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1 Discrete-time Kalman filter

We ended the first part of this course deriving the DiscreteeTKalman Filter as a recursive Bayes’
estimator. In this lecture we will go into the filter in moretdi, and provide a new derivation for
the Kalman filter, this time based on the ided.afear Minimum Variance (LMV) estimation of
discrete-time systems

1.1 Background

The problem we are seeking to solve is the continual estimati a set of parameters whose values
change over time. Updating is achieved by combining a sebsévations or measuremeni{s)
which contain information about the signal of interaét). The role of the estimator is to provide
an estimate(t + ) at some time + 7. If 7 > 0 we have grediction filter, if 7 < 0 asmoothing
filter and if 7 = 0 the operation is simply callefiltering .

Recall that an estimator is said to bebiasedif the expectation of its output is the expectation of
the quantity being estimateff[x] = E[x].

Also recall that aninimum variance unbiased estimator (MVUE) is an estimator which is unbi-
ased and minimises the mean square error:

% = argmin E[||%x — x||*|z] = F[x|z]

The termE[||x — %||?], the so-called/ariance of error, is closely related to therror covariance
matrix , E[(x — %)(x — %)T]. Specifically, the variance of error of an estimator is eqodhe trace
of the error covariance matrix,

E|jx — %||?] = tracel[(x — %) (x — %)7].

The Kalman filter is dinear minimum variance of error filter (i.e. it is the best lineatdil over the
class of all linear filters) over time-varying and time-ineat filters. In the case of the state vector
and the observationsbeing jointly Gaussian distributed, the MVUE estimator inaar function
of the measurement setand thus the MVUE (sometimes written MVE for Minimum Varianof
Error estimator) is also a LMV estimator, as we saw in the fiest of the course.



Notation

The following notation will be used.

Z observation vector at time.
yA the set of all observations up to (and including) tilne
Xp, system state vector at tinte
Rpli estimation ofk at timek based on time, & > .
Xk estimation errorgy,;, — xy, (tilde notation)
Py Covariance matrix.
Fy State transition matrix.
Gy, Input (control) transition matrix.
H;, Output transition matrix.
Wi, process (or system, or plant) noise vector.
Vi measurement noise vector.
Qy process (or system, or plant) noise covariance matrix.
Ry measurement noise covariance matrix.
K, Kalman gain matrix.
vy innovation at timek.
Sk innovation covariance matrix at tinie

1.2 System and observation model

We now begin the analysis of the Kalman filter. Refer to figurévé assume that the system can be
modelled by the state transition equation,

Xpt1 = Fi.xp + Grug + wy, (1)

wherex;, is the state at tim&, uy, is an input control vectowy,, is additive system or process noise,
Gy, is the input transition matrix anBy, is the state transition matrix.

We further assume that the observations of the state are tmamagh a measurement system which
can be represented by a linear equation of the form,

zr, = Hpxp + vi, (2)

wherez,;, is the observation or measurement made at ke, is the state at timé, H;, is the
observation matrix and;, is additive measurement noise.
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Figure 1:State-space model.

1.3 Assumptions

We make the following assumptions;

e The process and measurement noise random procegssaelv;, are uncorrelated, zero-mean
white-noise processes with known covariance matricesn,The

Q. k=1,

T _
Elwyw; ] = { 0  otherwise ©
T . Rk k= l,
Elviv;] = { 0  otherwise @
ElwivT] = 0 forallk, ®)

whereQ;, andR,, are symmetric positive semi-definite matrices.

e The initial system statex, is a random vector that is uncorrelated to both the system and
measurement noise processes.

e The initial system state has a known mean and covariancé&matr

Xojo = E[xo] and Py = E[(Xoj0 — Xo)(Xojo — XO)T] (6)

Given the above assumptions the task is to determine, gigehaf observations, , ...,z 1, the
estimation filter that at thé + 1th instance in time generates an optimal estimate of the sjat; ,
which we denote by, that minimises the expectation of the squared-error lagstion,

E|[xps1 — i1 |1?] = El(Xp1 — Rig1) T (K1 — K1) (7)

1.4 Derivation

Consider the estimation of statg ;,; based on the observations up to tikez; ... , z;, hamely
Rj41)z+- This is called a one-step-ahead prediction or simppyeadiction. Now, the solution to
the minimisation of Equation 7 is the expectation of theestt timek + 1 conditioned on the
observations up to time. Thus,



)A(k+1|k = E[Xk+1|Z1, . ,Zk] = E[Xk+1|Zk] (8)

Then the predicted state is given by

Rit1r = EXpg1|Z"]
= E[Fix; + Gruy + wy|ZF]
= FE[x4|ZF] + Gruy + E[w|Z*]
= FpXpp + Gruy )
where we have used the fact that the process noise has zenovalaa anduy, is known precisely.
The estimate varian@;. ;. is the mean squared error in the estimate ..

Thus, using the facts that;, andx,;, are uncorrelated:

Piiir = Bl(Xia1 — Rppapp) Xeg1r — Kpape) " 1Z27]
= FkE[(Xk — fck‘k)(xk — )A(k|k)T|Zk]Fg + E[wkwg]
= FPyFl + Qi (10)

Having obtained a predictive estimatg, ;) suppose that we now take another observation .
How can we use this information to update the predictionfiied %, 1|x41? We assume that the
estimate is a linear weighted sum of the prediction and theaieservation and can be described by
the equation,

N / N
Xpr1err = KppiXerap + Kit12e41 (11)

whereK;  ;, andK;, are weighting ogain matrices (of different sizes). Our problem now is to
reduced to finding th&;.; andKj_ , that minimise the conditional mean squared estimatiorrerro
where of course the estimation error is given by:

ik+1|k+1 = fck+1\k+1 — Xk+1 (12)

1.5 The Unbiased Condition

For our filter to be unbiased, we require thaftk;,54+1] = E[xz41]. Let's assume (and argue
by induction) thatk,,;, is an unbiased estimate. Then combining equations (11)2rah@ taking
expectations yields

Expappn] = BKjg X + KeviHepiXpp1 + K1 Vi
K1 E&pp1e] + Kt Hyp1 E[xp1] + Kpp1 E[Vi] (13)

Note that the last term on the right hand side of the equasarero, and further note that the
prediction is unbiased:

E[ik+1\k] = E[Fkik‘k + Gkuk]
FE[Xy k] + Gruy
= E[Xk+1] (14)



Hence by combining equations (13) and (14))
E&piajp1] = Kigr + Kip1 Hip1) E[xp1]
and the condition that;, ;41 be unbiased reduces the requirement to
Kip +Kpp1Hppr = 1

or ;C-H = I- Kk+1Hk+1 (15)

We now have that for our estimator to be unbiased is mustigatis

Kpr1pprr = (= KeprHep)Xppan + Kep12r41
= Rppuk + Keg1[Zer1 — HeraRppr) (16)
whereK is known as th&alman gain.

