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OverviewMany of you will know a good deal already about Vetor Algebra | how to add and subtratvetors, how to take salar and vetor produts of vetors, and something of how to desribegeometri and physial entities using vetors. This ourse will remind you about that good stu�,but goes on to introdue you to the subjet of Vetor Calulus whih, like it says on the an,ombines vetor algebra with alulus.To give you a feeling for the issues, suppose you were interested in the temperature T of water ina river. Temperature T is a salar, and will ertainly be a funtion of a position vetor x = (x; y ; z)and may also be a funtion of time t: T = T (x; t). It is a salar �eld.Suppose now that you kept y; z; t onstant, and asked what is the hange in temperature as youmove a small amount in x? No doubt you'd be interested in alulating �T=�x . Similarly if youkept the point �xed, and asked how does the temperature hange of time, you would be interestedin �T=�t.But why restrit ourselves to movements up-down, left-right, et? Suppose you wanted to knowwhat the hange in temperature along an arbitrary diretion. You would be interested in�T�x ;but how would you alulate that? Is �T=�x a vetor or a salar?Now let's dive into the ow. At eah point x in the stream, at eah time t, there will be a streamveloity v(x; t). The loal stream veloity an be viewed diretly using modern tehniques suhas laser Doppler anemometry, or traditional tehniques suh a throwing twigs in. The point nowis that v is a funtion that has the same four input variables as temperature did, but its outputresult is a vetor. We may be interested in plaes x where the stream suddenly aelerates, orvorties where the stream urls around dangerously. That is, we will be interested in �nding theaeleration of the stream, the gradient of its veloity. We may be interested in the magnitude ofthe aeleration (a salar). Equally, we may be interested in the aeleration as a vetor, so thatwe an apply Newton's law and �gure out the fore.This is the stu� of vetor alulus.



2Grey bookVetor algebra: salar and vetor produts; salar and vetor triple produts; geometri appli-ations. Di�erentiation of a vetor funtion; salar and vetor �elds. Gradient, divergene andurl - de�nitions and physial interpretations; produt formulae; urvilinear oordinates. Gauss'and Stokes' theorems and evaluation of integrals over lines, surfaes and volumes. Derivationof ontinuity equations and Laplae's equation in Cartesian, ylindrial and spherial oordinatesystems.Course Content� Introdution and revision of elementary onepts, salar produt, vetor produt.� Triple produts, multiple produts, appliations to geometry.� Di�erentiation and integration of vetor funtions of a dingle variable.� Curvilinear oordinate systems. Line, surfae and volume integrals.� Vetor operators.� Vetor Identities.� Gauss' and Stokes' Theorems.� Engineering Appliations.Learning OutomesYou should be omfortable with expressing systems (espeially those in 2 and 3 dimensions) usingvetor quantities and manipulating these vetors without neessarily going bak to some underlyingoordinates.You should have a sound grasp of the onept of a vetor �eld, and be able to link this idea todesriptions various physial phenomena.You should have a good intuition of the physial meaning of the various vetor alulus operatorsand the important related theorems. You should be able to interpret the formulae desribingphysial systems in terms of this intuition.ReferenesAlthough these notes over the material you need to know you should, wider reading is essen-tial. Di�erent explanations and di�erent diagrams in books will give you the perspetive to glueeverything together, and further worked examples give you the on�dene to takle the tute sheets.� J Heading, "Mathematial Methods in Siene and Engineering", 2nd ed., Ch.13, (Arnold).� G Stephenson, "Mathematial Methods for Siene Students", 2nd ed., Ch.19, (Longman).� E Kreyszig, "Advaned Engineering Mathematis", 6th ed., Ch.6, (Wiley).� K F Riley, M. P. Hobson and S. J. Bene, "Mathematial Methods for the Physis andEngineering" Chs.6, 8 and 9, (CUP).� A J M Spener, et. al. "Engineering Mathematis", Vol.1, Ch.6, (Van Nostrand Reinhold).� H M Shey, \Div, Grad, Curl and all that", Norton
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Leture 1Vetor Algebra
1.1 VetorsMany physial quantities, suh a mass, time, temperature are fully spei�ed by onenumber or magnitude. They are salars. But other quantities require more thanone number to desribe them. They are vetors. You have already met vetors intheir more pure mathematial sense in your ourse on linear algebra (matries andvetors), but often in the physial world, these numbers speify a magnitude anda diretion | a total of two numbers in a 2D planar world, and three numbers in3D.Obvious examples are veloity, aeleration, eletri �eld, and fore. Below, prob-ably all our examples will be of these \magnitude and diretion" vetors, but weshould not forget that many of the results extend to the wider realm of vetors.There are three slightly di�erent types of vetors:� Free vetors: In many situtations only the magnitude and diretion of avetor are important, and we an translate them at will (with 3 degrees offreedom for a vetor in 3-dimensions).� Sliding vetors: In mehanis the line of ation of a fore is often importantfor deriving moments. The fore vetor an slide with 1 degree of freedom.� Bound or position vetors: When desribing lines, urves et in spae, it isobviously important that the origin and head of the vetor are not translatedabout arbitrarily. The origins of position vetors all oinide at an overallorigin O.One the advantages of using vetors is that it frees muh of the analysis fromthe restrition of arbitrarily imposed oordinate frames. For example, if two freevetors are equal we need only say that their magnitudes and diretions are equal,and that an be done with a drawing that is independent of any oordinate system.However, oordinate systems are ultimately useful, so it useful to introdue theidea of vetor omponents. Try to spot things in the notes that are independent5
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Free vectors Sliding vectors Position vectorsFigure 1.1:of oordinate system.1.1.1 Vetor elements or omponents in a oordinate frameA method of representing a vetor is to list the values of its elements or omponentsin a suÆient number of di�erent (preferably mutually perpendiular) diretions,depending on the dimension of the vetor. These spei�ed diretions de�ne aoordinate frame. In this ourse we will mostly restrit our attention to the3-dimensional Cartesian oordinate frame O(x; y ; z). When we ome to examinevetor �elds later in the ourse you will use urvilinear oordinate frames, espeially3D spherial and ylindrial polars, and 2D plane polar, oordinate systems.
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Figure 1.2: Vetor omponents.In a Cartesian oordinate frame we writea = [a1; a2; a3℄ = [x2 � x1; y2 � y1; z2 � z1℄ or a = [ax ; ay ; az ℄as skethed in Figure 1.2. De�ning {̂{{; |̂||; k̂kk as unit vetors in the x; y ; z diretions{̂{{ = [1; 0; 0℄ |̂|| = [0; 1; 0℄ k̂kk = [0; 0; 1℄
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(a) (b)Figure 1.3: (a) Addition of two vetors is ommutative. Note that the oordinate frame is irrele-vant. (b) subtration of vetors; () Addition of three vetors is assoiative.we ould also writea = a1̂{{{ + a2̂||| + a3k̂kk :Although we will be most often dealing with vetors in 3-spae, you should notthink that general vetors are limited to three omponents.In these notes we will use bold font to represent vetors a; !!!, In your written work,underline the vetor symbol a; ! and be metiulous about doing so. We shall usethe hat to denote a unit vetor.1.1.2 Vetor equalityTwo free vetors are said to be equal i� their lengths and diretions are the same.If we use a oordinate frame, we might say that orresponding omponents ofthe two vetors must be equal. This de�nition of equality will also do for positionvetors, but for sliding vetors we must add that the line of ation must be identialtoo.1.1.3 Vetor magnitude and unit vetorsProvided we use an orthogonal oordinate system, the magnitude of a 3-vetor isa = jaj = √a21 + a22 + a23To �nd the unit vetor in the diretion of a, simply divide by its magnitudeâ = ajaj :1.1.4 Vetor Addition and subtrationVetors are added/subtrated by adding/subtrating orresponding omponents,exatly as for matries. Thusa+ b = [a1 + b1; a2 + b2; a3 + b3℄



