2A1D Vector Algebra and Calculus II

Bugs/queries to ian.reid@eng.ox.ac.uk Course page www.robots.ox.ac.uk/~ian/Teaching/Vectors Michaelmas 2008 Ian Reid

1. (a) Show how the definition of the gradient of a scalar function U(x, y, z)

grad
$$U = \hat{\mathbf{i}} \frac{\partial V}{\partial x} + \hat{\mathbf{j}} \frac{\partial V}{\partial y} + \hat{\mathbf{k}} \frac{\partial V}{\partial z}$$

is equivalent to the following:

- (i) the component of grad U in any direction is the rate of change of U with respect to distance in that direction;
- (ii) grad U is a vector whose magnitude at any point is equal to the greatest rate of change of U with respect to distance at that point and whose direction is that of the greatest rate of change.
- (b) Show that grad U is perpendicular to the surface U = constant.
- (c) Derive the gradients of the following functions:
 - (i) x^2y ; (ii) log r; (iii) $(\mathbf{c} \cdot \mathbf{r})^2$, for $\mathbf{c} = \text{constant vector}$, where $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$.
- (d) What is a directional derivative? Compute the directional derivative for $U = x^2 y$ at the point [1, 1, 1] in the direction $[1, 2, 0]/\sqrt{5}$.
- (e) Verify your result by evaluating values of U at position $\mathbf{r} = [1, 1, 1]$ then at $\mathbf{r} = [1 + \delta, 1 + 2\delta, 1]$, where δ is any small number. (For example $\delta = 0.01$.) Find the change in U, and divide it by the *distance* moved between the two positions.
- 2. (a) Using Cartesian co-ordinates, show that divadV is the outward normal flux of the vector **a** from the volume element dV.
 - (b) Derive the divergences of the following vector fields:

(i) **r**; (ii) r^n **r**; (iii) r^n **c** where $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$, $r = |\mathbf{r}|$ and **c** is a constant vector.

- 3. (a) Using Cartesian co-ordinates, show that $(\operatorname{curl} \mathbf{a})_z dS$ is the circulation of the vector \mathbf{a} around the perimeter of the area element dS in the x, y plane.
 - (b) Write down the curl of each of the following vector fields:
 - (i) $x^2 y \hat{\mathbf{k}}$; (ii) $r^n \mathbf{r}$; (iii) $\mathbf{r} \times \mathbf{c}$, where **c** is a constant vector.
 - (c) Show that operators "curl grad" and "div curl" are identically zero. (NB, the scalar and vector fields used must the general $f(\mathbf{r})$ and $\mathbf{f}(\mathbf{r})$, and not specific examples.)
- 4. (a) Show that if (u, v, w) is a set of curvilinear co-ordinates, the elements of length corresponding to small changes du, dv and dw are $h_1 du, h_2 dv$ and $h_3 dw$ respectively, where

$$h_1 = \left| \frac{\partial \mathbf{r}}{\partial u} \right|$$

and similarly for $h_{2,3}$.

- (b) Derive expressions for the *h*'s for the following co-ordinate systems:
 - i. cylindrical polars
 - ii. spherical polars

iii.
$$x = uv \cos w$$
, $y = uv \sin w$, $z = (u^2 - v^2)/2$.

- (c) Hence obtain expessions for $\nabla^2 U$ in all three co-ordinate systems. (The general formula in the lecture notes may be assumed without proof but you should understand the principles on which it is based.)
- 5. (a) State the divergence theorem of Gauss.
 - (b) Show using surface integration that if $\mathbf{a} = (x^3, y^3, z^3)$ then

$$\int_{S} \mathbf{a} \cdot \mathrm{d}\mathbf{S} = \frac{12}{5} \pi R^{5}$$

where the integration is over the sphere $x^2 + y^2 + z^2 = R^2$. (You may assume $\int_0^{2\pi} (\cos^4 \phi + \sin^4 \phi) d\phi = 3\pi/2$.)

(c) Verify your result by evaluating

$$\int_{V} \operatorname{div} \mathbf{a} \, \mathrm{d}V$$

throughout the volume of the sphere.