Note that sincé 1%, can be interpreted as a predicted observaion ., equation 16 can
be interpreted as the sum of a prediction and a fraction ofliffierence between the predicted and
actual observation.

1.6 Finding the Error Covariance

We determined the prediction error covariance in equatl®).(We now turn to the updated error
covariance

Piiijerr = BReprpsrXespen) 1Z°]
= B[(Xk+1 — Kip1 1) (X1 — Kppapirr) ]
= (1= K1 Hpr ) ERppr 5% )] = Kipr Hi )"

+Ki1 Vi1 v JK G+ 20 = K1 Hi)) B[Ry p Vi [ K

and with
Evit1vig] = Resr
ERpp1Xpan] = Prpagp
ElXgi1kVip] = 0
we obtain

Piiipst = T = Kiepn Hpy )P (T — Ky Hipn) T + K R K (17)

Thus the covariance of the updated estimate is expresseztnrs tof the prediction covariance
P11k, the observation noisB.; and the Kalman gain matriKy .

1.7 Choosing the Kalman Gain

Our goal is now to minimise the conditional mean-squarednegton error with respect to the
Kalman gainK.



_ . ~T ~ k+1
L = min BlX o1 Xe1 g1 277
k41

. ~ =T k+1
= Ir(mn trace(E[xk+1|k+1Xk+1|k+1|Z * ])
k41

= min trace(Py511) (18)
Kri1

For any matrixA and a symmetric matriid
9 (rac§ABAT)) = 2AB
O0A
(to see this, consider writing the trace B3 a] Ba; wherea; are the columns oA”, and then

differentiating w.r.t. thea;).

Combining equations (17) and (18) and differentiating witkpect to the gain matrix (using the
relation above) and setting equal to zero yields

oL

= —2(I - Kpp1 Hpp)Pryap Hi gy + 2Kg 1 Re = 0
OKj11

Re-arranging gives an equation for the gain matrix

K1 =Py Hi | [Hep Py H y + Ry ] (19)

Together with Equation 16 this defines the optimal linearmrsguared error estimator.

1.8 Summary of key equations

At this point it is worth summarising the key equations whictderly the Kalman filter algorithm.
The algorithm consists of two steps; a prediction step angpaate step.

Prediction:  also known as the time-update. This predicts the state amnadne at timek + 1
dependent on information at tinte

Rk = FiXpp + Grug (20)
Proe = FiPyiFi +Qu (21)

Update: also known as the measurement update. This updates theasthteariance using a
combination of the predicted state and the observation.

Ritijbrr = Rtk + Kigr [Ze01 — HepaRppae) (22)
Priiprr = (I=-KppiHep )Py (T - Kep Hep)” + K R K, (23)
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Figure 2:Discrete-time Kalman filter block diagram.

where the gain matrix is given by

Kp1 = PrpypHi [HiPrpp Hi g + Ry ] (24)

Together with the initial conditions on the estimate andeitsor covariance matrix (equation 6)
this defines the discrete-time sequential, recursive glgorfor determining the linear minimum
variance estimate known as the Kalman filter.

1.9 Interpreting the Kalman Filter

We now take a look at the overall Kalman filter algorithm in detail. Figure 2 summarises the
stages in the algorithm in block diagram form.

The innovation, v, is defined as the difference between the observation (measumt)zy,,
and its predictiorg;,, ), made using the information available at tifelt is a measure of the new
information provided by adding another measurement in gtienation process.

Given that
2Ic+1|1c = Elzrn |Zk]
= EMHip1Xp41 + Vig1|ZY]
= HitiXppp (25)
the innovatiorvy 1 can be expressed by

Vi1 = Ze+1 — Hep1 X1 pp (26)

The innovation or residual is an important measure of how welestimator is performing. For
example it can be used to validate a measurement prior tarigbecluded as a member of the
observation sequence (more on this later).



The process of transformimg,, ; into v ; is sometimes said to be achieved throughKlaéman
whitening filter. This is because the innovations form an uncorrelated gahal white-noise pro-
cess sequenc¥’*+! which is statistically equivalent to the observatidflst!. This is important
because where &g, is in generally statistically correlated, the innovatign., is uncorrelated so
effectively provides new information or “innovation”.

The innovation has zero mean, since,
Ewinl|Z" = Elzrr1 — gy r|Z]

= Elz1]2" = 2,

=0 (27)
and the innovation varianc®,; is given by
Ski1 = Blvrevig),
= El(zt41 — Hep1 % n) (2o — HepRppae) ]
Sk+1 = Rypr + Hyp1 Py b HY (28)

Using Equation 26 and 28 we can re-write the Kalman updatésrins of the innovation and its
variance as follows.

Rit1jkr1 = Rppre + Kepives (29)
Priprr = BEl(xre1 — K — Kip1Ves1) Ker1 — K — K1)
= Bl(%k11 — Repipe) i1 — K1) '] — K1 E[vigaviy
Piiipsr = Prppp — K Sen Ky, (30)
where, from Equation 19
Kt =P H 1S (31)
and
Skt = Hgp Py Hiyy + R (32)

This is a convenient form of the Kalman filter often used inlgsia.

Although primarily used as a state estimator the Kalmarnrfdtgorithm can be used to estimate
parameters other than the state vector. These are illgdtiafigure 2.

1. If applied to estimat&;. ;. it is called aneasurementfilter.
2. If applied to estimateé; . |, it is called aprediction filter.