8 LECTURE 1. VECTOR ALGEBRAAddition follows the parallelogram onstrution of Figure 1.3(a). Subtration (a�b) is de�ned as the addition (a+ (�b)). It is useful to remember that the vetora� b goes from b to a.The following results follow immediately from the above de�nition of vetor addi-tion:(a) a + b = b + a (ommutativity) (Figure 1.3(a))(b) (a + b) +  = a + (b + ) = a + b +  (assoiativity) (Figure 1.3(b))() a + 0 = 0 + a = a, where the zero vetor is 0 = [0; 0; 0℄.(d) a + (-a) = 01.1.5 Multipliation of a vetor by a salar. (NOT the salar produt!)Just as for matries, multipliation of a vetor a by a salar  is de�ned as multi-pliation of eah omponent by  , so thata = [a1; a2; a3℄:It follows that:jaj = √(a1)2 + (a2)2 + (a3)2 = j jjaj:The diretion of the vetor will reverse if  is negative, but otherwise is una�eted.(By the way, a vetor where the sign is unertain is alled a diretor.)| ExampleQ. Coulomb's law states that the eletrostati fore on harged partile Q dueto another harged partile q1 isF = KQq1r 2 êrwhere r is the vetor from q1 to Q and r̂ is the unit vetor in that samediretion. (Note that the rule \unlike harges attrat, like harges repel" isbuilt into this formula.) The fore between two partiles is not modi�ed bythe presene of other harged partiles.Hene write down an expression for the fore on Q at R due to N harges qiat ri .A. The vetor from qi to Q is R � ri . The unit vetor in that diretion is(R� ri)=jR� ri j, so the resultant fore isF(R) = N
∑i=1 K QqijR� ri j3(R� ri) :Note that F(R) is a vetor �eld.



1.2. SCALAR, DOT, OR INNER PRODUCT 91.2 Salar, dot, or inner produtThis is a produt of two vetors results in a salar quantity and is de�ned as followsfor 3-omponent vetors:a � b = a1b1 + a2b2 + a3b3 :Note thata � a = a21 + a22 + a23 = jaj2 = a2:The following laws of multipliation follow immediately from the de�nition:(a) a � b = b � a (ommutativity)(b) a � (b+ ) = a � b+ a �  (distributivity with respect to vector addition)() (�a) �b = �(a �b) = a � (�b) scalar multiple of a scalar product of two vectors1.2.1 Geometrial interpretation of salar produt
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(a) (b)Figure 1.4: (a) Cosine rule. (b) Projetion of b onto a.Consider the square magnitude of the vetor a � b. By the rules of the salarprodut, this isja� bj2 = (a� b) � (a� b)= a � a+ b � b� 2(a � b)= a2 + b2 � 2(a � b)



10 LECTURE 1. VECTOR ALGEBRABut, by the osine rule for the triangle OAB (Figure 1.4a), the length AB2 is givenby ja� bj2 = a2 + b2 � 2ab os �where � is the angle between the two vetors. It follows thata � b = ab os �;whih is independent of the o-ordinate system used, and that ja � bj � ab. Con-versely, the osine of the angle between vetors a and b is given by os � = a�b=ab.1.2.2 Projetion of one vetor onto the otherAnother way of desribing the salar produt is as the produt of the magnitudeof one vetor and the omponent of the other in the diretion of the �rst, sineb os � is the omponent of b in the diretion of a and vie versa (Figure 1.4b).Projetion is partiularly useful when the seond vetor is a unit vetor | a � {̂{{ isthe omponent of a in the diretion of {̂{{.Notie that if we wanted the vetor omponent of b in the diretion of a wewould write(b � â)â = (b � a)aa2 :In the partiular ase a � b = 0, the angle between the two vetors is a right angleand the vetors are said to be mutually orthogonal or perpendiular | neithervetor has any omponent in the diretion of the other.An orthonormal oordinate system is haraterised by {̂{{ � {̂{{ = |̂|| � |̂|| = k̂kk � k̂kk = 1; and{̂{{ � |̂|| = |̂|| � k̂kk = k̂kk � {̂{{ = 0.1.2.3 A salar produt is an \inner produt"So far we have been writing our vetors as row vetors a = [a1; a2; a3℄. This isonvenient beause it takes up less room than writing olumn vetorsa = 



a1a2a3 

 :In matrix algebra vetors are more usually de�ned as olumn vetors, as in




M11 M12 M13M21 M22 M23M31 M32 M33 







a1a2a3 

 = 



v1v2v3 





1.2. SCALAR, DOT, OR INNER PRODUCT 11and a row vetor is written as a>. Now for most of our work we an be quiterelaxed about this minor di�erene, but here let us be fussy.Why? Simply to point out at that the salar produt is also the inner produtmore ommonly used in linear algebra. De�ned as a>b when vetors are olumnvetors asa � b = a>b = [a1; a2; a3℄ b1b2b3 

