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1 Discrete-time Kalman filter

We ended the first part of this course deriving the Discrete-Time Kalman Filter as a recursive Bayes’
estimator. In this lecture we will go into the filter in more detail, and provide a new derivation for
the Kalman filter, this time based on the idea ofLinear Minimum Variance (LMV) estimation of
discrete-time systems.

1.1 Background

The problem we are seeking to solve is the continual estimation of a set of parameters whose values
change over time. Updating is achieved by combining a set of observations or measurementsz(t)
which contain information about the signal of interestx(t). The role of the estimator is to provide
an estimatêx(t+ �) at some timet+ � . If � > 0 we have aprediction filter, if � < 0 asmoothing
filter and if � = 0 the operation is simply calledfiltering .

Recall that an estimator is said to beunbiased if the expectation of its output is the expectation of
the quantity being estimated,E[x̂℄ = E[x℄.
Also recall that aminimum variance unbiased estimator (MVUE) is an estimator which is unbi-
ased and minimises the mean square error:x̂ = argminx̂ E[jjx̂� xjj2jz℄ = E[xjz℄
The termE[jjx � x̂jj2℄, the so-calledvariance of error, is closely related to theerror covariance
matrix ,E[(x� x̂)(x� x̂)T ℄. Specifically, the variance of error of an estimator is equalto the trace
of the error covariance matrix,E[jjx� x̂jj2℄ = traceE[(x� x̂)(x� x̂)T ℄:
The Kalman filter is alinear minimum variance of error filter (i.e. it is the best linear filter over the
class of all linear filters) over time-varying and time-invariant filters. In the case of the state vectorx
and the observationsz being jointly Gaussian distributed, the MVUE estimator is alinear function
of the measurement setz and thus the MVUE (sometimes written MVE for Minimum Variance of
Error estimator) is also a LMV estimator, as we saw in the firstpart of the course.
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Notation

The following notation will be used.zk observation vector at timek.Zk the set of all observations up to (and including) timek.xk system state vector at timek.x̂kji estimation ofx at timek based on timei, k � i.~xkjk estimation error,̂xkjk � xk; (tilde notation)Pk Covariance matrix.Fk State transition matrix.Gk Input (control) transition matrix.Hk Output transition matrix.wk process (or system, or plant) noise vector.vk measurement noise vector.Qk process (or system, or plant) noise covariance matrix.Rk measurement noise covariance matrix.Kk Kalman gain matrix.�k innovation at timek.Sk innovation covariance matrix at timek.

1.2 System and observation model

We now begin the analysis of the Kalman filter. Refer to figure 1. We assume that the system can be
modelled by the state transition equation,xk+1 = Fkxk +Gkuk +wk (1)

wherexk is the state at timek, uk is an input control vector,wk is additive system or process noise,Gk is the input transition matrix andFk is the state transition matrix.

We further assume that the observations of the state are madethrough a measurement system which
can be represented by a linear equation of the form,zk = Hkxk + vk; (2)

wherezk is the observation or measurement made at timek, xk is the state at timek, Hk is the
observation matrix andvk is additive measurement noise.
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Figure 1:State-space model.

1.3 Assumptions

We make the following assumptions;� The process and measurement noise random processeswk andvk are uncorrelated, zero-mean
white-noise processes with known covariance matrices. Then,E[wkwTl ℄ = � Qk k = l;0 otherwise; (3)E[vkvTl ℄ = � Rk k = l;0 otherwise; (4)E[wkvTl ℄ = 0 for all k; l (5)

whereQk andRk are symmetric positive semi-definite matrices.� The initial system state,x0 is a random vector that is uncorrelated to both the system and
measurement noise processes.� The initial system state has a known mean and covariance matrixx̂0j0 = E[x0℄ and P0j0 = E[(x̂0j0 � x0)(x̂0j0 � x0)T ℄ (6)

Given the above assumptions the task is to determine, given aset of observationsz1; : : : ; zk+1, the
estimation filter that at thek + 1th instance in time generates an optimal estimate of the statexk+1,
which we denote bŷxk+1, that minimises the expectation of the squared-error loss function,E[jjxk+1 � x̂k+1jj2℄ = E[(xk+1 � x̂k+1)T (xk+1 � x̂k+1)℄ (7)

1.4 Derivation

Consider the estimation of statêxk+1 based on the observations up to timek, z1 : : : ; zk , namelyx̂k+1jZk . This is called a one-step-ahead prediction or simply aprediction. Now, the solution to
the minimisation of Equation 7 is the expectation of the state at timek + 1 conditioned on the
observations up to timek. Thus,
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x̂k+1jk = E[xk+1jz1; : : : ; zk ℄ = E[xk+1jZk℄ (8)

Then the predicted state is given byx̂k+1jk = E[xk+1jZk℄= E[Fkxk +Gkuk +wkjZk℄= FkE[xkjZk ℄ +Gkuk +E[wkjZk ℄= Fkx̂kjk +Gkuk (9)

where we have used the fact that the process noise has zero mean value anduk is known precisely.

The estimate variancePk+1jk is the mean squared error in the estimatex̂k+1jk.

Thus, using the facts thatwk andx̂kjk are uncorrelated:Pk+1jk = E[(xk+1 � x̂k+1jk)(xk+1 � x̂k+1jk)T jZk℄= FkE[(xk � x̂kjk)(xk � x̂kjk)T jZk℄FTk +E[wkwTk ℄= FkPkjkFTk +Qk (10)

Having obtained a predictive estimatex̂k+1jk suppose that we now take another observationzk+1.
How can we use this information to update the prediction, ie.find x̂k+1jk+1? We assume that the
estimate is a linear weighted sum of the prediction and the new observation and can be described by
the equation, x̂k+1jk+1 = K0k+1x̂k+1jk +Kk+1zk+1 (11)

whereK0k+1 andKk+1 are weighting orgain matrices (of different sizes). Our problem now is to
reduced to finding theKk+1 andK0k+1 that minimise the conditional mean squared estimation error
where of course the estimation error is given by:~xk+1jk+1 = x̂k+1jk+1 � xk+1 (12)

1.5 The Unbiased Condition

For our filter to be unbiased, we require thatE[x̂k+1jk+1℄ = E[xk+1℄. Let’s assume (and argue
by induction) that̂xkjk is an unbiased estimate. Then combining equations (11) and (2) and taking
expectations yieldsE[x̂k+1jk+1℄ = E[K0k+1x̂k+1jk +Kk+1Hk+1xk+1 +Kk+1vk+1℄= K0k+1E[x̂k+1jk ℄ +Kk+1Hk+1E[xk+1℄ +Kk+1E[vk+1℄ (13)

Note that the last term on the right hand side of the equation is zero, and further note that the
prediction is unbiased: E[x̂k+1jk ℄ = E[Fkx̂kjk +Gkuk℄= FkE[x̂kjk ℄ +Gkuk= E[xk+1℄ (14)
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Hence by combining equations (13) and (14))E[x̂k+1jk+1℄ = (K0k+1 +Kk+1Hk+1)E[xk+1℄
and the condition that̂xk+1jk+1 be unbiased reduces the requirement toK0k+1 +Kk+1Hk+1 = I

or K0k+1 = I�Kk+1Hk+1 (15)

We now have that for our estimator to be unbiased is must satisfyx̂k+1jk+1 = (I�Kk+1Hk+1)x̂k+1jk +Kk+1zk+1= x̂k+1jk +Kk+1[zk+1 �Hk+1x̂k+1jk ℄ (16)

whereK is known as theKalman gain.

Note that sinceHk+1x̂k+1jk can be interpreted as a predicted observationẑk+1jk , equation 16 can
be interpreted as the sum of a prediction and a fraction of thedifference between the predicted and
actual observation.

1.6 Finding the Error Covariance

We determined the prediction error covariance in equation (10). We now turn to the updated error
covariancePk+1jk+1 = E[~xk+1jk+1~xk+1jk+1)T jZk ℄= E[(xk+1 � x̂k+1jk+1)(xk+1 � x̂k+1jk+1)T ℄= (I�Kk+1Hk+1)E[~xk+1jk~xTk+1jk℄(I�Kk+1Hk+1)T+Kk+1E[vk+1vTk+1℄KTk+1 + 2(I�Kk+1Hk+1)E[~xk+1jkvTk+1℄KTk+1
and with E[vk+1vTk+1℄ = Rk+1E[~xk+1jk~xTk+1jk ℄ = Pk+1jkE[~xk+1jkvTk+1℄ = 0
we obtainPk+1jk+1 = (I�Kk+1Hk+1)Pk+1jk(I�Kk+1Hk+1)T +Kk+1Rk+1KTk+1 (17)

Thus the covariance of the updated estimate is expressed in terms of the prediction covariancePk+1jk , the observation noiseRk+1 and the Kalman gain matrixKk+1.