3. If applied to estimate ., it is called awhitening filter.
4

. Ifapplied to estimaté&;, , 1), itis called akalman filter.

1.10 Example

Consider a vehicle tracking problem where a vehicle is ¢caimstd to move in a straight line with

a constant velocity. Leb(t) andp(t) represent the vehicle position and velocity. We assume that
observations of position can be made where the measureroms#t isv(¢). Since the vehicle is
moving at constant speeglt) = 0.



System model: The system state can be describedkbs) = [p(t), p(t)]*. The system state and
output equations can be expressed by

x(t) = Ax(t)+w(t),
z(t) = Hx(t) +v(t), (33)
where
A= 8(1)] H=[1 0].

Suppose we have sampled observations of the system attdisore intervals\T', then the discrete
equivalent is given by (see later this lecture for a derorgti

Xp+1 = Frpxp + Wi (34)
where
_ AAT _ ]. AT
Fk = € = |:0 1 (35)
Zr Hx;, + vy, (36)
Kalman filter:  Suppose that the known mean and covariance,of x(0) are,
5 0 10 0
Xolo = E(XO) = |:10:| P0|0 = |:0 10:| (37)
Assume also that

Qi = E(wywy) = [(1) 2] Ry = E(vi) =1 (38)
0,1,

The Kalman filter involves sequential application of theursdse equations as given above foe=
.... Here is some Matlab code to implement them, and an exampdggm

function [xpred, Ppred] = predict(x, P, F, Q)

xpred =

X
Ppred

F*
FPF + Q;

function [nu, S] = innovation(xpred, Ppred, z, H, R)

nu = z - H*xpred,; %% innovation
S = R + H*Ppred*H’;

%% innovation covariance

function [xnew, Pnew] = innovation_update(xpred, Ppred, n u, S, H)
K = Ppred*H™*inv(S); %% Kalman gain
xnew = xpred + K*nu; %% new state
Pnew = Ppred - K*S*K’;

%% new covariance



%%% Matlab script to simulate data and process usiung Kalman filter

delT = 1;
F=1[1dell

o 1 ]
=[10]
x=[0

10];
P=[10 O

0 10 J;
Q=[ 11

1 1]
R=[1F]
z=[25142555];

for i=1:5

[xpred, Ppred] = predict(x, P, F, Q);

[nu, S] = innovation(xpred, Ppred, z(i), H, R);

[X, P] = innovation_update(xpred, Ppred, nu, S, H);
end

Results: The plots in Figure 3a-c illustrate the result of running ik@man filter usingA¢ = 1.
Some interesting observations can be made as follows.

1. BothKj1 andPy 4, tend to constant (steady-state) value as oc.

2. The estimate&; ;1 tend to follow the measurement values quite closely. Indeece
K11 is a weighting function acting on the measurement it is cthat this effect is more
prominent wherK_, is high.

3. From Equation 1%, is decreases witR;; and increases with);. ;. Thus the conver-
gence properties are dependent on the relative magnitddbe process and measurement
noise. Figure 4a illustrates this effect clearly. Here weeh@-run the Kalman filter but de-
creased the elements@f...1 by a factor of 10 and 10, was kept at the original value).
It is clear from the figure that the net effect is that the eatams follow the measurements less
closely. Similar effects can be observed if the relative nitagle ofR, 1 is increased (Figure
4b). How do you explain what is observed in the latter case?

This example illustrates the fact that the performance odlartan filter is dependent on initialisation
conditions. In the next lecture we examine this observatiomore detail when we consider the
performance of the discrete-time Kalman filter.

1.11 Deriving the System Model
Up to this point we have somewhat glossed over the derivaifahe discrete system evolution

model, but since there are one or two points which are natedyntbvious, we illustrate it here with
some examples.

10
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Figure 3:Example 1: (a) measurement and estimated state trajestqti¢ Kalman gain; (c) diago-
nal elements of error covariance matrix. Note how in thegattiagrams the curves tend to constant
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Figure 4: Example 1: Effect of changing the process and measuremésd novariance matrices
on the estimated position trajectory. (a) decreasi®g,; by a factor of 10 and 100; (b) increasing

R41 by afactor of 100.
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1.11.1 Constant-velocity particle

Consider a particle moving at constant velocity. It's idewltion is described by (¢) = 0. In the
real world, the velocity will undergo some perturbatioft) which we will assume to be randomly
distributed. Therefore the real motion equation is given by

Z(t) = w(t)
where
Ew()] = 0
Elw(t)w(r)] = q(t)d(t—7)

Recall from your 2nd year maths that this latter expectasitieauto-correlation function and that
an autocorrelation of this form corresponds twoastant power spectral density more commonly
referred to asvhite noise

The state vector is,

xr
X = L:] (39)
and the continuous state-space system equation is
Z—j = Ax(t) + Bw(t) (40)
where
0 1 0
A= {0 0 and B = H (412)

We obtain the discrete time equivalent for equation 40 faarae interval ofA¢ by integating up
over one sampling period. Taking Laplace transforms weinbta

sX(s) —x(0) = AX(s) + BW(s)
= (sI - A)X(s) =x(0) + BW(s)
= X(s) = (sT — A)7'x(0) + (sT — A)"'BW(s)

Now taking inverse Laplace transforms:

: Alt] x(0)+/0m [(1) Atl‘q Bu(r)dr

Note that the integration on the right hand side is a consezpief the convolution rule for Laplace
transforms.

x(At) =

Shifting this forward in time to match our initial conditisnve have

At
x(tp + At) = LA x(tr) + L At-=r Buw(ty, + 7)dr
0 1 . o1
1 At ATAE —
= [0 1 } x(tg) + /0 [ 1 T] w(ty + 7)dr
or Xgy1 = F. x + Wi, (42)

12



It remains to determine the process noise covariagges E[w;wi |:

Qr = E[wewy]
At At
B[ [ it [ w+ van)

_ /At/m [At‘“] (At —v 1] Efw(ty, +u)w(ty +v)T]dudv
(

/0 [((AAtt - u))2 M u)} q(tr + u)du

LA LA
N {?Atz’ At] (43)
since (by our initial assumptiong)is constant.
In summary:
1 oAt A LA
e v (44)

Note that we have derived the process noise covariance asingtinuous-time white noiseas-
sumption. If, on the other hand we assunpece-wise constant white noisenodel, then the target
undergoes a constant acceleratign with the accelerations independent from period to peaod,
the process noise is slightly different. Bar-Shalom (p&86Yulsses (and derives the piecewise ver-
sion) this and you should familiarise yourselves with bdht always keeeping in mind that both
are approximations.