 = a1b1 + a2b2 + a3b3 :Here we treat a n-dimensional olumn vetor as an n � 1 matrix.(Remember that if you multiply two matries Mm�nNn�p then M must have thesame olumns as N has rows (here denoted by n) and the result has size (rows �olumns) of m � p. So for n-dimensional olumn vetors a and b, a> is a 1 � nmatrix and b is n � 1 matrix, so the produt a>b is a 1 � 1 matrix, whih is (atlast!) a salar.)| ExamplesQ1. A fore F is applied to an objet as it moves by a small amount Ær. Whatwork is done on the objet by the fore?A1. The work done is equal to the omponent of fore in the diretion of the dis-plaement multiplied by the displaement itself. This is just a salar produt:ÆW = F � Ær :Q2. A ube has four diagonals, onneting opposite verties. What is the anglebetween an adjaent pair?A2. Well, you ould plod through usingPythagoras' theorem to �nd the lengthof the diagonal from ube vertex to ubeentre, and perhaps you should to hekthe following answer.The diretions of the diagonals are[�1;�1;�1℄. The ones shown in the�gure are [1; 1; 1℄ and [�1; 1; 1℄. Theangle is thus� = os�1 [1; 1; 1℄ � [�1; 1; 1℄p12 + 12 + 12p�12 + 12 + 12 = os�1 13
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12 LECTURE 1. VECTOR ALGEBRAQ3. A pinball moving in a plane with veloity s bounes (in a purely elasti impat)from a ba�e whose endpoints are p and q. What is the veloity vetor afterthe boune?A3. Best to refer everything to a oordi-nate frame with prinipal diretionsû along and v̂ perpendiular to theba�e:̂u = q� pjq� pjv̂ = u? = [�uy ; ux ℄Thus the veloity before impat issbefore = (s:û)û+ (s:v̂)v̂After the impat, the omponent ofveloity in the diretion of the baf-e is unhanged and the omponentnormal to the ba�e is negated:safter = (s:û)û� (s:v̂)v̂
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1.2.4 Diretion osines use projetionDiretion osines are ommonly used in the �eld of rystallography. The quantities� = a � {̂{{a ; � = a � |̂||a ; � = a � k̂kkarepresent the osines of the angles whih the vetor a makes with the o-ordinatevetors {̂{{ ,̂|||, k̂kk and are known as the diretion osines of the vetor a. Sinea � {̂{{ = a1 et, it follows immediately that a = a(�̂{{{ +�|̂|| + �k̂kk) and �2+�2+ �2 =1a2 [a21 + a22 + a23℄ = 11.3 Vetor or ross produtThe vetor produt of two vetors a and b is denoted by a � b and is de�ned asfollowsa� b = (a2b3 � a3b2)̂{{{ + (a3b1 � a1b3)̂||| + (a1b2 � a2b1)k̂kk:
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Figure 1.5: The diretion osines are osines of the angles shown.It is MUCH more easily remembered in terms of the pseudo-determinanta� b = ∣
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∣where the top row onsists of the vetors {̂{{, |̂||, k̂kk rather than salars.Sine a determinant with two equal rows has value zero, it follows that a� a = 0.It is also easily veri�ed that (a�b) �a = (a�b) �b = 0, so that a�b is orthogonal(perpendiular) to both a and b, as shown in Figure 1.6.Note that {̂{{ � |̂|| = k̂kk , |̂|| � k̂kk = {̂{{, and k̂kk � {̂{{ = |̂||.The magnitude of the vetor produt an be obtained by showing thatja� bj2 + (a � b)2 = a2b2from whih it follows thatja� bj = ab sin � ;whih is again independent of the o-ordinate system used. This is left as anexerise.Unlike the salar produt, the vetor produt does not satisfy ommutativity butis in fat anti-ommutative, in that a� b = �b� a. Moreover the vetor produtdoes not satisfy the assoiative law of multipliation either sine, as we shall seelater a� (b� ) 6= (a� b)� .Sine the vetor produt is known to be orthogonal to both the vetors whih formthe produt, it merely remains to speify its sense with respet to these vetors.Assuming that the o-ordinate vetors form a right-handed set in the order {̂{{ ,̂|||, k̂kkit an be seen that the sense of the the vetor produt is also right handed, i.e



14 LECTURE 1. VECTOR ALGEBRAthe vetor produt has the same sense as the o-ordinate system used.{̂{{ � |̂|| = ∣
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= k̂kk :In pratie, �gure out the diretion from a right-handed srew twisted from the�rst to seond vetor as shown in Figure 1.6(a).
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aFigure 1.6: (a)The vetor produt is orthogonal to both a and b. Twist from �rst to seond andmove in the diretion of a right-handed srew. (b) Area of parallelogram is ab sin �.1.3.1 Geometrial interpretation of vetor produtThe magnitude of the vetor produt (a� b) is equal to the area of the parallelo-gram whose sides are parallel to, and have lengths equal to the magnitudes of, thevetors a and b (Figure 1.6b). Its diretion is perpendiular to the parallelogram.| ExampleQ. g is vetor from A [1,2,3℄ to B [3,4,5℄.^̀̀̀ is the unit vetor in the diretion from O to A.Find m̂, a UNIT vetor along g� ^̀̀̀Verify that m̂ is is perpendiular to ^̀̀̀.Find n̂, the third member of a right-handed oordinate set ^̀̀̀; m̂; n̂.A. g = [3; 4; 5℄� [1; 2; 3℄ = [2; 2; 2℄^̀̀̀ = 1p14[1; 2; 3℄g� ^̀̀̀= 1p14 ∣
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1.3. VECTOR OR CROSS PRODUCT 15Henêm = � 1p24[2;�4; 2℄and n̂ = ^̀̀̀� m̂
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Leture 2Multiple Produts. Geometry using Vetors
2.1 Triple and multiple produtsUsing mixtures of the pairwise salar produt and vetor produt, it is possible toderive \triple produts" between three vetors, and indeed n-produts between nvetors.There is nothing about these that you annot work out from the de�nitions of pair-wise salar and vetor produts already given, but some have interesting geometriinterpretations, so it is worth looking at these.2.1.1 Salar triple produtThis is the salar produt of a vetor produt and a third vetor, i.e. a � (b � ).Using the pseudo-determinant expression for the vetor produt, we see that thesalar triple produt an be represented as the true determinant

a � (b� ) = ∣

∣

∣

∣

∣

∣

a1 a2 a3b1 b2 b31 2 3 ∣

∣

∣

∣

∣

∣You will reall that if you swap a pair of rows of a determinant, its sign hanges;hene if you swap two pairs, its sign stays the same.
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∣