1.7 Choosing the Kalman Gain

Our goal is now to minimise the conditional mean-squared estimation error with respect to the
Kalman gain,K.
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L = minKk+1E[~xTk+1jk+1~xk+1jk+1jZk+1℄= minKk+1 trace
�E[~xk+1jk+1~xTk+1jk+1jZk+1℄�= minKk+1 trace
�Pk+1jk+1� (18)

For any matrixA and a symmetric matrixB��A �trace(ABAT )� = 2AB
(to see this, consider writing the trace as

Pi aTi Bai whereai are the columns ofAT , and then
differentiating w.r.t. theai).
Combining equations (17) and (18) and differentiating withrespect to the gain matrix (using the
relation above) and setting equal to zero yields�L�Kk+1 = �2(I�Kk+1Hk+1)Pk+1jkHTk+1 + 2Kk+1Rk+1 = 0
Re-arranging gives an equation for the gain matrixKk+1 = Pk+1jkHTk+1[Hk+1Pk+1jkHTk+1 +Rk+1℄�1 (19)

Together with Equation 16 this defines the optimal linear mean-squared error estimator.

1.8 Summary of key equations

At this point it is worth summarising the key equations whichunderly the Kalman filter algorithm.
The algorithm consists of two steps; a prediction step and anupdate step.

Prediction: also known as the time-update. This predicts the state and variance at timek + 1
dependent on information at timek.x̂k+1jk = Fkx̂kjk +Gkuk (20)Pk+1jk = FkP̂kjkFTk +Qk (21)

Update: also known as the measurement update. This updates the stateand variance using a
combination of the predicted state and the observationzk+1.x̂k+1jk+1 = x̂k+1jk +Kk+1 �zk+1 �Hk+1x̂k+1jk� (22)Pk+1jk+1 = (I�Kk+1Hk+1)Pk+1jk(I�Kk+1Hk+1)T +Kk+1Rk+1KTk+1 (23)
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Figure 2:Discrete-time Kalman filter block diagram.

where the gain matrix is given byKk+1 = Pk+1jkHTk+1[HkPk+1jkHTk+1 +Rk+1℄�1 (24)

Together with the initial conditions on the estimate and itserror covariance matrix (equation 6)
this defines the discrete-time sequential, recursive algorithm for determining the linear minimum
variance estimate known as the Kalman filter.

1.9 Interpreting the Kalman Filter

We now take a look at the overall Kalman filter algorithm in more detail. Figure 2 summarises the
stages in the algorithm in block diagram form.

The innovation, �k+1, is defined as the difference between the observation (measurement)zk+1
and its prediction̂zk+1jk made using the information available at timek. It is a measure of the new
information provided by adding another measurement in the estimation process.

Given that ẑk+1jk = E[zk+1jZk ℄= E[Hk+1xk+1 + vk+1jZk℄= Hk+1x̂k+1jk (25)

the innovation�k+1 can be expressed by�k+1 = zk+1 �Hk+1x̂k+1jk (26)

The innovation or residual is an important measure of how well an estimator is performing. For
example it can be used to validate a measurement prior to it being included as a member of the
observation sequence (more on this later).
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The process of transformingzk+1 into �k+1 is sometimes said to be achieved through theKalman
whitening filter . This is because the innovations form an uncorrelated orthogonal white-noise pro-
cess sequenceVk+1 which is statistically equivalent to the observationsZk+1. This is important
because where aszk+1 is in generally statistically correlated, the innovation�k+1 is uncorrelated so
effectively provides new information or “innovation”.

The innovation has zero mean, since,E[�k+1jZk℄ = E[zk+1 � ẑk+1jkjZk ℄= E[zk+1jZk℄� ẑk+1jk ;= 0 (27)

and the innovation varianceSk+1 is given bySk+1 = E[�k+1�Tk+1℄;= E[(zk+1 �Hk+1x̂k+1jk)(zk+1 �Hk+1x̂k+1jk)T ℄Sk+1 = Rk+1 +Hk+1Pk+1jkHTk+1 (28)

Using Equation 26 and 28 we can re-write the Kalman updates interms of the innovation and its
variance as follows.x̂k+1jk+1 = x̂k+1jk +Kk+1�k+1 (29)Pk+1jk+1 = E[(xk+1 � x̂k+1jk �Kk+1�k+1)(xk+1 � x̂k+1jk �Kk+1�k+1)T ℄= E[(xk+1 � x̂k+1jk)(xk+1 � x̂k+1jk)T ℄�Kk+1E[�k+1�Tk+1℄Pk+1jk+1 = Pk+1jk �Kk+1Sk+1KTk+1 (30)

where, from Equation 19 Kk+1 = Pk+1jkHTk+1S�1k+1 (31)

and Sk+1 = Hk+1Pk+1jkHTk+1 +Rk+1: (32)

This is a convenient form of the Kalman filter often used in analysis.

Although primarily used as a state estimator the Kalman filter algorithm can be used to estimate
parameters other than the state vector. These are illustrated in Figure 2.

1. If applied to estimatêzk+1jk it is called ameasurementfilter.

2. If applied to estimatêxk+1jk it is called aprediction filter.

3. If applied to estimate�k+1 it is called awhitening filter.

4. If applied to estimatêxk+1jk+1 it is called aKalman filter.

1.10 Example

Consider a vehicle tracking problem where a vehicle is constrained to move in a straight line with
a constant velocity. Letp(t) and _p(t) represent the vehicle position and velocity. We assume that
observations of position can be made where the measurement noise isv(t). Since the vehicle is
moving at constant speed,�p(t) = 0.
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System model: The system state can be described byx(t) = [p(t); _p(t)℄T . The system state and
output equations can be expressed by_x(t) = Ax(t) +w(t);z(t) = Hx(t) + v(t); (33)

where A = � 0 10 0 � ; H = � 1 0 � :
Suppose we have sampled observations of the system at discrete time intervals4T , then the discrete
equivalent is given by (see later this lecture for a derivation)xk+1 = Fkxk +wk (34)

where Fk = eA4T = �1 4T0 1 � (35)zk = Hxk + vk (36)

Kalman filter: Suppose that the known mean and covariance ofx0 = x(0) are,x̂0j0 = E(x0) = � 010� P0j0 = �10 00 10� (37)

Assume also that Qk = E(wkwTk ) = �1 00 1� Rk = E(v2k) = 1 (38)

The Kalman filter involves sequential application of the recursive equations as given above fork =0; 1; : : : . Here is some Matlab code to implement them, and an example program

function [xpred, Ppred] = predict(x, P, F, Q)

xpred = F*x;
Ppred = F*P*F’ + Q;

function [nu, S] = innovation(xpred, Ppred, z, H, R)

nu = z - H*xpred; %% innovation
S = R + H*Ppred*H’; %% innovation covariance

function [xnew, Pnew] = innovation_update(xpred, Ppred, n u, S, H)

K = Ppred*H’*inv(S); %% Kalman gain
xnew = xpred + K*nu; %% new state
Pnew = Ppred - K*S*K’; %% new covariance
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%%% Matlab script to simulate data and process usiung Kalman filter

delT = 1;
F = [ 1 delT

0 1 ];
H = [ 1 0 ];
x = [ 0

10];
P = [ 10 0

0 10 ];
Q = [ 1 1

1 1 ];
R = [ 1 ];
z = [2.5 1 4 2.5 5.5 ];

for i=1:5
[xpred, Ppred] = predict(x, P, F, Q);
[nu, S] = innovation(xpred, Ppred, z(i), H, R);
[x, P] = innovation_update(xpred, Ppred, nu, S, H);

end

Results: The plots in Figure 3a-c illustrate the result of running theKalman filter using�t = 1.
Some interesting observations can be made as follows.

1. BothKk+1 andPk+1jk+1 tend to constant (steady-state) values ask !1.

2. The estimateŝxk+1jk+1 tend to follow the measurement values quite closely. IndeedsinceKk+1 is a weighting function acting on the measurement it is clearthat this effect is more
prominent whenKk+1 is high.