1.11.2 Constant-acceleration particle

The analysis is similar to the previous case. In this casgdinécle moves at constant acceleration.
The ideal particle motion is described By (t) /0t = 0. In the real world, the acceleration will not
be perfectly constant, thus,

0E(t)
where as before,
Elw(t)] = 0,
Elw)w(r)] = q@)dé(t—7)

We can express the state-space model of the system as follows

x
x=| z (45)
T

The continuous state-space system equation is,

ox
pri Ax(t) + Bw(t), (46)

The state vector is

13



where

010 0
A=]0 01 and B= |0 47)
0 00 1

The discrete-time equivalent to Equation 46 for a sampkrual of At is given by,

X1 = Fpxp +wy (48)

Once again taking Laplace transforms (etc) and using thengstion thatg is constant, we can
determine the state transition matk% and the process noise covariance maix

1 At A#?
Fj = A2 = [0 1 At
0 0 1
At /20 Att/8 A /6
and Qi = E[wiwi]=q | At*/8 A#/3 At?/2 (49)

A /6 At/2 At

2 Kalman Filter Performance

In this lecture we consider how to evaluate the performarieekalman filter. We will focus on
understanding the following problems

1. how a Kalman filter of a perfectly modelled system with petfy estimated noise behaves.

2. the effect that changes in the values of the noise soumesdn the overall performance of a
Kalman filter.

3. how to recognise if the filter assumptions are met in peactirhis is particularly important
in practical situations since many real systems are notneptesented by a linear model and
measurement and system noise is non-Gaussian.

In the case of (3), here, we will only consider how to deteatabfem with a Kalman filter. We con-

sider how to modify the Kalman filter to accommodate nonlin@acess and measurement models
and non-Gaussian noise in the final lecture.

2.1 Example
We will illustrate Kalman filter performance using as an epéaera variant of the constant velocity

model we considered in section 1.10, in which we use the Kalfiter to track a vehicle moving in
a straight line.

14
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Figure 5:Input to Example 2: (a) true position; (b) true velocity; @servations.

System model

We assume that sampled observations are acquired at diianetintervals\¢ and the system state
and output equations are of the form

1 At
Xpt+1 = [0 1 :| X + Wi (50)
Zr = []. 0] X + Vg. (51)

Further, we assume that the process and observation neigévan by

AT3/3  AT?/2

Qr = |:AT2/2 AT Ry = o (52)

r

We will takeo? = 0.01, 02 = 0.1 and assume that the vehicle starts from rest sahat= [0, 0]”.
Figure 5 shows the true position and velocity and obsematior a run of 100 samples computed
from the system equations using a pseudo-random numberagent® generate normally distributed
random numbers for the variancgsando .
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2.2 Performance under ideal modelling conditions

We first consider the performance of the Kalman filter undeaidnodelling conditions meaning
that the system model is known precisely as are the processase models.

Figure 6 shows the position track achieved by applying themida filter. Figure 6a shows the
predicted and estimated positions together with the measemts for the complete track. A close-
up of the initial track is shown in Figure 6b. The key thing e here is that the updated estimate
Xp41|k+1 always lies between the predictian, |, and the measuremeng . This follows from
the fact that the update is a weighted sum of the predictiahthe measurement (see lecture 1).
Figure 6¢ shows a close-up of the estimator when it is in thadst-state. In this case, the weights
(i.e. the Kalman gain) used in the update are approximateigtant.

Figure 7 shows the velocity track achieved by applying thériéa filter. No measurement is made
of the velocity state so estimates are produced via the -casslation between the velocity and
position (ie througiP).

2.2.1 Steady-state performance
Figure 8 shows the predicted and estimated error covaisdnc@osition and velocity. In particular,
note that they tend to constant values:agets large.

Performance in the steady-state turns out to be dependehearalues chosen for the process and
measurement noise covariance matri€gndR..

Given that
Piiy = FiPypFL +Qy
and
Pip =Prpo1 — P HY [He P HY + Ry 7 H Py
we have
Pipie = FrlPrpor — ProoHE [HiPro  HY + Ry] "Hy Py JFL + Qi (53)

Equation (53) is known as the discrete-timatrix Ricatti equation . It turns out that if the system is
time-invariant (i.eF, G, andH are constant), and the measurement and process hoisetizmessta
(Q andR are constant) then &s— oo the solution to equation (53) converges to a positive definit
matrix P provided that the system model is completahgservableand completelgontrollable (for
precise definitions of these see Jacobs). The correspogdingnatrixK = PH”S~" will also be
constant and called treteady-state gain

The importance of this result is that in some applications gan assume that the Kalman filter
works under steady-state conditions. In this case you fixdhee of P and henc& from the start
and initial conditions do not need to be specified. SiKces now fixed it means that considerable
computational saving can be made siC&loes not have to be recomputed at each time step.

2.2.2 Initialisation

Recall that part of the requirements for a Kalman filter isc#figmation of initial conditions. There-
fore, when considering implementation of a Kalman filterrapartant concern is how to set (guess!)

16
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values forx,|, andPy, as they are not known. The obvious question to ask then, is itlogatter
how good (or bad) your guess is?

One possibility is to initialise the state vector from theaserements

a Zo
Xo0|0 = | zo—z_1
At

and a simple way to initialise the state covariance matri@ &et it to be a multiplé? of the process
noise matrix

Pojo = RQx,
whereR is a constant (typicallyz = 10).

Figure 9 illustrates the effect that changing initialieatparameters has on long term Kalman filter
performance. Note that regardless of the initial valuel kandP tend to constant values in a few
iterations.

More formally, it can be shown that provided that the systewhiservable and controllable the error
due to poor initialisation tends to zero As— oco. Finally note that although good initialisation
is desirable for a linear Kalman filter it is not essentiak(d#stimator merely takes longer to settle
down). However, good initialisation is critical in the ingphentation of Kalman filters for nonlinear
system models (see final lecture).