∣
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∣
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∣
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∣

∣
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∣

∣

∣

∣

∣
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∣

∣

∣

∣+ � +This says that(i) a � (b� ) = b � (� a) =  � (a� b) (Called yli permutation.)17



18 LECTURE 2. MULTIPLE PRODUCTS. GEOMETRY USING VECTORS(ii) a � (b� ) = �b � (a� ) and so on. (Called anti-yli permutation.)(iii) The fat that a � (b � ) = (a � b) �  allows the salar triple produt to bewritten as [a;b; ℄. This notation is not very helpful, and we will try to avoidit below.2.1.2 Geometrial interpretation of salar triple produtThe salar triple produt gives the volume of the parallelopiped whose sides arerepresented by the vetors a, b, and .We saw earlier that the vetor produt (a � b) has magnitude equal to the areaof the base, and diretion perpendiular to the base. The omponent of  in thisdiretion is equal to the height of the parallelopiped shown in Figure 2.1(a).
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Figure 2.1: (a) Salar triple produt equals volume of parallelopiped. (b) Coplanarity yields zerosalar triple produt.2.1.3 Linearly dependent vetorsIf the salar triple produt of three vetors is zeroa � (b� ) = 0then the vetors are linearly dependent. That is, one an be expressed as a linearombination of the others. For example,a = �b+ �where � and � are salar oeÆients.You an see this immediately in two ways:� The determinant would have one row that was a linear ombination of theothers. You'll remember that by doing row operations, you ould reah a rowof zeros, and so the determinant is zero.� The parallelopiped would have zero volume if squashed at. In this ase allthree vetors lie in a plane, and so any one is a linear ombination of theother two. (Figure 2.1b.)



2.1. TRIPLE AND MULTIPLE PRODUCTS 192.1.4 Vetor triple produtThis is de�ned as the vetor produt of a vetor with a vetor produt, a�(b�).Now, the vetor triple produt a� (b� ) must be perpendiular to (b� ), whihin turn is perpendiular to both b and . Thus a� (b� ) an have no omponentperpendiular to b and , and hene must be oplanar with them. It follows thatthe vetor triple produt must be expressible as a linear ombination of b and :a� (b� ) = �b+ � :The values of the oeÆients an be obtained by multiplying out in omponentform. Only the �rst omponent need be evaluated, the others then being obtainedby symmetry. That is(a� (b� ))1 = a2(b� )3 � a3(b� )2= a2(b12 � b21) + a3(b13 � b31)= (a22 + a33)b1 � (a2b2 + a3b3)1= (a11 + a22 + a33)b1 � (a1b1 + a2b2 + a3b3)1= (a � )b1 � (a � b)1The equivalents must be true for the 2nd and 3rd omponents, so we arrive at theidentitya� (b� ) = (a � )b� (a � b) :
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Figure 2.2: Vetor triple produt.2.1.5 Projetion using vetor triple produtAn example of the appliation of this formula is as follows. Suppose v is a vetorand we want its projetion into the xy -plane. The omponent of v in the zdiretion is v � k̂kk , so the projetion we seek is v� (v � k̂kk)k̂kk . Writing k̂kk  a, v b,



20 LECTURE 2. MULTIPLE PRODUCTS. GEOMETRY USING VECTORSk̂kk  ,a� (b� ) = (a � )b� (a � b)# # #k̂kk � (v � k̂kk) = (k̂kk � k̂kk)v � (k̂kk � v)k̂kk= v � (v � k̂kk)k̂kkSo v � (v � k̂kk)k̂kk = k̂kk � (v � k̂kk).(Hot stu�! But the expression v � (v � k̂kk)k̂kk is muh easier to understand, andheaper to ompute!)2.1.6 Other repeated produtsMany ombinations of vetor and salar produts are possible, but we onsider onlyone more, namely the vetor quadruple produt (a � b) � ( � d). By regardinga� b as a single vetor, we see that this vetor must be representable as a linearombination of  and d. On the other hand, regarding �d as a single vetor, wesee that it must also be a linear ombination of a and b. This provides a meansof expressing one of the vetors, say d, as linear ombination of the other three,as follows:(a� b)� (� d) = [(a� b) � d℄� [(a� b) � ℄d= [(� d) � a℄b� [(� d) � b℄aHene[(a� b) � ℄d = [(b� ) � d℄ a+ [(� a) � d℄b+ [(a� b) � d℄ or d = [(b� ) � d℄ a+ [(� a) � d℄b+ [(a� b) � d℄ [(a� b) � ℄ = �a+ �b+  :This is not something to remember o� by heart, but it is worth remembering thatthe projetion of a vetor on any arbitrary basis set is unique.| ExampleQ1 Use the quadruple vetor produt to express the vetor d = [3; 2; 1℄ in termsof the vetors a = [1; 2; 3℄, b = [2; 3; 1℄ and  = [3; 1; 2℄.A1 Grinding away at the determinants, we �nd[(a�b) �℄ = �18; [(b�) �d℄ = 6; [(�a) �d℄ = �12; [(a�b) �d℄ = �12So, d = (�a+ 2b+ 2)=3.
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b

c
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d

Figure 2.3: The projetion of a (3-)vetor onto a set of (3) basis vetors is unique. Ie in d =�a+ �b+ , the set f�; �; g is unique.2.2 Geometry using vetors: lines, planes2.2.1 The equation of a lineThe equation of the line passing through the point whose position vetor is a andlying in the diretion of vetor b isr = a+ �bwhere � is a salar parameter. If you make b a unit vetor, r = a+ �b̂ then � willrepresent metri length.For a line de�ned by two points a1 and a2r = a1 + �(a2 � a1)or for the unit versionr = a1 + �(a2 � a1)ja2 � a1j
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r

λ
Point r traces
out line.