3. From Equation 19Kk+1 is decreases withRk+1 and increases withQk+1. Thus the conver-
gence properties are dependent on the relative magnitudes of the process and measurement
noise. Figure 4a illustrates this effect clearly. Here we have re-run the Kalman filter but de-
creased the elements ofQk+1 by a factor of 10 and 100 (Rk+1 was kept at the original value).
It is clear from the figure that the net effect is that the estimates follow the measurements less
closely. Similar effects can be observed if the relative magnitude ofRk+1 is increased (Figure
4b). How do you explain what is observed in the latter case?

This example illustrates the fact that the performance of a Kalman filter is dependent on initialisation
conditions. In the next lecture we examine this observationin more detail when we consider the
performance of the discrete-time Kalman filter.

1.11 Deriving the System Model

Up to this point we have somewhat glossed over the derivationof the discrete system evolution
model, but since there are one or two points which are not entirely obvious, we illustrate it here with
some examples.
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Figure 3:Example 1: (a) measurement and estimated state trajectories; (b) Kalman gain; (c) diago-
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1.11.1 Constant-velocity particle

Consider a particle moving at constant velocity. It’s idealmotion is described by�x(t) = 0. In the
real world, the velocity will undergo some perturbationw(t) which we will assume to be randomly
distributed. Therefore the real motion equation is given by,�x(t) = w(t)
where E[w(t)℄ = 0E[w(t)w(�)℄ = q(t)Æ(t� �)
Recall from your 2nd year maths that this latter expectationis theauto-correlation function and that
an autocorrelation of this form corresponds to aconstant power spectral density, more commonly
referred to aswhite noise.

The state vector is, x = �x_x� (39)

and the continuous state-space system equation is�x�t = Ax(t) +Bw(t) (40)

where A = �0 10 0� and B = �01� (41)

We obtain the discrete time equivalent for equation 40 for a sample interval of�t by integating up
over one sampling period. Taking Laplace transforms we obtain:sX(s)� x(0) = AX(s) +BW(s)) (sI�A)X(s) = x(0) +BW(s)) X(s) = (sI�A)�1x(0) + (sI�A)�1BW(s)
Now taking inverse Laplace transforms:x(�t) = �1 �t0 1 �x(0) + Z �t0 �1 �t� �0 1 �Bw(�)d�
Note that the integration on the right hand side is a consequence of the convolution rule for Laplace
transforms.

Shifting this forward in time to match our initial conditions we havex(tk +�t) = �1 �t0 1 �x(tk) + Z �t0 �1 �t� �0 1 �Bw(tk + �)d�= �1 �t0 1 �x(tk) + Z �t0 ��t� �1 �w(tk + �)d�
or xk+1 = Fk xk + wk (42)
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It remains to determine the process noise covariance,Qk = E[wkwTk ℄:Qk = E[wkwTk ℄= E[(Z �t0 ��t� u1 �w(tk + u)du)(Z �t0 ��t� v1 �w(tk + v)dv)T ℄= Z �t0 Z �t0 ��t� u1 � ��t� v 1�E[w(tk + u)w(tk + v)T ℄dudv= Z �t0 �(�t� u)2 (�t� u)(�t� u) 1 � q(tk + u)du= q � 13�t3 12�t212�t2 �t � (43)

since (by our initial assumptions)q is constant.

In summary: Fk = �1 �t0 1 � and Qk = q � 13�t3 12�t212�t2 �t � (44)

Note that we have derived the process noise covariance usinga continuous-time white noiseas-
sumption. If, on the other hand we assume apiece-wise constant white noisemodel, then the target
undergoes a constant accelerationwk, with the accelerations independent from period to period,and
the process noise is slightly different. Bar-Shalom (p86) discusses (and derives the piecewise ver-
sion) this and you should familiarise yourselves with both,but always keeeping in mind that both
are approximations.

1.11.2 Constant-acceleration particle

The analysis is similar to the previous case. In this case theparticle moves at constant acceleration.
The ideal particle motion is described by��x(t)=�t = 0. In the real world, the acceleration will not
be perfectly constant, thus, ��x(t)�t = w(t);
where as before, E[w(t)℄ = 0;E[w(t)w(�)℄ = q(t)Æ(t� �)
We can express the state-space model of the system as follows.

The state vector is x = 24 x_x�x 35 (45)

The continuous state-space system equation is,�x�t = Ax(t) +Bw(t); (46)
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where A = 24 0 1 00 0 10 0 0 35 and B = 2400135 (47)

The discrete-time equivalent to Equation 46 for a sample interval of�t is given by,xk+1 = Fkxk +wk (48)

Once again taking Laplace transforms (etc) and using the assumption thatq is constant, we can
determine the state transition matrixFk and the process noise covariance matrixQk:Fk = eA�t = 241 �t �t20 1 �t0 0 1 35

and Qk = E[wkwTk ℄ = q 24�t5=20 �t4=8 �t3=6�t4=8 �t3=3 �t2=2�t3=6 �t2=2 �t 35 (49)

2 Kalman Filter Performance

In this lecture we consider how to evaluate the performance of a Kalman filter. We will focus on
understanding the following problems

1. how a Kalman filter of a perfectly modelled system with perfectly estimated noise behaves.

2. the effect that changes in the values of the noise sources have on the overall performance of a
Kalman filter.

3. how to recognise if the filter assumptions are met in practice. This is particularly important
in practical situations since many real systems are not wellrepresented by a linear model and
measurement and system noise is non-Gaussian.

In the case of (3), here, we will only consider how to detect a problem with a Kalman filter. We con-
sider how to modify the Kalman filter to accommodate nonlinear process and measurement models
and non-Gaussian noise in the final lecture.

2.1 Example

We will illustrate Kalman filter performance using as an example a variant of the constant velocity
model we considered in section 1.10, in which we use the Kalman filter to track a vehicle moving in
a straight line.
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Figure 5:Input to Example 2: (a) true position; (b) true velocity; (c)observations.

System model

We assume that sampled observations are acquired at discrete time intervals�t and the system state
and output equations are of the formxk+1 = �1 �t0 1 �xk +wk (50)zk = �1 0�xk + vk: (51)

Further, we assume that the process and observation noise are given byQk = ��T 3=3 �T 2=2�T 2=2 �T ��2q Rk = �2r : (52)

We will take�2q = 0:01, �2r = 0:1 and assume that the vehicle starts from rest so thatx0j0 = [0; 0℄T .
Figure 5 shows the true position and velocity and observations for a run of 100 samples computed
from the system equations using a pseudo-randomnumber generator to generate normally distributed
random numbers for the variances�2r and�2q .
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2.2 Performance under ideal modelling conditions

We first consider the performance of the Kalman filter under ideal modelling conditions meaning
that the system model is known precisely as are the process and noise models.

Figure 6 shows the position track achieved by applying the Kalman filter. Figure 6a shows the
predicted and estimated positions together with the measurements for the complete track. A close-
up of the initial track is shown in Figure 6b. The key thing to note here is that the updated estimatex̂k+1jk+1 always lies between the prediction̂xk+1jk and the measurementzk+1. This follows from
the fact that the update is a weighted sum of the prediction and the measurement (see lecture 1).
Figure 6c shows a close-up of the estimator when it is in the steady-state. In this case, the weights
(i.e. the Kalman gain) used in the update are approximately constant.

Figure 7 shows the velocity track achieved by applying the Kalman filter. No measurement is made
of the velocity state so estimates are produced via the cross-correlation between the velocity and
position (ie throughP).

2.2.1 Steady-state performance

Figure 8 shows the predicted and estimated error covariances for position and velocity. In particular,
note that they tend to constant values ask gets large.

Performance in the steady-state turns out to be dependent onthe values chosen for the process and
measurement noise covariance matrices,Q andR.

Given that Pk+1jk = FkPkjkFTk +Qk
and Pkjk = Pkjk�1 �Pkjk�1HTk [HkPkjk�1HTk +Rk℄�1HkPkjk�1
we havePk+1jk = Fk[Pkjk�1 �Pkjk�1HTk [HkPkjk�1HTk +Rk℄�1HkPkjk�1℄FTk +Qk (53)

Equation (53) is known as the discrete-timematrix Ricatti equation . It turns out that if the system is
time-invariant (i.e.F;G; andH are constant), and the measurement and process noise are stationary
(Q andR are constant) then ask !1 the solution to equation (53) converges to a positive definite
matrix �P provided that the system model is completelyobservableand completelycontrollable (for
precise definitions of these see Jacobs). The correspondinggain matrix�K = �PHTS�1 will also be
constant and called thesteady-state gain.