2.2.3 Checking consistency

Since in practice we can not measure performance with regpele state error measures (since
we don’t know the true state values) how do we check that ttex i performing correctly? The
answer is that we can define filter performance measuresirstef theinnovation

We know that if the filter is working correctly thaw, is zero mean and white with a covariarfige
(see previous lecture). So we can verify that the filter isstgiant by applying the following two
procedures.

1. check that the innovation is consistent with its covaréahy verifying that the magnitude of
the innovation is bounded by2./Sy.
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Figure 9: (a) Effect of using different position initialisation vals; (b) Effect of changing to
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Figure 10:Innovation and innovation standard deviation bounds.

2. verify that the innovation is unbiased and white. This banverified by using hypothesis
testing ? test).

Test 1 - Innovation magnitude bound test: Figure 10 shows the innovation sequence together
with the+o and+2¢ bounds on its magnitude. The figure would seem to indicatétirannovation

is unbiased and approximateély% of the values lie within the:2¢ bound as required. This simple
test is sometimes sufficient to check filter consistency. éi@x, in practice it is more usual to also
apply the test discussed next.

Test 2 - Normalised innovations squaredy? test:  To test for unbiasedness we compute the
normalised innovations squared

Ghr1 (i) = Viy1 (1) Sy (DVhpa (i) (54)

for a sequence aoftrials of a Kalman filter. If the filter assumptions are metritiee g1, (i) are
eachy? in m degrees of freedom, where = 1 in our case (the dimension of the measurement
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Figure 11:Normalised innovation and moving average.

vector). Thus
Elgk1]=m (55)

This provides the test for unbiasedness. To estimate the mveaneed to havéV independent
samples ofy,+1(i),7 = 1,... N. The mean of this sequence,

1 N
Jht1 = N ; Qr+1(2)

can be used as a test statistic Sineg, 1 is x> on Nm degrees of freedom.

In our case, however, we can exploit the fact that the innoratareergodicto estimate the sample
mean from the time average for a long sequence (ie. the maviagage) rather than an ensemble
average. Thus we can estimate the mean as,

B 1
q= N;Qk (56)

from a single run of a Kalman filter. Figure 11 shows the norseal innovation and the moving
average of the innovation. The latter tendd 1@ ask gets large. To test unbiasedness we need to
verify that ¢ lies in the confidence intervat, , r»] defined by the hypothesi, that N7 is x%,,
distributed with probability — a.. Thus we need to finf;, 2] such that

P(N(j € [7“1,7“2]|H0) =1-aq, (57)

For the example we are considering,= 100, § = 1.11, and leta = 0.05 (ie. define the two-sided
95% confidence region). Using statistical tables we find that,

[ri,m2] = [X%OO(O'OQE)))X%00(0'975)]7
= [74.22,129.6]

The hypothesis is indeed acceptable for this example.
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Figure 12:Autocorrelation of the innovation.

Test 3 - Innovation whiteness (autocorrelation) test: To test for whiteness we need to prove
that

E[’/;'F’/j] = S;dij (58)

We can test this by checking that everywhere except whergj, the statistic defined by Equation
(58) is zero within allowable statistical error. Again, wancexploit ergodicity to redefine the test
statistic as a time-averaged correlation

|~
=% Z ViViir (59)

The autocorrelation is usually normalisedt). Figure 12 shows the normalised auto-correlation
of the innovation for the example we are considering. No&t ithpeaks at- = 0 and everywhere
else is distributed randomly about zero. We can test thabsh#lations about zero are random by
estimating the variance of the test statistic. For largaighd we can assume thatr) is normally
distributed with mean zero and variantgV. Then we can compute ti&r-gate as+2/v/N and
check that at least5% of the values fall within this confidence region. Again in @xample the
autocorrelation satisfies the hypothesis.

2.3 Model validation

So far we have only considered the performance of a Kalmamn filhen both the system model and
noise processes are known precisely. A Kalman filter may adbpm correctly if there is either
modelling or noise estimation error or both. Here we dis¢hescauses and identify most of the
important techniques used to control a Kalman filter froneding. We consider two types of error
and their characteristics;

1. Errorin the process and observation noise specification.

2. Error in the modelling of system dynamics (process model)

The three tests that we introduced in the last section willded as a basis for trying to tell when
something has gone wrong with the filter.
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2.3.1 Detecting process and observation noise errors

The example used in the previous section will be used totilites general characteristics that are

observed when the process and observation noise are undesver-estimated.

Somematlab code to generate a simulation sequence.

%%% Matlab script to generate some "true" data for later asse ssment
%%% Generates:
%%% x: the state history which evolves according to
%%% x(k+1) = Fx(k) + w(k)
%%% w: the process noise history (randomly generated)
%%% z: a set of observations on the state corrupted by noise
%%% v: the noise on each observation (randomly generated)
N = 100;
delT = 1;
F=1[1delT
0 11
H=[10]
sigma2Q = 0.01;
sigma2R = 0.1;
Q = sigma2Q * [ delT"3/3 delT"2/2
delT"2/2 delT J;
P = 10*Q;
R = sigma2R * [ 1 ];
x = zeros(2,N);
w = zeros(2,N);
z = zeros(1,N);
v = zeros(1,N);
for i=2:N
w(;,i) = gennormal([0;0], Q); % generate process noise
X(L1) = F*X(Li-1) + w(,i); % update state
v(:,i) = gennormal([0], R); % generate measurement noise
z(;,i) = H * X(,i) + v(,i); % get "true" measurement
end
plot(x(1,:));

Thematlab code to process the sequence and generate the various graplen below.