^

Figure 2.4: Equation of a line. With b̂ a unit vetor, � is in the length units established by thede�nition of a.



22 LECTURE 2. MULTIPLE PRODUCTS. GEOMETRY USING VECTORS2.2.2 The shortest distane from a point to a lineReferring to Figure 2.5(a) the vetor p from  to any point on the line is p =a+ �b̂�  = (a� ) + �b̂ whih has length squared p2 = (a� )2 + �2 +2�(a�) � b̂ : Rather than minimizing length, it is easier to minimize length-squared. Theminumum is found when d p2=d� = 0, ie when� = �(a� ) � b̂ :So the minimum length vetor isp = (a� )� ((a� ) � b̂)b̂:You might spot that is the omponent of (a�) perpendiular to b̂ (as expeted!).Furthermore, using the result of Setion 2.1.5,p = b̂� [(a� )� b̂℄ :Beause b̂ is a unit vetor, and is orthogonal to [(a� )� b̂℄, the modulus of thevetor an be written rather more simply as justpmin = j(a� )� b̂j :
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Q(a) (b)Figure 2.5: (a) Shortest distane point to line. (b) Shortest distane, line to line.2.2.3 The shortest distane between two straight linesIf the shortest distane between a point and a line is along the perpendiular, thenthe shortest distane between the two straight lines r = a + �b̂ and r =  + �d̂must be found as the length of the vetor whih is mutually perpendiular to thelines.The unit vetor along the mutual perpendiular isp̂ = (b̂� d̂)=jb̂� d̂j :(Yes, don't forget that b̂ � d̂ is NOT a unit vetor. b̂ and d̂ are not orthogonal,so there is a sin � lurking!)The minimum length is therefore the omponent of a�  in this diretionpmin = ∣

∣(a� ) � (b̂� d̂)=jb̂� d̂j∣∣ :



2.2. GEOMETRY USING VECTORS: LINES, PLANES 23| ExampleQ Two long straight pipes are spei�ed using Cartesian o-ordinates as follows:Pipe A has diameter 0:8 and its axis passes through points (2; 5; 3) and(7; 10; 8).Pipe B has diameter 1:0 and its axis passes through the points (0; 6; 3) and(�12; 0; 9).Determine whether the pipes need to be realigned to avoid intersetion.A Eah pipe axis is de�ned using two points. The vetor equation of the axisof pipe A isr = [2; 5; 3℄ + �0[5; 5; 5℄ = [2; 5; 3℄ + �[1; 1; 1℄=p3The equation of the axis of pipe B isr = [0; 6; 3℄ + �0[12; 6; 6℄ = [0; 6; 3℄ + �[�2;�1; 1℄=p6The perpendiular to the two axes has diretion[1; 1; 1℄� [�2;�1; 1℄ = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk1 1 1�2 �1 1 ∣

∣

∣

∣

∣

∣

= [2;�3; 1℄ = pThe length of the mutual perpendiular is(a� ) � [2;�3; 1℄p14 = [2;�1; 0℄ � [2;�3; 1℄p14 = 1:87 :But the sum of the radii of the two pipes is 0:4+0:5 = 0:9. Hene the pipesdo not interset.2.2.4 The equation of a planeThere are a number of ways of speifying the equation of a plane.1. If b and  are two non-parallel vetors (ie b �  6= 0), then the equation ofthe plane passing through the point a and parallel to the vetors b and  maybe written in the formr = a+ �b+ �where �; � are salar parameters. Note that b and  are free vetors, so don'thave to lie in the plane (Figure 2.6(a).)2. Figure 2.6(b) shows the plane de�ned by three non-ollinear points a, b and in the plane (note that the vetors b and  are position vetors, not freevetors as in the previous ase). The equation might be written asr = a+ �(b� a) + �(� a)3. Figure 2.6() illustrates another desription is in terms of the unit normal tothe plane n̂ and a point a in the planer � n̂ = a � n̂ :
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(a) (b) ()Figure 2.6: (a) Plane de�ned using point and two lines. (b) Plane de�ned using three points. ()Plane de�ned using point and normal. Vetor r is the position vetor of a general point in theplane.2.2.5 The shortest distane from a point to a planeThe shortest distane from a point d to the plane is along the perpendiular.Depending on how the plane is de�ned, this an be written asD = j(d� a) � n̂j or D = j(d� a) � (b� )jjb� j :2.3 Solution of vetor equationsIt is sometimes required to obtain the most general vetor whih satis�es a givenvetor relationship. This is very muh like obtaining the lous of a point. The bestmethod of proeeding in suh a ase is as follows:(i) Deide upon a system of three o-ordinate vetors using two non-parallel vetorsappearing in the vetor relationship. These might be a, b and their vetor produt(a� b).(ii) Express the unknown vetor x as a linear ombination of these vetorsx = �a+ �b+ �a� bwhere �; �; � are salars to be found.(iii) Substitute the above expression for x into the vetor relationship to determinethe onstraints on �; � and � for the relationship to be satis�ed.| ExampleQ Solve the vetor equation x = x� a+ b.A Step (i): Set up basis vetors a, b and their vetor produt a� b.Step (ii): x = �a+ �b+ �a� b.