The importance of this result is that in some applications you can assume that the Kalman filter
works under steady-state conditions. In this case you fix thevalue of�P and hence�K from the start
and initial conditions do not need to be specified. SinceK is now fixed it means that considerable
computational saving can be made sinceK does not have to be recomputed at each time step.

2.2.2 Initialisation

Recall that part of the requirements for a Kalman filter is specification of initial conditions. There-
fore, when considering implementation of a Kalman filter an important concern is how to set (guess!)
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Figure 6:Position track: (a) predicted, estimated positions and observation ; (b) initial track (zoom
of (a)); (c) steady-state track (zoom of (a).
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Figure 8:(a) Position error covariance; (b) Velocity error covariance.

values forx0j0 andP0j0 as they are not known. The obvious question to ask then, is does it matter
how good (or bad) your guess is?

One possibility is to initialise the state vector from the measurementsx̂0j0 = � z0z0�z�1�t �
and a simple way to initialise the state covariance matrix isto set it to be a multipleR of the process
noise matrix P0j0 = RQk;
whereR is a constant (typicallyR = 10).

Figure 9 illustrates the effect that changing initialisation parameters has on long term Kalman filter
performance. Note that regardless of the initial values both x̂ andP tend to constant values in a few
iterations.

More formally, it can be shown that provided that the system is observable and controllable the error
due to poor initialisation tends to zero ask ! 1. Finally note that although good initialisation
is desirable for a linear Kalman filter it is not essential (the estimator merely takes longer to settle
down). However, good initialisation is critical in the implementation of Kalman filters for nonlinear
system models (see final lecture).

2.2.3 Checking consistency

Since in practice we can not measure performance with respect to the state error measures (since
we don’t know the true state values) how do we check that the filter is performing correctly? The
answer is that we can define filter performance measures in terms of theinnovation

We know that if the filter is working correctly then�k is zero mean and white with a covarianceSk
(see previous lecture). So we can verify that the filter is consistent by applying the following two
procedures.

1. check that the innovation is consistent with its covariance by verifying that the magnitude of
the innovation is bounded by�2pSk.
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Figure 9: (a) Effect of using different position initialisation values; (b) Effect of changingR to
initialiseP0j0.
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Figure 10:Innovation and innovation standard deviation bounds.

2. verify that the innovation is unbiased and white. This canbe verified by using hypothesis
testing (�2 test).

Test 1 - Innovation magnitude bound test: Figure 10 shows the innovation sequence together
with the�� and�2� bounds on its magnitude. The figure would seem to indicate that the innovation
is unbiased and approximately95% of the values lie within the�2� bound as required. This simple
test is sometimes sufficient to check filter consistency. However, in practice it is more usual to also
apply the test discussed next.

Test 2 - Normalised innovations squared�2 test: To test for unbiasedness we compute the
normalised innovations squaredqk+1(i) = �k+1(i)S�1k+1(i)�k+1(i) (54)

for a sequence ofi trials of a Kalman filter. If the filter assumptions are met then theqk+1(i) are
each�2 in m degrees of freedom, wherem = 1 in our case (the dimension of the measurement
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Figure 11:Normalised innovation and moving average.

vector). Thus E[qk+1℄ = m (55)

This provides the test for unbiasedness. To estimate the mean we need to haveN independent
samples ofqk+1(i); i = 1; : : :N . The mean of this sequence,�qk+1 = 1N NXi=1 qk+1(i)
can be used as a test statistic sinceN �qk+1 is �2 onNm degrees of freedom.

In our case, however, we can exploit the fact that the innovations areergodic to estimate the sample
mean from the time average for a long sequence (ie. the movingaverage) rather than an ensemble
average. Thus we can estimate the mean as,�q = 1N NXk=1 qk (56)

from a single run of a Kalman filter. Figure 11 shows the normalised innovation and the moving
average of the innovation. The latter tends to1:0 ask gets large. To test unbiasedness we need to
verify that �q lies in the confidence interval[r1; r2℄ defined by the hypothesisH0 thatN �q is �2Nm
distributed with probability1� �. Thus we need to find[r1; r2℄ such thatP (N �q 2 [r1; r2℄jH0) = 1� �; (57)

For the example we are considering,N = 100, �q = 1:11, and let� = 0:05 (ie. define the two-sided95% confidence region). Using statistical tables we find that,[r1; r2℄ = ��2100(0:025); �2100(0:975)� ;= [74:22; 129:6℄
The hypothesis is indeed acceptable for this example.
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Figure 12:Autocorrelation of the innovation.

Test 3 - Innovation whiteness (autocorrelation) test: To test for whiteness we need to prove
that E[�Ti �j ℄ = SiÆij (58)

We can test this by checking that everywhere except wherei = j, the statistic defined by Equation
(58) is zero within allowable statistical error. Again, we can exploit ergodicity to redefine the test
statistic as a time-averaged correlationr(�) = 1N N���1Xk=0 �Tk �k+� (59)

The autocorrelation is usually normalised byr(0). Figure 12 shows the normalised auto-correlation
of the innovation for the example we are considering. Note that it peaks at� = 0 and everywhere
else is distributed randomly about zero. We can test that theoscillations about zero are random by
estimating the variance of the test statistic. For large enoughN we can assume thatr(�) is normally
distributed with mean zero and variance1=N . Then we can compute the2�-gate as�2=pN and
check that at least95% of the values fall within this confidence region. Again in ourexample the
autocorrelation satisfies the hypothesis.

2.3 Model validation

So far we have only considered the performance of a Kalman filter when both the system model and
noise processes are known precisely. A Kalman filter may not perform correctly if there is either
modelling or noise estimation error or both. Here we discussthe causes and identify most of the
important techniques used to control a Kalman filter from diverging. We consider two types of error
and their characteristics;

1. Error in the process and observation noise specification.

2. Error in the modelling of system dynamics (process model).

The three tests that we introduced in the last section will beused as a basis for trying to tell when
something has gone wrong with the filter.
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2.3.1 Detecting process and observation noise errors

The example used in the previous section will be used to illustrate general characteristics that are
observed when the process and observation noise are under- and over-estimated.

Somematlab code to generate a simulation sequence.

%%% Matlab script to generate some "true" data for later asse ssment
%%% Generates:
%%% x: the state history which evolves according to
%%% x(k+1) = Fx(k) + w(k)
%%% w: the process noise history (randomly generated)
%%% z: a set of observations on the state corrupted by noise
%%% v: the noise on each observation (randomly generated)

N = 100;

delT = 1;
F = [ 1 delT

0 1 ];
H = [ 1 0 ];
sigma2Q = 0.01;
sigma2R = 0.1;
Q = sigma2Q * [ delTˆ3/3 delTˆ2/2

delTˆ2/2 delT ];
P = 10*Q;
R = sigma2R * [ 1 ];

x = zeros(2,N);
w = zeros(2,N);
z = zeros(1,N);
v = zeros(1,N);
for i=2:N

w(:,i) = gennormal([0;0], Q); % generate process noise
x(:,i) = F*x(:,i-1) + w(:,i); % update state
v(:,i) = gennormal([0], R); % generate measurement noise
z(:,i) = H * x(:,i) + v(:,i); % get "true" measurement

end

plot(x(1,:));

Thematlab code to process the sequence and generate the various graphsis given below.

%%% Matlab script to assess Kalman filter performance
%%% The script assumes the existence of a vector z of
%%% noise corrupted observations

N = length(z); % number of Klamn filter iterations

Qfactor = 1; % process noise mult factor
Rfactor = 10; % measurement noise mult factor

delT = 1; % time step
F = [ 1 delT % update matrix
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0 1 ];
H = [ 1 0 ]; % measurement matrix

sigmaQ = Qfactor*sqrt(0.01);
sigmaR = Rfactor*sqrt(0.1);
Q = sigmaQˆ2 * [ 1/3 1/2 % process noise covariance matrix

1/2 1 ];
P = 10*Q;
R = sigmaRˆ2 * [ 1 ]; % measurement noise covariance

xhat = zeros(2,N); % state estimate
nu = zeros(1,N); % innovation
S = zeros(1,N); % innovation (co)variance
q = zeros(1,N); % normalised innovation squared

for i=2:N
[xpred, Ppred] = predict(xhat(:,i-1), P, F, Q);
[nu(:,i), S(:,i)] = innovation(xpred, Ppred, z(i), H, R);
[xhat(:,i), P] = innovation_update(xpred, Ppred, nu, S, R) ;
q(:,i) = nu(:,i)’*inv(S(:,i))*nu(:,i);

end

sumQ = sum(q) % determine Sum q which is Chiˆ2 on N d.o.f.
r = xcorr(nu); % get autocorrealtion of innovation

plot(xhat(1,:)); % plot state estimate
pause;

plot(nu) % plot innovation and 2sigma confidence interval
hold on;
plot(2*sqrt(S),’r’);
plot(-2*sqrt(S),’r’);
hold off;
pause;

plot(q); % plot normalised innovation squared
pause;

plot(r(N:2*N-1)/r(N)); % plot autocorr of innovation (nor malised)

Under-estimating�q : Refer to Figure 13. This illustrates the performance tests for the case when
the process noise is under-estimated by a factor of10.