%%% Matlab script to assess Kalman filter performance
%%% The script assumes the existence of a vector z of
%%% noise corrupted observations

N = length(z); % number of Klamn filter iterations
Qfactor = 1; % process noise mult factor
Rfactor = 10; % measurement noise mult factor
delT = 1; % time step

F =111 delT % update matrix
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0 1 [
H=[10f] % measurement matrix

sigmaQ = Qfactor*sqrt(0.01);
sigmaR = Rfactor*sqgrt(0.1);

Q = sigmaQ™2 * [ 1/3 1/2 % process hoise covariance matrix
12 17

P = 10*Q;

R = sigmaR™2 * [ 1 ]; % measurement noise covariance

xhat = zeros(2,N); % state estimate

nu = zeros(1,N); % innovation

S = zeros(1,N); % innovation (co)variance

g = zeros(1,N); % normalised innovation squared

for i=2:N

[xpred, Ppred] = predict(xhat(:,i-1), P, F, Q);

[nu(:,i), S(,)] = innovation(xpred, Ppred, z(i), H, R);

[xhat(:,i), P] = innovation_update(xpred, Ppred, nu, S, R) ;
q(,i) = nu(,i)*inv(S(,i))*nu(:,i);

end

sumQ = sum(q) % determine Sum g which is Chi"2 on N d.o.f.
r = xcorr(nu); % get autocorrealtion of innovation

plot(xhat(1,:)); % plot state estimate

pause;

plot(nu) % plot innovation and 2sigma confidence interval
hold on;

plot(2*sqrt(S),’r’);
plot(-2*sqrt(S),’r");

hold off;

pause;

plot(q); % plot normalised innovation squared

pause;

plot(r(N:2*N-1)/r(N)); % plot autocorr of innovation (nor malised)

Under-estimatingo,:  Refer to Figure 13. This illustrates the performance testtie case when
the process noise is under-estimated by a factaf)of

A greater quantity of innovations than expected (e5%) fall outside the2o gate (obvious even
from visual inspection).

The normalised innovations squared are larger than expectd the sample mean falls outside
the confidence bound defined by tié test (for my trial the value came to 492.34/100 which is
clearly above the 95% confidence region [74.22/100,1200/Momputed above). This tells us that
the combined process and measurement noise levels arenpodotoo little weight is placed on
current measurements in the update process.

The autocorrelation sequence shows time correlations.
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(d)

Figure 13: Effect of underestimating, by a factor of10. (a) state estimates; (b) innovation se-
guence; (c) normalised innovations squared; (d) normaliaatocorrelation of the innovation se-
quence.

Over-estimatingo,:  Refer to Figure 14. This illustrates the performance testshie case when
the process noise is over-estimated by a factdr0ofThe innovations are well within the required
bounds.

The normalised innovations squared are smaller than exgpectd the sum (32.81, or eqivalently
the average) falls below the confidence bound defined byitest. This tells us that the combined
process and measurement noise levels is too high.

The autocorrelation sequence shows no obvious time ctioeta

Under-estimatingo,.:  Refer to Figure 15. This illustrates the performance testthie case when
the measurement noise is under-estimated by a factuy. of

The innovations exceed tle bounds more often than allowable.

The normalised innovations squared are larger than exgppacie the sample mean (3280/100) falls
outside the confidence bound [0.74,1.3] defined byyhaest. This tells us that the combined
process and measurement noise levels is too low.
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Figure 14:Effect of overestimating, by a factor ofl0. (a) state estimates; (b) innovation sequence;
(c) normalised innovations squared; (d) normalised autoglation of the innovation sequence.

The autocorrelation sequence shows no obvious time ctioeta

Over-estimatingo,.:  Refer to Figure 16. This illustrates the performance tast$ife case when
the measurement noise is over-estimated by a factod.of

The innovations are below ti¥e bounds.

The normalised innovations squared are smaller than exgpactd the sample mean (4.95/100) falls
outside the confidence bound defined by fftetest. This tells us that the combined process and
measurement noise levels is too high.

The autocorrelation sequence shows time correlations.

General observations:

1. If the ratio of process to measurement noise is too low mim@vation sequence becomes
correlated.
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Figure 15: Effect of underestimating,. by a factor of10. (a) state estimates; (b) innovation se-
guence; (c) normalised innovations squared; (d) normaliaatocorrelation of the innovation se-
quence.

2. The absolute values of the process and measurement aoige Get by adjusting their values
so that they? innovation test is satisfied.

3. In the example shown here, tuning is much more sensitidh&émges in the measurement
noise rather than the process noise. In this example, thisciguse measurement noise affects
position, process noise only affects velocity (refer to¢batinuous system model in Lecture
1).

2.3.2 Detecting process modelling errors

We now consider what happens if we try to apply an estimatangasurement data that doesn't fit
the model - the so-callemhis-matched filter problem

Specifically, we consider the case of using a constant-itglgalman filter to track a particle which
has a true motion trajectory defined by a constant-accaaratodel. Thus, the true motion is
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Figure 16:Effect of overestimating, by a factor ofL0. (a) state estimates; (b) innovation sequence;
(c) normalised innovations squared; (d) normalised autoglation of the innovation sequence.

described by the transition equation

where the state transition matrix is

with

Xpp1 = Fxp +wy, (60)
1 AT AT2/2
F=[0 1 AT (61)
o o 1

Q= E[wywj] =

[AT5/20 AT*/8 AT? /6'|
7

AT'/8 AT3/3 AT?/2 (62)

| AT3/6  AT?/2 AT

Figure 17 shows the result of applying the constant-velditier to the constant-acceleration model
where the filter noise parameters wete= 0.01 ando, = 0.1.

Observe that the innovation behaves like a first order GMaskov process (recall this implies that
in continuous-timelxz /dt + A(t)x = w, wherew is white noise). The normalised squared values
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Figure 17:Performance tests for an unmatched filter. (a) state esémdb) innovation sequence;
(c) normalised innovations squared; (d) normalised autoglation of the innovation sequence.

show a substantial drift in the mean and is not stationarg dutocorrelation reduces exponentially
in time - again typical of a first-order Gauss-Markov process

Boosting Q to reduce effects of modelling errors: one obvious thing to try in order to reduce the
effects of modelling errors is to boost the magnitude of trecpss nois€) artificially to take into
account unmodelled errors. Recall that this should boestdfue of the Kalman gain and hence let
the estimate follow the measurements more closely. Thédt@fsping this where the process noise
was increased by a factor of 10 is shown in Figure 18. Somedwgmnent is seen but this has not
totally compensated for the process model error.