2.4. ROTATION, ANGULAR VELOCITY/ACCELERATION AND MOMENTS 25Step (iii): Bung this expression for x into the equation!�a+ �b+ �a� b = (�a+ �b+ �a� b)� a+ b= 0+ �(b� a) + �(a� b)� a+ b= ��(a � b)a+ (�a2 + 1)b� �(a� b)We have learned that any vetor has a unique expression in terms of a basisset, so that the oeÆients of a, b and a� b on either side of the equationmuh be equal.) � = ��(a � b)� = �a2 + 1� = ��so that� = 11 + a2 � = � 11 + a2 � = a � b1 + a2 :So �nally the solution is the single point:x = 11 + a2 ((a � b)a+ b� (a� b))2.4 Rotation, angular veloity/aeleration and momentsA rotation an represented by a vetor whose diretion is along the axis of rotationin the sense of a r-h srew, and whose magnitude is proportional to the size ofthe rotation (Fig. 2.7). The same idea an be extended to the derivatives, thatis, angular veloity !!! and angular aeleration _!!!.Angular aelerations arise beause of a moment (or torque) on a body. In me-hanis, the moment of a fore F about a point Q is de�ned to have magnitudeM = Fd , where d is the perpendiular distane between Q and the line of ationL of F.The vetor equation for moment isM = r � Fwhere r is the vetor from Q to any point on the line of ation L of fore F.The resulting angular aeleration vetor is in the same diretion as the momentvetor.The instantaneous veloity of any point P on a rigid body undergoing pure rotationan be de�ned by a vetor produt as follows. The angular veloity vetor !!! has



26 LECTURE 2. MULTIPLE PRODUCTS. GEOMETRY USING VECTORS
ω

θd δt

in right−hand screw sense

d tFigure 2.7: The angular veloity vetor !!! is along the axis of rotation and has magnitude equal tothe rate of rotation.magnitude equal to the angular speed of rotation of the body and with diretionthe same as that of the r-h srew. If r is the vetor OP , where the origin O anbe taken to be any point on the axis of rotation, then the veloity v of P due tothe rotation is given, in both magnitude and diretion, by the vetor produtv = !!! � r:
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Leture 3Di�erentiating Vetor Funtions of a SingleVariableYour experiene of di�erentiation and integration has extended as far as salarfuntions of single and multiple variables | funtions like f (x) and f (x; y ; t).It should be no great surprise that we often wish di�erentiate vetor funtions. Forexample, suppose you were driving along a wiggly road with position r(t) at timet. Di�erentiating r(t) wrt time should yield your veloity v(t), and di�erentiatingv(t) should yield your aeleration. Let's see how to do this.3.1 Di�erentiation of a vetorThe derivative of a vetor funtion a(p) of a single parameter p isa0(p) = limÆp!0 a(p + Æp)� a(p)Æp :If we write a in terms of omponents relative to a FIXED oordinate system (̂{{{; |̂||; k̂kkonstant)a(p) = a1(p)̂{{{ + a2(p)̂||| + a3(p)k̂kkthen a0(p) = da1dp {̂{{ + da2dp |̂|| + da3dp k̂kk :That is, in order to di�erentiate a vetor funtion, one simply di�erentiates eahomponent separately. This means that all the familiar rules of di�erentiationapply, and they don't get altered by vetor operations like salar produt andvetor produts.Thus, for example:ddp(a� b) = dadp � b+ a� dbdp ddp(a � b) = dadp � b+ a � dbdp :27



28 LECTURE 3. DIFFERENTIATING VECTOR FUNCTIONS OF A SINGLE VARIABLENote that da=dp has a di�erent diretion and a di�erent magnitude from a.Likewise, as you might expet, the hain rule still applies. If a = a(u) and u = u(t),say: ddt a = dadu dudt
| ExamplesQ A 3D vetor a of onstant magnitude is varying over time. What an you sayabout the diretion of _a?A Using intuition: if only the diretion is hanging, then the vetor must betraing out points on the surfae of a sphere. We would guess that thederivative _a is orthogonal to a.To prove this writeddt (a � a) = a � dadt + dadt � a = 2a � dadt :But (a � a) = a2 whih we are told is onstant. Soddt (a � a) = 0 ) 2a � dadt = 0and hene a and da=dt must be perpendiular.Q The position of a vehile is r(u) where u is the amount of fuel onsumed bysome time t. Write down an expression for the aeleration.nA The veloity isv = drdt = drdu dudta = ddt drdt = d2rdu2 (dudt)2 + drdu d2udt23.1.1 Geometrial interpretation of vetor derivativesLet r(p) be a position vetor traing a spae urve as some parameter p varies.The vetor Ær is a seant to the urve, and Ær=Æp lies in the same diretion. (SeeFig. 3.1.) In the limit as Æp tends to zero Ær=Æp = dr=dp beomes a tangent tothe spae urve. If the magnitude of this vetor is 1 (i.e. a unit tangent), then



3.1. DIFFERENTIATION OF A VECTOR 29jdrj = dp so the parameter p is ar-length (metri distane). More generally,however, p will not be ar-length and we will have:drdp = drds dsdpSo, the diretion of the derivative is that of a tangent to the urve, and itsmagnitude is jds=dpj, the rate of hange of ar length w.r.t the parameter.Of ourse if that parameter p is time, the magnitude jdr=dtj is the speed.| ExampleQ Draw the urver = a os( spa2 + h2 )̂{{{ + a sin( spa2 + h2 )̂||| + hspa2 + h2 k̂kkwhere s is ar length and h, a are onstants. Show that the tangent dr=dsto the urve has a onstant elevation angle w.r.t the xy -plane, and determineits magnitude.A drds = � apa2 + h2 sin () {̂{{ + apa2 + h2 os () |̂|| + hpa2 + h2 k̂kkThe projetion on the xy plane has magnitude a=pa2 + h2 and in the zdiretion h=pa2 + h2, so the elevation angle is a onstant, tan�1(h=a).We are expeting dr=ds = 1, and indeed
√a2 sin2() + a2 os2() + h2=√a2 + h2 = 1:3.1.2 Ar length is a speial parameter!It might seem that we an be ompletely relaxed about saying that any old pa-rameter p is ar length, but this is not the ase. Why not? The reason is that arlength is speial is that, whatever the parameter p,s = ∫ pp0 ∣

∣

∣

∣

drdp ∣

∣

∣

∣

dp :Perhaps another way to grasp the signi�ane of this is using Pythagoras' theoremon a short piee of urve: in the limit as dx et tend to zero,ds2 = dx2 + dy 2 + dz2 :
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δ

δ

dp

δ

r
r δ

r

r

r

rd

(p)
(p + p)

ds

dp

dr

(s)

r

ds

(s + s)

1Figure 3.1: Left: Ær is a seant to the urve but, in the limit as Æp ! 0, beomes a tangent.Right: if the parameter is ar length s, then jdrj = ds.So if a urve is parameterized in terms of pdsdp = √dxdp 2 + dydp 2 + dzdp2 :As an example, suppose in our earlier example we had parameterized our helix asr = a os p{̂{{ + a sin p|̂|| + hpk̂kkIt would be easy just to say that p was arlength, but it would not be orretbeausedsdp = √dxdp2 + dydp 2 + dzdp2= √a2 sin2 p + a2 os2 p + h2 = √a2 + h2If p really was arlength, ds=dp = 1. So p=pa2 + h2 is arlength, not p.3.2 Integration of a vetor funtionThe integration of a vetor funtion of a single salar variable an be regardedsimply as the reverse of di�erentiation. In other words
∫ p2p1 da(p)dp dpFor example the integral of the aeleration vetor of a point over an interval oftime is equal to the hange in the veloity vetor during the same time interval.However, many other, more interesting and useful, types of integral are possible,espeially when the vetor is a funtion of more than one variable. This requiresthe introdution of the onepts of salar and vetor �elds. See later!