A greater quantity of innovations than expected (i.e.> 5%) fall outside the2� gate (obvious even
from visual inspection).

The normalised innovations squared are larger than expected and the sample mean falls outside
the confidence bound defined by the�2 test (for my trial the value came to 492.34/100 which is
clearly above the 95% confidence region [74.22/100,129.6/100] computed above). This tells us that
the combined process and measurement noise levels are too low, i.e. too little weight is placed on
current measurements in the update process.

The autocorrelation sequence shows time correlations.
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Figure 13:Effect of underestimating�q by a factor of10. (a) state estimates; (b) innovation se-
quence; (c) normalised innovations squared; (d) normalised autocorrelation of the innovation se-
quence.

Over-estimating�q : Refer to Figure 14. This illustrates the performance tests for the case when
the process noise is over-estimated by a factor of10. The innovations are well within the required
bounds.

The normalised innovations squared are smaller than expected and the sum (32.81, or eqivalently
the average) falls below the confidence bound defined by the�2 test. This tells us that the combined
process and measurement noise levels is too high.

The autocorrelation sequence shows no obvious time correlations.

Under-estimating�r: Refer to Figure 15. This illustrates the performance tests for the case when
the measurement noise is under-estimated by a factor of10.

The innovations exceed the2� bounds more often than allowable.

The normalised innovations squared are larger than expected and the sample mean (3280/100) falls
outside the confidence bound [0.74,1.3] defined by the�2 test. This tells us that the combined
process and measurement noise levels is too low.
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Figure 14:Effect of overestimating�q by a factor of10. (a) state estimates; (b) innovation sequence;
(c) normalised innovations squared; (d) normalised autocorrelation of the innovation sequence.

The autocorrelation sequence shows no obvious time correlations.

Over-estimating�r: Refer to Figure 16. This illustrates the performance tests for the case when
the measurement noise is over-estimated by a factor of10.

The innovations are below the2� bounds.

The normalised innovations squared are smaller than expected and the sample mean (4.95/100) falls
outside the confidence bound defined by the�2 test. This tells us that the combined process and
measurement noise levels is too high.

The autocorrelation sequence shows time correlations.

General observations:

1. If the ratio of process to measurement noise is too low the innovation sequence becomes
correlated.
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Figure 15:Effect of underestimating�r by a factor of10. (a) state estimates; (b) innovation se-
quence; (c) normalised innovations squared; (d) normalised autocorrelation of the innovation se-
quence.

2. The absolute values of the process and measurement noise can be set by adjusting their values
so that the�2 innovation test is satisfied.

3. In the example shown here, tuning is much more sensitive tochanges in the measurement
noise rather than the process noise. In this example, this isbecause measurement noise affects
position, process noise only affects velocity (refer to thecontinuous system model in Lecture
1).

2.3.2 Detecting process modelling errors

We now consider what happens if we try to apply an estimator tomeasurement data that doesn’t fit
the model - the so-calledmis-matched filter problem.

Specifically, we consider the case of using a constant-velocity Kalman filter to track a particle which
has a true motion trajectory defined by a constant-acceleration model. Thus, the true motion is
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Figure 16:Effect of overestimating�r by a factor of10. (a) state estimates; (b) innovation sequence;
(c) normalised innovations squared; (d) normalised autocorrelation of the innovation sequence.

described by the transition equation xk+1 = Fxk +wk (60)

where the state transition matrix isF = 241 �T �T 2=20 1 �T0 0 1 35 (61)

with Q = E[wkwTk ℄ = 24�T 5=20 �T 4=8 �T 3=6�T 4=8 �T 3=3 �T 2=2�T 3=6 �T 2=2 �T 35�2q (62)

Figure 17 shows the result of applying the constant-velocity filter to the constant-acceleration model
where the filter noise parameters were�q = 0:01 and�r = 0:1.

Observe that the innovation behaves like a first order Gauss-Markov process (recall this implies that
in continuous-timedx=dt + A(t)x = w, wherew is white noise). The normalised squared values
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Figure 17:Performance tests for an unmatched filter. (a) state estimates; (b) innovation sequence;
(c) normalised innovations squared; (d) normalised autocorrelation of the innovation sequence.

show a substantial drift in the mean and is not stationary. The autocorrelation reduces exponentially
in time - again typical of a first-order Gauss-Markov process.

Boosting Q to reduce effects of modelling errors: one obvious thing to try in order to reduce the
effects of modelling errors is to boost the magnitude of the process noiseQ artificially to take into
account unmodelled errors. Recall that this should boost the value of the Kalman gain and hence let
the estimate follow the measurements more closely. The result of doing this where the process noise
was increased by a factor of 10 is shown in Figure 18. Some improvement is seen but this has not
totally compensated for the process model error.

3 The Continuous-Time Kalman Filter

So far we have considered the discrete-time formulation of the Kalman filter. This is the version
which finds the most wide-spread application in practice. The Kalman filter estimation approach
can also be derived for continuous-time. This is what we lookat in this section. It is interesting to
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Figure 18: Performance tests for an unmatched filter with process noiseboosted to compensate.
(a) state estimates; (b) innovation sequence; (c) normalised innovations squared; (d) normalised
autocorrelation of the innovation sequence.

study the continuous-time Kalman filter for two principal reasons;

1. to understand the asymptotic behaviour of discrete-timeKalman filters and,

2. to provide insight into the relationship between Kalman filtering and Wiener filtering.

We consider both of these factors in this section. In readingwhat follows you may find it useful
to refer back to the equivalent results that we have previously derived for the discrete-time case in
Sections1 and2.

3.1 Models and assumptions

The continuous-time Kalman filter is the limiting case of thediscrete-time Kalman filter as the
sample time becomes infinitely small. We will not derive the continuous equations here merely state
the key equations (for example, see Gelb p119 onwards, or Brown Chapter 7 for a derivation).
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In the continuous case thesystem modelis given by�x(t)�t = F(t)x(t) +w(t) (63)

where the process noise has covarianceQ(t).
Themeasurement modelis given byz(t) = H(t)x(t) + v(t) (64)

where the measurement noise has covarianceR(t). We assume that the inverseR�1(t) exists.

Recall from the derivation of the discrete-time estimator that we also need to specify initial condi-
tions for the state and its error covariance. Thus we assume that the initial conditionsE[x(0)℄ = x̂(0); E[(x(0)� x̂(0))(x(0)� x̂(0))T ℄ = P(0) (65)

are given.

3.2 Kalman filter equations

State estimation is governed by the equation_̂x(t) = F(t)x̂(t) +K(t)[z(t) �H(t)x̂(t)℄ (66)

Error covariance propagation is determined by the differential equation_P(t) = F(t)P(t) +P(t)FT (t) +Q(t)�K(t)R(t)KT (t) (67)

which is known as thematrix Riccati equation. This matrix differential equation has been studied
extensively and an analytic solution exists for the constant parameter case.

Here the Kalman gain matrix is defined byK(t) = P(t)HT (t)R�1(t) (68)

In summary Equations 66, 67 and 68 together with the initial conditions specified by Equation 65
describe thecontinuous-time Kalman filter algorithm. You should compare these equations with
the equivalent results for the discrete-time case.

3.3 Example

Consider the problem of estimating the value of a constant signalx(t) given measurements corrupted
by Gaussian white noise which is zero-mean and has constant spectral density�. Derive (1) the
continuous-time Kalman filter; and (2) the discrete-time Kalman filter assuming a sampling time
interval of�T .

Continuous-time solution: The state-space model equations of the problem are_x(t) = 0 (69)z(t) = x(t) + v(t); v � N(0; �) (70)
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The scalar Riccati equation (Equation 67) governs error covariance propagation and is given by_p = fp+ pf + q � krk (71)

wherek = ph=r. In this problemf = q = 0; h = 1; r = �. Therefore_p = �k2r and k = p=�
Substituting fork and integrating Equation 71 we can solve forp as follows_p = �p2�Z pp0 dpp2 = � 1� Z t0 dt;p = p0(1 + (p0=�) t)�1 (72)

Hence the Kalman gain is given byk = p� = (p0=�)[1 + (p0=�)t℄�1
and the state estimation by_̂x(t) = (p0=�)[1 + (p0=�)t℄�1(z(t)� x̂(t))
Finally, note that ast!1, k ! 0 and the estimate reaches a constant value.