3 The Continuous-Time Kalman Filter

So far we have considered the discrete-time formulatiornefalman filter. This is the version
which finds the most wide-spread application in practicee Kalman filter estimation approach
can also be derived for continuous-time. This is what we labik this section. It is interesting to

28



20

6000

5000

4000

3000

2000

1000

~1000 L L L L L L L L L —20 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

€Y (b)

5 T T T T T T T T T 12

0 h L L L L L L L L ~02 L L L L L L L L L
0 10 20 30 40 50 60 70 80 920 100 0 10 20 30 40 50 60 70 80 920 100

(c) (d)

Figure 18: Performance tests for an unmatched filter with process nbéested to compensate.
(a) state estimates; (b) innovation sequence; (c) norredlisinovations squared; (d) normalised
autocorrelation of the innovation sequence.

study the continuous-time Kalman filter for two principahsens;

1. to understand the asymptotic behaviour of discrete-Kadean filters and,

2. to provide insight into the relationship between Kalméering and Wiener filtering.

We consider both of these factors in this section. In readihgt follows you may find it useful
to refer back to the equivalent results that we have preljalesrived for the discrete-time case in
Sectionsl and?2.

3.1 Models and assumptions
The continuous-time Kalman filter is the limiting case of tiscrete-time Kalman filter as the

sample time becomes infinitely small. We will not derive tbhatinuous equations here merely state
the key equations (for example, see Gelb p119 onwards, aviB&hapter 7 for a derivation).

29



In the continuous case tlsgstem modelis given by

a’;ff) — FO)x(t) + w(t) (63)
where the process noise has covaria@ge).
Themeasurement models given by

z(t) = H(#)x(t) + v(t) (64)

where the measurement noise has covarid@@e. We assume that the inverRe ! (t) exists.

Recall from the derivation of the discrete-time estimalatiwe also need to specify initial condi-
tions for the state and its error covariance. Thus we asshatdtte initial conditions

E[x(0)] = %(0),  E[(x(0) — %(0))(x(0) - %(0))"] = P(0) (65)

are given.

3.2 Kalman filter equations

State estimation is governed by the equation

x(t) = F(£)%(t) + K(#)[z(t) — H(H)x(t)] (66)

Error covariance propagation is determined by the difféaéaquation
P(t) = F()P(t) + P()F" (1) + Q(t) - K(OR(HK" (1) (67)

which is known as thenatrix Riccati equation. This matrix differential equation has been studied
extensively and an analytic solution exists for the cortgtanameter case.

Here the Kalman gain matrix is defined by

K(t) = P(OHT ()R (1) (69)

In summary Equations 66, 67 and 68 together with the initiditions specified by Equation 65
describe theontinuous-time Kalman filter algorithm. You should compare these equations with
the equivalent results for the discrete-time case.

3.3 Example

Consider the problem of estimating the value of a constgnidi:(¢) given measurements corrupted
by Gaussian white noise which is zero-mean and has congiaatral densityy. Derive (1) the
continuous-time Kalman filter; and (2) the discrete-timdrifan filter assuming a sampling time
interval of AT

Continuous-time solution: The state-space model equations of the problem are

it) = 0 (69)
() = a®)+v(t), v~NO,a) (70)
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The scalar Riccati equation (Equation 67) governs erroagamce propagation and is given by

p=fp+pf+q—krk (71)
wherek = ph/r. In this problemf = ¢ = 0, h = 1,r = «. Therefore

p=—kr and k=p/a

Substituting fork and integrating Equation 71 we can solve jas follows

_p2
P=
L 1 [t
e ——/ dt,
pop @ Jo
p = po(l+ (po/a)t)™ (72)

Hence the Kalman gain is given by
k=2 = (po/a)[L+ (po/a)t] !
and the state estimation by

&(t) = (po/)[L + (po/a)t] ™" (2(t) — &(t))

Finally, note that as — oo, £k — 0 and the estimate reaches a constant value.

Discrete-time solution: Let us consider what the result would have been if rather dratyse
the continuous-time measurements we had sampled the sighaistants in time¢ = kAT, k =
0,1,2,... (satisfying the Nyquist criterion of course).

In this case, the discrete-time space-model is

z(k+1) = =z(k) (73)
2B) = a(k)+o(k), v(k)~ N(0,a) (74)

We haveF (k) = H(k) =1, Q(k) = 0 andR (k) = a.
The predicted state and error covariance are given by (seE®84)

#(k + 1|k) = 2(k|k) andP(k + 1|k) = P(k|k)

Using this result the update equation for the error covagas
Pk+1k+1)=P(klk) — K(k+ 1)[a+ P(k|k)]K(k+1) (75)

whereK (k + 1) = P(k|k)[P(k|k) + «] 1. Making this substitution fok (k + 1) into Equation 75
gives

P(k + 1)k + 1) = P(k[k) {m} (76)

If our initial error covariance wag, then it follows from Equation 76 that, at time+ 1

Pk+1lk+1) =P [m] (77)
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Figure 19:Wiener filter.

Hence the state update equation is

Tk+1k+1)=2klk)+ K(k+1)[2(k+ 1) — 2(k|k)] (78)
where
__ (R/o)
K(k+1) = 130 el

Compare this with the result for the continuous-time casgieMgain that ak — oo, #(k+ 1]k +1)
tends to a constant value.

One final point: unfortunately only simple types of contingdime problems such as the example
given above can be solved analytically using the covariaagemtions. For more complicated prob-
lems, numerical methods are required. This is the main reasgty the continuous-time Kalman
filter has not found wide-spread use as an estimation method.

3.4 Relation to the Wiener Filter

In this section we consider the connection of the Kalmarrfiti¢he Wiener filter. We will not derive
the optimal filter from first principles. Here our interestrighe relation to the Kalman filter.

Problem statement: The Wiener filter is the linear minimum variance of error mstiion filter
from among all time-invariant filters. Briefly, in one-dingan, we consider the problem of how
to find the optimal impulse functioh(¢) which gives the best estimate of a sigéé&l) where the
information available is a corrupted version of the origjina

z(t) = s(t) + n(t). (79)

Heren(t) is additive noise. If (1) we know the power spectral densitithe signal and noiséx (s)
andSy (s) respectively; and (2) the observations have been acquirestifficient time length so that
the spectrum ot (t) reflects boths(¢) andn(t) then the goal is to find the optimal filter response
h(t) to recover the underlying signal.

