve
tor is 1 (i.e. a unit tangent), then



3.1. DIFFERENTIATION OF A VECTOR 29jdrj = dp so the parameter p is ar
-length (metri
 distan
e). More generally,however, p will not be ar
-length and we will have:drdp = drds dsdpSo, the dire
tion of the derivative is that of a tangent to the 
urve, and itsmagnitude is jds=dpj, the rate of 
hange of ar
 length w.r.t the parameter.Of 
ourse if that parameter p is time, the magnitude jdr=dtj is the speed.| ExampleQ Draw the 
urver = a 
os( spa2 + h2 )̂{{{ + a sin( spa2 + h2 )̂||| + hspa2 + h2 k̂kkwhere s is ar
 length and h, a are 
onstants. Show that the tangent dr=dsto the 
urve has a 
onstant elevation angle w.r.t the xy -plane, and determineits magnitude.A drds = � apa2 + h2 sin () {̂{{ + apa2 + h2 
os () |̂|| + hpa2 + h2 k̂kkThe proje
tion on the xy plane has magnitude a=pa2 + h2 and in the zdire
tion h=pa2 + h2, so the elevation angle is a 
onstant, tan�1(h=a).We are expe
ting dr=ds = 1, and indeed
√a2 sin2() + a2 
os2() + h2=√a2 + h2 = 1:3.1.2 Ar
 length is a spe
ial parameter!It might seem that we 
an be 
ompletely relaxed about saying that any old pa-rameter p is ar
 length, but this is not the 
ase. Why not? The reason is that ar
length is spe
ial is that, whatever the parameter p,s = ∫ pp0 ∣

∣

∣

∣

drdp ∣

∣

∣

∣

dp :Perhaps another way to grasp the signi�
an
e of this is using Pythagoras' theoremon a short pie
e of 
urve: in the limit as dx et
 tend to zero,ds2 = dx2 + dy 2 + dz2 :
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δ

δ
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δ

r
r δ

r

r

r

rd

(p)
(p + p)

ds

dp

dr

(s)

r

ds

(s + s)

1Figure 3.1: Left: Ær is a se
ant to the 
urve but, in the limit as Æp ! 0, be
omes a tangent.Right: if the parameter is ar
 length s, then jdrj = ds.So if a 
urve is parameterized in terms of pdsdp = √dxdp 2 + dydp 2 + dzdp2 :As an example, suppose in our earlier example we had parameterized our helix asr = a 
os p{̂{{ + a sin p|̂|| + hpk̂kkIt would be easy just to say that p was ar
length, but it would not be 
orre
tbe
ausedsdp = √dxdp2 + dydp 2 + dzdp2= √a2 sin2 p + a2 
os2 p + h2 = √a2 + h2If p really was ar
length, ds=dp = 1. So p=pa2 + h2 is ar
length, not p.3.2 Integration of a ve
tor fun
tionThe integration of a ve
tor fun
tion of a single s
alar variable 
an be regardedsimply as the reverse of di�erentiation. In other words
∫ p2p1 da(p)dp dpFor example the integral of the a

eleration ve
tor of a point over an interval oftime is equal to the 
hange in the velo
ity ve
tor during the same time interval.However, many other, more interesting and useful, types of integral are possible,espe
ially when the ve
tor is a fun
tion of more than one variable. This requiresthe introdu
tion of the 
on
epts of s
alar and ve
tor �elds. See later!