Discrete-time solution: Let us consider what the result would have been if rather thananalyse
the continuous-time measurements we had sampled the signals at instants in timet = k�T; k =0; 1; 2; : : : (satisfying the Nyquist criterion of course).

In this case, the discrete-time space-model isx(k + 1) = x(k) (73)z(k) = x(k) + v(k); v(k) � N(0; �) (74)

We haveF(k) =H(k) = 1,Q(k) = 0 andR(k) = �.

The predicted state and error covariance are given by (see Section 1)x̂(k + 1jk) = x̂(kjk) andP (k + 1jk) = P (kjk)
Using this result the update equation for the error covariance isP (k + 1jk + 1) = P (kjk)�K(k + 1)[�+ P (kjk)℄K(k + 1) (75)

whereK(k+1) = P (kjk)[P (kjk) +�℄�1. Making this substitution forK(k+1) into Equation 75
gives P (k + 1jk + 1) = P (kjk) � 11 + P (kjk)=�� : (76)

If our initial error covariance wasP0 then it follows from Equation 76 that, at timek + 1P (k + 1jk + 1) = P0 � 11 + kP0=�� (77)
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Figure 19:Wiener filter.

Hence the state update equation isx̂(k + 1jk + 1) = x̂(kjk) +K(k + 1) [z(k + 1)� x̂(kjk)℄ (78)

where K(k + 1) = (P0=�)1 + (kP0=�)
Compare this with the result for the continuous-time case. Note again that ask !1, x̂(k+1jk+1)
tends to a constant value.

One final point: unfortunately only simple types of continuous-time problems such as the example
given above can be solved analytically using the covarianceequations. For more complicated prob-
lems, numerical methods are required. This is the main reason why the continuous-time Kalman
filter has not found wide-spread use as an estimation method.

3.4 Relation to the Wiener Filter

In this section we consider the connection of the Kalman filter to the Wiener filter. We will not derive
the optimal filter from first principles. Here our interest isin the relation to the Kalman filter.

Problem statement: The Wiener filter is the linear minimum variance of error estimation filter
from among all time-invariant filters. Briefly, in one-dimension, we consider the problem of how
to find the optimal impulse functionh(t) which gives the best estimate of a signalŝ(t) where the
information available is a corrupted version of the original,z(t) = s(t) + n(t): (79)

Heren(t) is additive noise. If (1) we know the power spectral densities of the signal and noise,SX(s)
andSN (s) respectively; and (2) the observations have been acquired for sufficient time length so that
the spectrum ofz(t) reflects boths(t) andn(t) then the goal is to find the optimal filter responseh(t) to recover the underlying signal.

Wiener filter solution: The Wiener filter solution to this problem is to find the transfer function
corresponding toh(t) using frequency response methods. It can be shown (see for example Brown
chapter 4) that if the signal and noise are uncorrelated thenthe Wiener optimal filter takes on the
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form HWopt(s) = SX(s)SX(s) + SN (s) (80)

whereSX(s) andSN (s) are the power spectral densities of the signal and noise. However, the filter
defined by Equation 80 defines a non-causal filter, meaning that the output depends on future values
of the inputz(t) as well as the past, orh(�) 6= 0 for some� � 0
For “real-time” operation this filter is not physically realisable (however it can be worth studying for
off-line processing applications). To generate acausalfilter we need to define the filter such that it
depends only on past and current values of the inputz(t), thus,h(�) = 0 for all � � 0
Thus we want our optimal filterHWopt(s) to satisfy this. The key is that if a transfer functionF (s)
has only poles in the left half plane then its inversef(t) is a positive time function (proof omitted).
We can makeHWopt(s) have this property by doing the following.

Consider the denominator of Equation 80. It can be separatedinto a part containing poles and zeros
in the left hand plane[SX + SN ℄� and a part containing only poles and zeros in the[SX + SN ℄+.
This process is calledspectral decomposition.

Let H1(s) = 1[SX + SN ℄� ; H2(s) = SX[SX + SN ℄+ (81)

Then we can considerHopt as being the cascade of two filters,H1(s) (causal) andH2(s) (non-
causal) as illustrated in Figure 19. Letv(t) be the intermediate signal as shown. Then the power
spectral density ofv(t), SV (s) is given bySV (s) = jH1j2(SN + SX)= 1 (82)

In other words it is white noise and hence uncorrelated (independent of time). To make the whole
filter causal we can ignore the negative tail of the impulse response corresponding toH2(s). We do
this by taking partial fractions ofH2(s) and discarding the terms with poles in the right hand plane.
We denote this byfH2(s)g�. Hence the causal Wiener optimal filter is given byHWopt(s) = 1[SX(s) + SN (s)℄� � SX(s)[SN (s) + SX(s)℄+�� (83)

Example: As an illustration of this approach consider as an exampleSX(s) = 1�s2 + 1 ; SN (s) = 1 (84)

Then, SN (s) + SX(s) = �s2 + 2�s2 + 1= " (s+p2)(s+ 1) #" (�s+p2)(�s+ 1) # (85)
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It follows that, H1(s) = (s+ 1)(s+p2) (86)H2(s) is given by H2(s) = 1(�s2+1) (�s+ 1)(�s+p2)= 1(s+ 1)(�s+p2) (87)

Re-writing this equation in partial fractions givesH2(s) = p2� 1s+ 1 + p2� 1�s+p2
Hence fH2(s)g� = p2� 1(s+ 1) (88)

Combining Equations 86 and 88 gives the optimal Wiener filterasHWopt(s) = H1(s) fH2(s)g� = (p2� 1)(s+p2) (89)

or in the time domain hWopt(t) = (p2� 1)e�p2t; t � 0 (90)

The Kalman filter equivalent: We can solve the same LMV problem by using an alternative
approach based on state-space techniques that leads to a Kalman filter solution.

Specifically, we can re-write Equation 79 in terms of a state-space equation asz(t) = Hx(t) + v(t)
We can findx as the solution to the steady-state continuous-time Kalmanfiltering problem and
hence find the (optimal) transfer function between the signal and measurement. More details of
this approach are given next followed by a re-working of the example described earlier using this
alternative approach.

We have to make some assumptions about the Kalman filtering problem before we start. Let us
assume that the system and measurement equations have linear constant coefficients (i.e.F andH
are time-invariant). Let us also assume that the noise processes are time-invariant (Q andR are
constant). Further we assume thatF is controllable, andF andH are observable. Under these
conditions the Kalman filter will reach a steady-state condition where the error covariance matrixP! P1. This means that the matrix Riccati equation (Equation 67) now becomes0 = FP1 +P1FT +Q�K1RKT1;= FP1 +P1FT +Q�P1HTR�1HP1; (91)
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and state estimation is given by_̂x(t) = Fx̂(t) +K1[z(t) �Hx̂(t)℄ (92)

where the steady-state gain isK1 = P1HTR�1. Equations 91 and 92 define thesteady-state
(stationary) continuous-time Kalman filter.

Now let us re-arrange Equation 92_̂x(t)� (F�K1H)x̂(t) = K1z(t)
Taking the Laplace transform and ignoring initial conditions (since we are in the steady state) we
have (sI� F�K1H)X̂(s) = K1Z(s)
or X̂(s)Z(s) = HKopt(s) = K1 [(sI� F�K1H)℄�1 (93)

This last equation defines a transfer function between the state estimate and the measurement which
when multiplied byH gives theWiener optimal filter ,HWopt(s) =HHKopt(s): (94)

Note that thecausalWiener filter and the continuous-time Kalman filter are equivalent under the
assumptions of time-invariance and one can be determined from the other. The key difference is that
one approach is based on state-space models and the other on frequency domain concepts (auto and
cross correlations).

Example: Let us re-work the example we considered before using the Kalman filter approach.

The power spectral density ofx(t) is decomposed asSX(s) = 1�s2 + 1 = 1s+ 1 1�s+ 1
Thus the state-space model is _x(t) = �x(t) + w(t) (95)z(t) = x(t) + v(t) (96)

Then this implies thatF = �1;Q = 1;H = 1;R = 1.

Substituting these values into the steady-state Riccati equation gives�2P1 �P21 + 1 = 0
orP1 = p2� 1. HenceK1 = P1HTR�1 = p2� 1.