3.3. CURVES IN 3 DIMENSIONS 313.3 Curves in 3 dimensionsIn the examples above, parameter p has been either ar length s or time t. Itdoesn't have to be, but these are the main two of interest. Later we shall lookat some important results when di�erentiating w.r.t. time, but now let use lookmore losely at 3D urves de�ned in terms of ar length, s.Take a piee of wire, and bend it into some arbitrary non-planar urve. This is aspae urve. We an speify a point on the wire by speifying r(s) as a funtionof distane or ar length s along the wire.3.3.1 The Fr�enet-Serret relationshipsWe are now going to introdue a loal orthogonal oordinate frame for eah points along the urve, ie one with its origin at r(s). To speify a oordinate frame weneed three mutually perpendiular diretions, and these should be intrinsi to theurve, not �xed in an external referene frame. The ideas were �rst suggested bytwo Frenh mathematiians, F-J. Fr�enet and J. A. Serret.1. Tangent t̂There is an obvious hoie for the �rst diretion at the point r(s), namely theunit tangent t̂. We already know thatt̂ = dr(s)ds2. Prinipal Normal n̂Reall that earlier we proved that if a was a vetor of onstant magnitudethat varies in diretion over time then da=dt was perpendiular to it. Beauset̂ has onstant magnitude but varies over s, d t̂=ds must be perpendiular tot̂.Hene the prinipal normal n̂ isd t̂ds = �n̂ : where � � 0 :� is the urvature, and � = 0 for a straight line. The plane ontaining t̂ andn̂ is alled the osulating plane.3. The Binormal b̂The loal oordinate frame is ompleted by de�ning the binormalb̂(s) = t̂(s)� n̂(s) :



32 LECTURE 3. DIFFERENTIATING VECTOR FUNCTIONS OF A SINGLE VARIABLESine b̂ � t̂ = 0,d b̂ds � t̂+ b̂ � d t̂ds = d b̂ds � t̂+ b̂ � �n̂ = 0from whihd b̂ds � t̂ = 0:But this means that d b̂=ds is along the diretion of n̂, ord b̂ds = ��(s)n̂(s)where � is the torsion, and the negative sign is a matter of onvention.Di�erentiating n̂ � t̂ = 0 and n̂ � b̂ = 0, we �ndd n̂ds = ��(s )̂t(s) + �(s)b̂(s):The Fr�enet-Serret relationships:d t̂=ds = �n̂d n̂=ds = ��(s )̂t(s) + �(s)b̂(s)d b̂=ds = ��(s)n̂(s)| ExampleQ Derive �(s) and �(s) for the helixr(s) = a os( s�) {̂{{ + a sin( s�) |̂|| + h( s�) k̂kk ; � = √a2 + h2and omment on their values.A We found the unit tangent earlier ast̂ = drds = [�a� sin( s�) ; a� os( s�) ; h�] :Di�erentiation gives�n̂ = d t̂ds = [� a�2 os( s�) ; � a�2 sin( s�) ; 0]



3.4. RADIAL AND TANGENTIAL COMPONENTS IN PLANE POLARS 33Curvature is always positive, so� = a�2 n̂ = [� os( s�) ; � sin( s�) ; 0] :So the urvature is onstant, and the normal is parallel to the xy -plane.Now useb̂ = t̂�n̂ = ∣

∣

∣

∣

∣

∣

{̂{{ |̂|| k̂kk(�a=�)S (a=�)C (h=�)�C �S 0 ∣

∣

∣

∣

∣

∣

= [h� sin( s�) ; � h� os( s�) ; a�]

and di�erentiate b̂ to �nd an expression for the torsiond b̂ds = [ h�2 os( s�) ; h�2 sin( s�) ; 0] = �h�2 n̂so the torsion is� = h�2again a onstant.3.4 Radial and tangential omponents in plane polarsIn plane polar oordinates, the radius vetorof any point P is given byr = r os �̂{{{ + r sin �|̂||= r êrwhere we have introdued the unit radial ve-tor êr = os �̂{{{ + sin �|̂|| :The other \natural" (we'll see why in a laterleture) unit vetor in plane polars is orthog-onal to êr and isê� = � sin �̂{{{ + os �|̂||so that êr � êr = ê� � ê� = 1 and êr � ê� = 0.

PSfrag replaements êrê�
{̂{{|̂|| �r P



34 LECTURE 3. DIFFERENTIATING VECTOR FUNCTIONS OF A SINGLE VARIABLENow suppose P is moving so that r is a funtion of time t. Its veloity is_r = ddt (r êr) = drdt êr + r d êrdt= drdt êr + r d�dt (� sin �̂{{{ + os �|̂||)= drdt êr + r d�dt ê�= radial + tangentialThe radial and tangential omponents of veloity of P are therefore dr=dt andrd�=dt, respetively.Di�erentiating a seond time gives the aeleration of P�r = d2rdt2 êr + drdt d�dt ê� + drdt d�dt ê� + r d2�dt2 ê� � r d�dt d�dt êr= [d2rdt2 � r (d�dt)2] êr + [2drdt d�dt + r d2�dt2] ê�



3.5. ROTATING SYSTEMS 353.5 Rotating systemsConsider a body whih is rotating with onstant angular veloity !!! about someaxis passing through the origin. Assume the origin is �xed, and that we are sittingin a �xed oordinate system Oxyz .If ��� is a vetor of onstant magnitude and onstant diretion in the rotating system,then its representation r in the �xed system must be a funtion of t.r(t) = R(t)���At any instant as observed in the �xed systemdrdt = _R���+ R _���but the seond term is zero sine we assumed ��� to be onstant so we havedrdt = _RR
>rNote that:� dr=dt will have �xed magnitude;� dr=dt will always be perpendiular to the axis of rotation;� dr=dt will vary in diretion within those onstraints;� r(t) will move in a plane in the �xed system.