3.3. CURVES IN 3 DIMENSIONS 313.3 Curves in 3 dimensionsIn the examples above, parameter p has been either ar
 length s or time t. Itdoesn't have to be, but these are the main two of interest. Later we shall lookat some important results when di�erentiating w.r.t. time, but now let use lookmore 
losely at 3D 
urves de�ned in terms of ar
 length, s.Take a pie
e of wire, and bend it into some arbitrary non-planar 
urve. This is aspa
e 
urve. We 
an spe
ify a point on the wire by spe
ifying r(s) as a fun
tionof distan
e or ar
 length s along the wire.3.3.1 The Fr�enet-Serret relationshipsWe are now going to introdu
e a lo
al orthogonal 
oordinate frame for ea
h points along the 
urve, ie one with its origin at r(s). To spe
ify a 
oordinate frame weneed three mutually perpendi
ular dire
tions, and these should be intrinsi
 to the
urve, not �xed in an external referen
e frame. The ideas were �rst suggested bytwo Fren
h mathemati
ians, F-J. Fr�enet and J. A. Serret.1. Tangent t̂There is an obvious 
hoi
e for the �rst dire
tion at the point r(s), namely theunit tangent t̂. We already know thatt̂ = dr(s)ds2. Prin
ipal Normal n̂Re
all that earlier we proved that if a was a ve
tor of 
onstant magnitudethat varies in dire
tion over time then da=dt was perpendi
ular to it. Be
auset̂ has 
onstant magnitude but varies over s, d t̂=ds must be perpendi
ular tot̂.Hen
e the prin
ipal normal n̂ isd t̂ds = �n̂ : where � � 0 :� is the 
urvature, and � = 0 for a straight line. The plane 
ontaining t̂ andn̂ is 
alled the os
ulating plane.3. The Binormal b̂The lo
al 
oordinate frame is 
ompleted by de�ning the binormalb̂(s) = t̂(s)� n̂(s) :



32 LECTURE 3. DIFFERENTIATING VECTOR FUNCTIONS OF A SINGLE VARIABLESin
e b̂ � t̂ = 0,d b̂ds � t̂+ b̂ � d t̂ds = d b̂ds � t̂+ b̂ � �n̂ = 0from whi
hd b̂ds � t̂ = 0:But this means that d b̂=ds is along the dire
tion of n̂, ord b̂ds = ��(s)n̂(s)where � is the torsion, and the negative sign is a matter of 
onvention.Di�erentiating n̂ � t̂ = 0 and n̂ � b̂ = 0, we �ndd n̂ds = ��(s )̂t(s) + �(s)b̂(s):The Fr�enet-Serret relationships:d t̂=ds = �n̂d n̂=ds = ��(s )̂t(s) + �(s)b̂(s)d b̂=ds = ��(s)n̂(s)| ExampleQ Derive �(s) and �(s) for the helixr(s) = a 
os( s�) {̂{{ + a sin( s�) |̂|| + h( s�) k̂kk ; � = √a2 + h2and 
omment on their values.A We found the unit tangent earlier ast̂ = drds = [�a� sin( s�) ; a� 
os( s�) ; h�] :Di�erentiation gives�n̂ = d t̂ds = [� a�2 
os( s�) ; � a�2 sin( s�) ; 0]



3.4. RADIAL AND TANGENTIAL COMPONENTS IN PLANE POLARS 33Curvature is always positive, so� = a�2 n̂ = [� 
os( s�) ; � sin( s�) ; 0] :So the 
urvature is 
onstant, and the normal is parallel to the xy -plane.Now useb̂ = t̂�n̂ = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk(�a=�)S (a=�)C (h=�)�C �S 0 ∣

∣

∣

∣

∣

∣

= [h� sin( s�) ; � h� 
os( s�) ; a�]

and di�erentiate b̂ to �nd an expression for the torsiond b̂ds = [ h�2 
os( s�) ; h�2 sin( s�) ; 0] = �h�2 n̂so the torsion is� = h�2again a 
onstant.3.4 Radial and tangential 
omponents in plane polarsIn plane polar 
oordinates, the radius ve
torof any point P is given byr = r 
os �̂{{{ + r sin �|̂||= r êrwhere we have introdu
ed the unit radial ve
-tor êr = 
os �̂{{{ + sin �|̂|| :The other \natural" (we'll see why in a laterle
ture) unit ve
tor in plane polars is orthog-onal to êr and isê� = � sin �̂{{{ + 
os �|̂||so that êr � êr = ê� � ê� = 1 and êr � ê� = 0.