The optimal transfer function between the state and measurement is thereforeHKopt(s) = K1 [(sI� F�K1H)℄�1 = p2� 1s+p2
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giving HWopt(s) = HHKopt(s) = p2� 1s+p2
which agrees with Equation 89.

4 Further Topics in Kalman Filtering

This section deals with some variants of the discrete Kalmanfilter which prove useful when some of
the assumptions of the conventional Kalman filter break down. Recall that three of the key problem
areas for a Kalman filter are,

1. Initialisation: we assume that the initial state vector and its error covariance matrix are
known.

2. Modelling: we assume that we have an accurate linear model of the processand measurement
system.

3. Noise: we assume that the process and sensor noise processes are Gaussian.

In this section we look at how to deal with each of these problems.

We begin by considering theinformation filter which is a variant on the conventional Kalman filter
which gives more accurate results when there is no information about the initial state.

Next we consider how to cope with modelling error. In most practical cases the linear equations
describing the system and observation models of Equations 14 and 15 in Section1 are not a good
approximation to reality. Although, as we have seen, it is possible to detect that our assumptions
about modelling and noise are invalid it is clear that what weneed to do is extend the estimation
approach to accommodate nonlinear models. Recall that for the Kalman filter algorithm, the estimate
is the conditional mean of the state given all the measurements up to timek + 1. We showed in
Section 1 that under the assumption that the process was linear and the noise processes white this
led to linear, recursive solution of the form,x̂k+1jk+1 = x̂k+1jk +Kk+1[zk+1 �Hk+1x̂k+1jk ℄: (97)

We show that there exists an equivalent version of Equation 97 that can be used in the case of a
nonlinear system model. We do this by linearising the (non-linear) state and observation matrices
about the estimated trajectory. This leads to the so-calledExtended Kalman Filter (EKF) which is
the best linear estimator with respect to the minimum-mean-square error.

Finally we take a brief look at validating measurements where due to non-Gaussian sensor noise
some measurements could be confused with background clutter or outliers.

4.1 The Information Filter

The information filter (or inverse covariance filter) is an alternative form of the Kalman filter algo-
rithm which is mathematically equivalent to the conventional Kalman filter but used in preference to
it when either,
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1. the measurement dimension is large compared to that of theprocess noise; or,

2. the initial system state is unknown.

As with the conventional algorithm, the information filter is a recursive linear estimator that repeat-
edly estimates the state of a variable called theinformation vector and its error covariance matrix
called theinformation matrix . This idea should be familiar from the first part of the coursewhere
we discussed recursive least squares.

The information vector at timek + 1 given a set of observations up to this time is defined as�̂k+1jk+1 = P�1k+1jk+1x̂k+1jk+1 (98)

It is then straightforward to prove that its covariance is the inverse of the error covariance matrix,P�1k+1jk+1, or information matrix .

Update equations: Recall that the conventional Kalman filter update equation for the error covari-
ance matrix is given byPk+1jk+1 = Pk+1jk �Kk+1Hk+1Pk+1jk (99)Kk+1 = Pk+1jkHTk+1(Hk+1Pk+1jkHTk+1 +Rk+1)�1 (100)

The inverse of the (posterior) covariance matrix is given byP�1k+1jk+1 = P�1k+1jk +HTk+1R�1k+1Hk+1 (101)

Proof: [P�PHT (HTPHT +R)�1HP℄[P�1 +HTR�1H℄= I+PHTR�1H�PHT (HTPHT +R)�1H�PHT (HTPHT +R)�1HPHTR�1H= I+PHT [R�1 � (HTPHT +R)�1 � (HTPHT +R)�1HPHTR�1℄H= I+PHT [R�1 � (HTPHT +R)�1(I+HTPHTR�1)℄H= I+PHT [R�1 � (HTPHT +R)�1(R+HTPHT )R�1℄H= I+PHT [I� I℄R�1H= I
The gain can be written Kk+1 = Pk+1jk+1HTk+1R�1k+1 (102)

Proof: K = Pk+1jkHT [HPk+1jkHT +R℄�1= Pk+1jk+1P�1k+1jk+1Pk+1jkHTR�1R[HPk+1jkHT +R℄�1= Pk+1jk+1P�1k+1jk+1Pk+1jkHTR�1[HPk+1jkHTR�1 + I℄�1= Pk+1jk+1[P�1k+1jk +HTR�1H℄Pk+1jkHTR�1[HPk+1jkHTR�1 + I℄�1= Pk+1jk+1[I+HTR�1HPk+1jk℄HTR�1[HPk+1jkHTR�1 + I℄�1= Pk+1jk+1HTR�1[I+HPk+1jkHTR�1℄[HPk+1jkHTR�1 + I℄�1= Pk+1jk+1HTR�1
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Next consider how to update the information vector:�̂k+1jk+1 = P�1k+1jk+1x̂k+1jk+1= P�1k+1jk+1(I�KH)x̂k+1jk +P�1k+1jk+1Kz= (P�1k+1jk+1 �HTR�1H)x̂k+1jk +HTR�1z= P�1k+1jkx̂k+1jk +HTR�1z (103)

Note that this is exactly the form we derived from Bayes’ Rulein the first part of the course: it is an
information weighted sum of prediction and measurement

The update can be written succinctly as�̂k+1jk+1 = �̂k+1jk +HTk+1R�1k+1zk+1
Prediction equations: Recall that the state prediction is defined byx̂k+1jk = Fx̂kjk +GuPk+1jk = FPkjkFT +Q
It follows that the corresponding prediction equations forthe information filter are�̂k+1jk = P�1k+1jkFPkjk�̂kjk +P�1k+1jkGu (104)P�1k+1jk = �FPkjkFT +Q��1 (105)

4.1.1 Summary of key equations

Prediction: �̂k+1jk = P�1k+1jkFPkjk�̂kjk +P�1k+1jkGuP�1k+1jk = �FPkjkFT +Q��1
Update: P�1k+1jk+1 = P�1k+1jk +HTk+1R�1k+1Hk+1�̂k+1jk+1 = �k+1jk +HTR�1z
Comments: As noted at the beginning of this section certain problems are better solved using the
information filter rather than the conventional Kalman filter.

In the case that there is no information about the initial state then the magnitude ofP0j0 should be
set very large in the conventional Kalman filter. This may lead to significant loss in accuracy. The
information filter does not have this problem as it uses the inverse of the initial state covariance error
matrix.

When the dimension of the measurement vectorm is significantly larger than that of the process
noisep the information filter is computationally more efficient that the conventional Kalman filter.
This is because one of the computationally expense steps in either case is matrix inversion. In the
case of the conventional Kalman filter the inversion of them � m matrix (Hk+1PTk+1jkHTk+1 +

38



Rk+1) is required. In the case of the inverse covariance filter we compute the inverse of thep � p
matrix defined by Equation 105.

Finally, note that given the output from one filter it is easy to find the equivalent output of the other
filter using Equation 98 and the imformation matrix (inversecovariance).

4.2 Extended Kalman Filter

In this section we consider the extension of Kalman filteringideas to the case of non-linear system
models.

We assume that the system can be represented by a nonlinear discrete-time state-space model of the
form xk+1 = f(xk ;uk; k) +wk; (106)zk = h(xk ; k) + vk ; (107)

wheref(:; :; k) is a nonlinear state transition matrix andh(:; :; k) is the nonlinear observation matrix.

We assume that the process and measurement noise are Gaussian, uncorrelated and zero-mean, and
have no cross-correlation. Thus E[wk℄ = 0E[vk ℄ = 0E[wiwTj ℄ = ÆijQiE[vivTj ℄ = ÆijRiE[wivTj ℄ = 0
4.2.1 Prediction

As in the linear case, we assume that we have at timekx̂kjk = E[xk jZk℄; Pkjk
To generate the prediction we expand Equation 106 in a Taylor’s series about the prediction̂xkjk up
to the first-order terms.xk+1 = f(x̂kjk ;uk; k) + � �f�x� [xk � x̂kjk ℄ +O([xk � x̂kjk℄2) +wk (108)

where the Jacobian off is evaluated at̂xkjk . Taking the Expectation of Equation 108, ignoring
higher than first order terms, and assuming thatx̂kjk is approximately equal to the conditional mean
and that the process noise has zero mean, yieldsx̂k+1jk = E[xk+1jZk ℄= f(x̂kjk ;uk; k) (109)
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The state covariance can be found as follows. First the prediction error is given by~xk+1jk = xk+1 � x̂k+1jk= f(x̂kjk ;uk; k) + � �f�x� [xk � x̂kjk ℄+O([xk � x̂kjk℄2) +wk � f(x̂kjk ;uk; k)� � �f�x� [xk � x̂kjk℄ +wk= � �f�x� [~xkjk ℄ +wk (110)

The prediction covariance is then found by taking the Expectation of the product of the prediction
error with it’s transpose:Pk+1jk = E[~xk+1jk~xTk+1jkjZk ℄� E[(� �f�x� [~xkjk ℄ +wk)(� �f�x� [~xkjk ℄ +wk)T jZk℄= � �f�x�E[~xkjk~xTkjk jZk℄ � �f�x�T +E[wkwTk ℄= � �f�x�Pkjk � �f�x�T +Qk (111)

Note that the prediction covariance has the same form as its linear equivalent with the Jacobian
� �f�x�

playing the role of transition matrixFk.