ω

ρ



36 LECTURE 3. DIFFERENTIATING VECTOR FUNCTIONS OF A SINGLE VARIABLENow let's onsider the term _RR
>. First, note that RR

> = I (the identity), sodi�erentiating both sides yields_RR
> + R _R> = 0_RR

> = �R _R>Thus _RR
> is anti-symmetri:_RR
> = 



0 �z yz 0 �x�y x 0 

Now you an verify for yourself that appliation of a matrix of this form to anarbitrary vetor has preisely the same e�et as the ross produt operator, !!!�,where !!! = [xyz ℄>. Loh-and-behold, we then we have_r = !!! � rmathing the equation at the end of leture 2, v = !!!�r, as we would hope/expet.3.5.1 Rotation: Part 2Now suppose ��� is the position vetor of a point P whih moves in the rotatingframe. There will be two ontributions to motion with respet to the �xed frame,one due to its motion within the rotating frame, and one due to the rotation itself.So, returning to the equations we derived earlier:r(t) = R(t)���(t)and the instantaenous di�erential with respet to time:drdt = _R���+ R _��� = _RR
>r + R _���Now ��� is not onstant, so its di�erential is not zero; hene rewriting this lastequations we have thatThe instantaneous veloity of P in the �xed frame isdrdt = R _���+ !!! � rThe seond term of ourse, is the ontribution from the rotating frame whih wesaw previously. The �rst is the linear veloity measured in the rotating frame _���,referred to the �xed frame (via the rotation matrix R whih aligns the two frames)
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3.5.2 Rotation 3: Instantaneous aelerationOur previous result is a general one relating the time derivatives of any vetor inrotating and non-rotating frames. Let us now onsider the seond di�erential:�r = _!!! � r + !!! � _r+ _R _���+ R����We shall assume that the angular aeleration is zero, whih kills o� the �rst term,and so now, substituting for _r we have�r = !!! � (!!! � r+ R _���) + _R _���+ R����= !!! � (!!! � r) + !!! � R _���+ _R _���+ R����= !!! � (!!! � r) + !!! � R _���+ _R(R>R) _���+ R����= !!! � (!!! � r) + 2!!! � (R _���) + R����The instantaneous aeleration is therefore�r = R����+ 2!!! � (R _���) + !!! � (!!! � r)� The �rst term is the aeleration of the point P in the rotating frame mea-sured in the rotating frame, but referred to the �xed frame by the rotation
R� The last term is the entripetal aeleration to due to the rotation. (Yes! Itsmagnitude is !2r and its diretion is that of �r. Chek it out.)
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PSfrag replaements r t !!! = !m̂m̂n̂ ^̀̀̀  = ^̀̀̀Figure 3.2: Coriolis example.� The middle term is an extra term whih arises beause of the veloity of Pin the rotating frame. It is known as the Coriolis aeleration, named afterthe Frenh engineer who �rst identi�ed it.Beause of the rotation of the earth, the Coriolis aeleration is of great im-portane in meteorology and aounts for the ourrene of high pressure anti-ylones and low pressure ylones in the northern hemisphere, in whih the Coriolisaeleration is produed by a pressure gradient. It is also a very important ompo-nent of the aeleration (hene the fore exerted) by a rapidly moving robot arm,whose links whirl rapidly about rotary joints.| ExampleQ Find the instantaneous aeleration of a projetile �red along a line of longi-tude (with angular veloity of  onstant relative to the sphere) if the sphereis rotating with angular veloity !!!.A Consider a oordinate frame de�ned by mutually orthogonal unit vetors,^̀̀̀; m̂ and n̂, as shown in Fig. 3.2. We shall assume, without loss of generality,that the �xed and rotating frames are instantaneously aligned at the momentshown in the diagram, so that R = I, the identity, and hene r = ���.In the rotating frame_��� =  � ��� and ���� =  � _��� =  � ( � ���)So the in the �xed referene frame, beause these two frames are instanta-neously aligned�r =  � ( � ���) + 2!!! � ( � ���) + !!! � (!!! � r) :The �rst term is the entripetal aeleration due to the projetile movingaround the sphere | whih it does beause of the gravitational fore. The



3.5. ROTATING SYSTEMS 39last term is the entripetal aeleration resulting from the rotation of thesphere. The middle term is the Coriolis aeleration.Using Fig. 3.2, at some instant tr(t) = ���(t) = r os(t)m̂ + r sin(t)n̂and  = ^̀̀̀Then � ( � ���) = ( � ���) � 2��� = �2��� = �2r;Chek the diretion | the negative sign means it points towards the entreof the sphere, whih is as expeted.Likewise the last term an be obtained as!!! � (!!! � r) = �!2r sin(t)n̂Note that it is perpendiular to the axis of rotation m̂, and beause of theminus sign, direted towards the axis)The Coriolis term is derived as:2!!! � _��� = 2!!! � ( � ���)= 2
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= 2!r os t^̀̀̀Instead of a projetile, now onsider a roket on rails whih streth northfrom the equator. As the roket travels north it experienes the Coriolis fore(exerted by the rails): 2  ! R ost ^̀̀̀+ve -ve +ve +veHene the oriolis fore is in the diretion opposed to ^̀̀̀ (i.e. in the oppositediretion to the earth's rotation). In the absene of the rails (or atmosphere)the roket's tangetial speed (relative to the surfae of the earth) is greaterthan the speed of the surfae of the earth underneath it (sine the radiusof suessive lines of latitude dereases) so it would (to an observer on theearth) appear to deet to the east. The rails provide a oriolis fore keepingit on the same meridian.Revised Ot 2008
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(NB instantaneously common to earth’s surface and rocket)
Tangential component of velocity

Rocket’s velocity in direction of meridian

Tangential velocity of earth’s surface 

Figure 3.3: Roket example
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Figure 3.4: Coriolis e�et giving rise to weather systems
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