PSfrag repla
ements êrê�
{̂{{|̂|| �r P



34 LECTURE 3. DIFFERENTIATING VECTOR FUNCTIONS OF A SINGLE VARIABLENow suppose P is moving so that r is a fun
tion of time t. Its velo
ity is_r = ddt (r êr) = drdt êr + r d êrdt= drdt êr + r d�dt (� sin �̂{{{ + 
os �|̂||)= drdt êr + r d�dt ê�= radial + tangentialThe radial and tangential 
omponents of velo
ity of P are therefore dr=dt andrd�=dt, respe
tively.Di�erentiating a se
ond time gives the a

eleration of P�r = d2rdt2 êr + drdt d�dt ê� + drdt d�dt ê� + r d2�dt2 ê� � r d�dt d�dt êr= [d2rdt2 � r (d�dt)2] êr + [2drdt d�dt + r d2�dt2] ê�



3.5. ROTATING SYSTEMS 353.5 Rotating systemsConsider a body whi
h is rotating with 
onstant angular velo
ity !!! about someaxis passing through the origin. Assume the origin is �xed, and that we are sittingin a �xed 
oordinate system Oxyz .If ��� is a ve
tor of 
onstant magnitude and 
onstant dire
tion in the rotating system,then its representation r in the �xed system must be a fun
tion of t.r(t) = R(t)���At any instant as observed in the �xed systemdrdt = _R���+ R _���but the se
ond term is zero sin
e we assumed ��� to be 
onstant so we havedrdt = _RR
>rNote that:� dr=dt will have �xed magnitude;� dr=dt will always be perpendi
ular to the axis of rotation;� dr=dt will vary in dire
tion within those 
onstraints;� r(t) will move in a plane in the �xed system.

ω

ρ



36 LECTURE 3. DIFFERENTIATING VECTOR FUNCTIONS OF A SINGLE VARIABLENow let's 
onsider the term _RR
>. First, note that RR

> = I (the identity), sodi�erentiating both sides yields_RR
> + R _R> = 0_RR

> = �R _R>Thus _RR
> is anti-symmetri
:_RR
> = 



0 �z yz 0 �x�y x 0 

Now you 
an verify for yourself that appli
ation of a matrix of this form to anarbitrary ve
tor has pre
isely the same e�e
t as the 
ross produ
t operator, !!!�,where !!! = [xyz ℄>. Loh-and-behold, we then we have_r = !!! � rmat
hing the equation at the end of le
ture 2, v = !!!�r, as we would hope/expe
t.3.5.1 Rotation: Part 2Now suppose ��� is the position ve
tor of a point P whi
h moves in the rotatingframe. There will be two 
ontributions to motion with respe
t to the �xed frame,one due to its motion within the rotating frame, and one due to the rotation itself.So, returning to the equations we derived earlier:r(t) = R(t)���(t)and the instantaenous di�erential with respe
t to time:drdt = _R���+ R _��� = _RR
>r + R _���Now ��� is not 
onstant, so its di�erential is not zero; hen
e rewriting this lastequations we have thatThe instantaneous velo
ity of P in the �xed frame isdrdt = R _���+ !!! � rThe se
ond term of 
ourse, is the 
ontribution from the rotating frame whi
h wesaw previously. The �rst is the linear velo
ity measured in the rotating frame _���,referred to the �xed frame (via the rotation matrix R whi
h aligns the two frames)
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(ω r)δt

r=ρat t

ω δρ
P at 

P at t

t+δt

δr

3.5.2 Rotation 3: Instantaneous a

elerationOur previous result is a general one relating the time derivatives of any ve
tor inrotating and non-rotating frames. Let us now 
onsider the se
ond di�erential:�r = _!!! � r + !!! � _r+ _R _���+ R����We shall assume that the angular a

eleration is zero, whi
h kills o� the �rst term,and so now, substituting for _r we have�r = !!! � (!!! � r+ R _���) + _R _���+ R����= !!! � (!!! � r) + !!! � R _���+ _R _���+ R����= !!! � (!!! � r) + !!! � R _���+ _R(R>R) _���+ R����= !!! � (!!! � r) + 2!!! � (R _���) + R����The instantaneous a

eleration is therefore�r = R����+ 2!!! � (R _���) + !!! � (!!! � r)� The �rst term is the a

eleration of the point P in the rotating frame mea-sured in the rotating frame, but referred to the �xed frame by the rotation
R� The last term is the 
entripetal a

eleration to due to the rotation. (Yes! Itsmagnitude is !2r and its dire
tion is that of �r. Che
k it out.)
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PSfrag repla
ements r 
t !!! = !m̂m̂n̂ ^̀̀̀ 