4.2.2 Observation Prediction and Innovation

The observationz can be written as a Taylor series expanded about the prediction x̂k+1jk:zk+1 = h(x̂k+1jk) + ��h�x� [x̂k+1jk � xk+1℄ +O([x̂k+1jk � xk+1℄2) +wk+1
Truncating to first order and taking expectations yields thepredicted observationẑk+1jk � h(x̂k+1jk) (112)

The innovation is then found as �k+1 = zk+1 � h(x̂k+1jk) (113)

and the innovation covariance is found as follows:Sk+1 = E[�k+1�Tk+1℄= E[(zk+1 � h(x̂k+1jk)(zk+1 � h(x̂k+1jk)T ℄� E "���h�x� (xk+1jk � xk) +wk+1� (xk+1jk � xk)T ��h�x�T +wTk+1!#= ��h�x�Pk+1jk ��h�x�T +Rk+1 (114)
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where the Jacobian ofh is evaluated at̂xk+1jk . Again note that Equation 114 is in the same form as
its linear counterpart except that

��h�x � has replacedHk+1.
4.2.3 Update

By similar reasoning to that made for the linear case it is possible to derive from first principles the
equations for the filter gain, state update and covariance update. The forms turn out to be the same
as for the linear Kalman filter withHk+1 replaced by

��h�x �. Thus, the Kalman gain is given byKk+1 = Pk+1jk ��h�x�T S�1k+1 (115)

The state update is given byx̂k+1jk+1 = x̂k+1jk +Kk+1[zk+1 � h(x̂k+1jk)℄ (116)

and the covariance update is given byPk+1jk+1 = Pk+1jk �Kk+1Sk+1KTk+1 (117)

4.2.4 Summary of key equations

Prediction: x̂k+1jk = f(x̂kjk ;uk; k) (118)Pk+1jk = � �f�x�Pkjk � �f�x�T +Qk (119)

Update: x̂k+1jk+1 = x̂k+1jk +Kk+1[zk+1 � h(x̂k+1jk)℄ (120)Pk+1jk+1 = Pk+1jk �Kk+1Sk+1KTk+1 (121)

where Kk+1 = Pk+1jk ��h�x�T S�1k+1 (122)

and Sk+1 = ��h�x�Pk+1jk ��h�x�T +Rk+1 (123)

4.3 Some general comments

1. The Jacobians
� �f�x� and

��h�x� are functions of both the state and timestep; they are not con-
stant.
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2. Stability: Since we are dealing with perturbation models of the state and observation matrices
about the predicted trajectory, it is important that predictions are close enough to the true states
otherwise the filter will be poorly matched and possibly diverge.

3. Initialisation: Unlike in the linear case, special care has to be taken when initialising the
Extended Kalman filter.

4. Computational cost: The Extended Kalman filter is computationally significantlymore ex-
pensive than it’s linear counterpart. This limited its early use in applications. However, today
real-time computing implementations of the EKF can be achieved using moderate computing
resources.

4.4 Implementation

Implementation issues are similar to those of the linear Kalman filter and you can test the perfor-
mance of the filter using all the techniques introduced in Section 2.

In particular, special care has to be taken to check whether the system and noise process modelling
assumptions are met. There are obviously some errors introduced by using a linearised model.

A further important point to note is that the state covariance matrix is only an approximation to the
mean square error and not a true covariance. Recall thatPk+1jk+1 determines the weight given to
new measurements in the updating procedure. Thus, ifPk+1jk+1 is erroneous and becomes small,
the measurements have little affect on the estimation and itis quite possible that the EKF will diverge.

4.5 Example - a simple robot vehicle

Consider the simplified description of a robot vehicle in motion illustrated in Figure 20. The state is
described byxk = [xk; yk; �k℄T . Control is provided by an input control vector which determines
the velocity of travel,uk = [Vk; 'k℄T .

The motion of the vehicle can be described by the nonlinear state transition equation24 xk+1yk+1�k+1 35 = 24 xk +�tVk os(�k + 'k)yk +�tVk sin(�k + 'k)�k + VkB �t sin('k) 35+ qk (124)

Here,�t is the time interval between time steps,B is the wheel baseline andqk is the noise vector
which combines errors in modelling the process and control.

We assume that measurements of range (depth) and bearing aremade to a set of beacons at fixed
locationsBi = [Xi; Yi℄T ; i = 1; : : :N . The nonlinear observation model is thereforezk = �rk�k� = "p(X � xk)2 + (Y � yk)2tan�1 � Y�ykX�xk �� �k #+ rk (125)

whererk is the observation noise.

Prediction:
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Figure 20:Example: geometry of a simple robot vehicle.

From equation 109 the predicted statex̂k+1jk is given by24 x̂k+1jkŷk+1jk�̂k+1jk 35 = 24 x̂kjk +�tVk os(�̂kjk + 'k)ŷkjk +�tVk sin(�̂kjk + 'k)�̂kjk + VkB �t sin('k) 35+ qk (126)

The prediction covariance matrix isPk+1jk = � �f�x�Pkjk � �f�x�T +Qk (127)

where � �f�x� = 24 1 0 ��tVk sin(�̂kjk + 'k)0 1 +�tVk os(�̂kjk + 'k)0 0 1 35 (128)

Update:

The equations for the updating of the state and its covariance are:x̂k+1jk+1 = x̂k+1jk +Kk+1[zk � h(x̂k+1jk)℄Pk+1jk+1 = Pk+1jk �Kk+1Sk+1KTk+1 (129)

where Kk+1 = Pk+1jk ��h�x�T S�1k+1 (130)
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and Sk+1 = ��h�x�Pk+1jk ��h�x�T +Rk+1 (131)

and ��h�x� = " x̂k+1jk�Xd ŷk+1jk�Yd 0� ŷk+1jk�Yd2 x̂k+1jk�Xd2 �1 # (132)

Hered =p(X � x̂k+1jk)2 + (Y � ŷk+1jk)2.
4.6 Measurement Validation - coping with Non-Gaussian Noise

Recall that in the first part of the course we considered the problem ofvalidating new measure-
ments. Such considerations are particularly important in applications such as sonar tracking where
measurement ‘outliers’ are common; i.e. the sensor distribution (conditioned on the true value) is no
longer Gaussian.

The solution to this problem we developed was to set up avalidation gateor innovation gate; any
measurement lying in the “region” of space defined by the gateis considered to be associated with
the target. Note that since the measurement vector typically has a number of components (say N) the
“region” will be a region in N-dimensional space (typicallyan ellipsoid). We use the same approach
with the Kalman Filter and recap it here.

Assume that we already have a predicted measurementẑk+1jk, hence theinnovation, �k+1 and its
associated covarianceSk+1. Under the assumption that the innovation is normally distributed, the
normalised innovation�k+1S�1k+1�Tk+1 is distributed as a�2 distribution onn degrees of freedom,
wheren is the dimension of the vector�.

Hence, as we saw in the first part of the course, we can define a confidence region (which we call
here the validation gate) such thatR() = fzj(zk+1 � ẑk+1jk)TS�1k+1(zk+1 � ẑk+1jk) � g= fzj�Tk+1S�1k+1�k+1 � g (133)

where can be obtained from standard�2 distribution tables.

In the context of the Kalman Filter algorithm, Equation 133 constrains the region of space where we
look for a measurement. We assume that the correct measurement will be detected in this region. It
is possible, however, that more than one measurement will bein the valid region. The problem of
distinguishing between the correct measurement and measurements arising from background clutter
and other targets (false alarms) is calleddata association. This topic falls outside of the scope of
the course (see, for example, Bar-Shalom and Fortmann).
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