Vector Algebra and Calculus II (2008)

- 6. (a) State Stokes' theorem, explaining carefully how the surface orientation and direction of line integral are related.
 - (b) Evaluate the line integral $\oint \mathbf{F} \cdot d\mathbf{r}$ around the circumference of the circle $x^2 + y^2 = a^2$, z = 0, where **F** is the vector $[0, x^3, 0]$.
 - (c) Verify your result by evaluating $\int_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$
 - i. where S is the flat surface enclosed by the circle $x^2 + y^2 = a^2$, z = 0.
 - ii. where S is the hemispherical surface $x^2 + y^2 + z^2 = a^2$, $z \ge 0$.
- 7. (a) Show that div $(U\mathbf{a}) = \mathbf{a} \cdot \text{grad } U + U \text{div } \mathbf{a}$.
 - (b) Using Gauss' theorem and the result of part (a) show that

$$\int_{V} \operatorname{grad} U \mathrm{d} V = \int_{S} U \mathrm{d} \mathbf{S}$$

where the volume V is enclosed by the surface S.

- (c) Verify this result for the case where $U = z^3$, S is the surface $x^2 + y^2 + z^2 = a^2$, and V is its interior.
- 8. (a) Prove the identity div $(\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot \operatorname{curl} \mathbf{u} \mathbf{u} \cdot \operatorname{curl} \mathbf{v}$
 - (b) Hence, by means of the divergence (Gauss') theorem, show that

$$\int_{S} (\text{grad } \boldsymbol{\psi} \times \mathbf{v}) \cdot d\mathbf{S} = -\int_{V} (\text{grad } \boldsymbol{\psi} \cdot \text{curl } \mathbf{v}) dV$$

where the first integral is over the surface S enclosing the volume V of a simple body and the second integral is over this volume.

(c) Verify the result of part (b) for a right circular cylinder of radius *a* and height *h*, resting on the *xy* plane, with its axis coincident with the *z* axis when

$$\psi = z^2$$
 and $\mathbf{v} = y\hat{\mathbf{i}} - x\hat{\mathbf{j}}$.

9. Integral equations of continuity and momentum for an inviscid fluid may be derived in the form

$$\int_{V} \frac{\partial \rho}{\partial t} dV + \int_{S} \rho \mathbf{q} \cdot d\mathbf{S} = 0 \quad \text{and} \quad F_{x} = \int_{V} \frac{\partial}{\partial t} (\rho u) dV + \int_{S} \rho u \mathbf{q} \cdot d\mathbf{S}$$

where S is a closed surface containing the volume V, ρ is the fluid density, **q** is the fluid velocity vector and u its component in the x-direction, and F_x is the force on the control volume in the x-direction.

(a) By means of the divergence theorem, derive the equations

$$\frac{\partial \rho}{\partial t} + \operatorname{div} (\rho \mathbf{q}) = 0$$
 and $F_x = \int_V \rho \left(\frac{\partial u}{\partial t} + \mathbf{q} \cdot \nabla u \right) \mathrm{d} V.$

(b) Hence deduce that the acceleration of a fluid particle in the *x*-direction is

$$\ddot{x} = \frac{\partial u}{\partial t} + \mathbf{q} \cdot \nabla u$$

(c) The fluid particle velocity is $\mathbf{q} = u\hat{\mathbf{i}} + v\hat{\mathbf{j}} + w\hat{\mathbf{k}}$. Derive an expression for the 3D fluid particle acceleration vector in terms of \mathbf{q} and the operator $(\mathbf{q} \cdot \nabla)$.

Answers

1. (c) (i) $2xy\hat{\mathbf{i}} + x^2\hat{\mathbf{j}}$ (ii) \mathbf{r}/r^2 (iii) $2(\mathbf{c} \cdot \mathbf{r})\mathbf{c}$ (d) Directional derivative is $4/\sqrt{5}$. 2. (i) 3 (ii) $(n+3)r^n$ (iii) $nr^{n-2}(\mathbf{r} \cdot \mathbf{c})$ 3. (i) $x^2\hat{\mathbf{i}} - 2xy\hat{\mathbf{j}}$ (ii) 0 (iii) $-2\mathbf{c}$ 4. (i) $h_r = 1, h_{\theta} = r, h_z = 1$ (ii) $h_r = 1, h_{\phi} = r\sin\theta, h_{\theta} = r$ (iii) $h_1 = h_2 = (u^2 + v^2)^{1/2}, h_3 = uv$ 5. $\frac{12}{5}\pi R^5$ 6. $\frac{3}{4}\pi a^4$ 7. $\frac{4}{5}\pi a^5\hat{\mathbf{k}}$ 8. $2\pi a^2h^2$