 = 
^̀̀̀Figure 3.2: Coriolis example.� The middle term is an extra term whi
h arises be
ause of the velo
ity of Pin the rotating frame. It is known as the Coriolis a

eleration, named afterthe Fren
h engineer who �rst identi�ed it.Be
ause of the rotation of the earth, the Coriolis a

eleration is of great im-portan
e in meteorology and a

ounts for the o

urren
e of high pressure anti-
y
lones and low pressure 
y
lones in the northern hemisphere, in whi
h the Coriolisa

eleration is produ
ed by a pressure gradient. It is also a very important 
ompo-nent of the a

eleration (hen
e the for
e exerted) by a rapidly moving robot arm,whose links whirl rapidly about rotary joints.| ExampleQ Find the instantaneous a

eleration of a proje
tile �red along a line of longi-tude (with angular velo
ity of 


 
onstant relative to the sphere) if the sphereis rotating with angular velo
ity !!!.A Consider a 
oordinate frame de�ned by mutually orthogonal unit ve
tors,^̀̀̀; m̂ and n̂, as shown in Fig. 3.2. We shall assume, without loss of generality,that the �xed and rotating frames are instantaneously aligned at the momentshown in the diagram, so that R = I, the identity, and hen
e r = ���.In the rotating frame_��� = 


 � ��� and ���� = 


 � _��� = 


 � (


 � ���)So the in the �xed referen
e frame, be
ause these two frames are instanta-neously aligned�r = 


 � (


 � ���) + 2!!! � (


 � ���) + !!! � (!!! � r) :The �rst term is the 
entripetal a

eleration due to the proje
tile movingaround the sphere | whi
h it does be
ause of the gravitational for
e. The
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entripetal a

eleration resulting from the rotation of thesphere. The middle term is the Coriolis a

eleration.Using Fig. 3.2, at some instant tr(t) = ���(t) = r 
os(
t)m̂ + r sin(
t)n̂and 


 = 
^̀̀̀Then


 � (


 � ���) = (


 � ���)


 � 
2��� = �
2��� = �
2r;Che
k the dire
tion | the negative sign means it points towards the 
entreof the sphere, whi
h is as expe
ted.Likewise the last term 
an be obtained as!!! � (!!! � r) = �!2r sin(
t)n̂Note that it is perpendi
ular to the axis of rotation m̂, and be
ause of theminus sign, dire
ted towards the axis)The Coriolis term is derived as:2!!! � _��� = 2!!! � (


 � ���)= 2



0!0

�








00

� 



0r 
os
tr sin
t 





= 2!
r 
os 
t^̀̀̀Instead of a proje
tile, now 
onsider a ro
ket on rails whi
h stret
h northfrom the equator. As the ro
ket travels north it experien
es the Coriolis for
e(exerted by the rails): 2 
 ! R 
os
t ^̀̀̀+ve -ve +ve +veHen
e the 
oriolis for
e is in the dire
tion opposed to ^̀̀̀ (i.e. in the oppositedire
tion to the earth's rotation). In the absen
e of the rails (or atmosphere)the ro
ket's tangetial speed (relative to the surfa
e of the earth) is greaterthan the speed of the surfa
e of the earth underneath it (sin
e the radiusof su

essive lines of latitude de
reases) so it would (to an observer on theearth) appear to de
e
t to the east. The rails provide a 
oriolis for
e keepingit on the same meridian.Revised O
t 2008
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(NB instantaneously common to earth’s surface and rocket)
Tangential component of velocity

Rocket’s velocity in direction of meridian

Tangential velocity of earth’s surface 

Figure 3.3: Ro
ket example
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Figure 3.4: Coriolis e�e
t giving rise to weather systems
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