Wiener filter solution: The Wiener filter solution to this problem is to find the trarsfunction
corresponding té(t) using frequency response methods. It can be shown (seedorea Brown
chapter 4) that if the signal and noise are uncorrelated thewiener optimal filter takes on the
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form

Sx(s)
HV.(s) = ——222 80
opt(s) SX(S) + SN(S) ( )
whereSx (s) andSy(s) are the power spectral densities of the signal and noise eMenthe filter
defined by Equation 80 defines a non-causal filter, meaningttbautput depends on future values

of the inputz(¢) as well as the past, or
h(r) #0 for somer <0

For “real-time” operation this filter is not physically résdble (however it can be worth studying for
off-line processing applications). To generateaaisalfilter we need to define the filter such that it
depends only on past and current values of the inp)f thus,

h(r)=0 forallT <0

Thus we want our optimal filteH " (s) to satisfy this. The key is that if a transfer functiéifs)
has only poles in the left half plane then its invefge) is a positive time function (proof omitted).

We can makd{m(s) have this property by doing the following.

Consider the denominator of Equation 80. It can be sepaiated part containing poles and zeros
in the left hand plangSx + Sn]- and a part containing only poles and zeros in[tfie + Sy
This process is callespectral decomposition
Let

1 Sx
—  Hy(s)=
Sx o O e,
Then we can considefl,,; as being the cascade of two filte; (s) (causal) andd»(s) (non-
causal) as illustrated in Figure 19. Left) be the intermediate signal as shown. Then the power
spectral density ofi(t), Sy (s) is given by

Sv(s) = [Hi|*(Sn + Sx)
=1 (82)

Hi(s) = (81)

In other words it is white noise and hence uncorrelated @ededent of time). To make the whole
filter causal we can ignore the negative tail of the impulspoase corresponding . (s). We do
this by taking partial fractions aff»(s) and discarding the terms with poles in the right hand plane.
We denote this by H»(s)}_. Hence the causal Wiener optimal filter is given by

H0) = (5 SO \ (S e (83)
Example: As an illustration of this approach consider as an example
Sx(9) = —5— Sn(s) =1 (84)
Then,
Sxle) +5x(s) = 52
('z;:f) ((__Ss:f) (85)
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It follows that,

_ (s+1)

H,(s) is given by

(s + 1)

H. =
2(s) (—s +2)
1
= 87
(s +1)(—s+2) ®7)
Re-writing this equation in partial fractions gives
2-1 2-1
Hys) = V2 V2
s+1  —s+4/2
Hence
V2 -1
Combining Equations 86 and 88 gives the optimal Wiener fdter
(vV2-1)
HZ,V,t(S) = Hi(s){H2(s)}_ = m (89)
or in the time domain
W) = (V2—1)e V2 >0 (90)

The Kalman filter equivalent: We can solve the same LMV problem by using an alternative
approach based on state-space techniques that leads tmarkiker solution.

Specifically, we can re-write Equation 79 in terms of a sigtaee equation as

z(t) = Hx(t) + v(t)

We can findx as the solution to the steady-state continuous-time Kalfii@ning problem and
hence find the (optimal) transfer function between the dignd measurement. More details of
this approach are given next followed by a re-working of tkaneple described earlier using this
alternative approach.

We have to make some assumptions about the Kalman filterioigjggm before we start. Let us
assume that the system and measurement equations havectimnetant coefficients (i.&' andH
are time-invariant). Let us also assume that the noise pseseare time-invarian€andR. are
constant). Further we assume tf&ts controllable, and andH are observable. Under these
conditions the Kalman filter will reach a steady-state ctiadiwhere the error covariance matrix
P — P... This means that the matrix Riccati equation (Equation &# hecomes

0 = FP,+P.F"+Q-K,RK”,
= FP, +P . F'+Q-P H'R 'HP,, (91)
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and state estimation is given by

X(t) = F(t) + Koo [2(t) — HX(t)] (92)
where the steady-state gainks,, = P,,H”R™'. Equations 91 and 92 define tsteady-state
(stationary) continuous-time Kalman filter.
Now let us re-arrange Equation 92

X(t) — (F — Koo H)X(t) = Kooz(t)

Taking the Laplace transform and ignoring initial condio(since we are in the steady state) we
have

(sI - F — Ko oH)X(s) = Koo Z(s)

or

— HE

Z(S) opt(s) = KOO [(SI -F - KOOH)]i (93)

This last equation defines a transfer function between #ie sstimate and the measurement which
when multiplied byH gives theWiener optimal filter ,

w
Hopt

(s) = HHE (s). (94)

Note that thecausalWiener filter and the continuous-time Kalman filter are eglémt under the
assumptions of time-invariance and one can be determioettfre other. The key difference is that
one approach is based on state-space models and the otleqoarfcy domain concepts (auto and
cross correlations).

Example: Let us re-work the example we considered before using then&alfilter approach.
The power spectral density oft) is decomposed as

111
—s241 s+1-s+1

Sx(s) =
Thus the state-space model is

w(t) = —z(t) +w(t) (95)
2(t) = =z(t) +v(t) (96)

Then this impliesthaF = —-1,Q =1, H=1,R = 1.
Substituting these values into the steady-state Riccatt@n gives
—2P — P2 +1=0
orP, =v2—-1.HenceK,, =P, H'R™' =v2—1.
The optimal transfer function between the state and meamnteis therefore

V2 -1

HK
s+\/§

opt

(s) =Ko [(sSI-F — K, H)| ™' =
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giving
V2-1

H)' (s) = HHE (s) = P

which agrees with Equation 89.

4 Further Topics in Kalman Filtering

This section deals with some variants of the discrete Kalfittenwhich prove useful when some of
the assumptions of the conventional Kalman filter break ddwecall that three of the key problem
areas for a Kalman filter are,

1. Initialisation: we assume that the initial state vector and its error comagianatrix are
known.

2. Modelling: we assume that we have an accurate linear model of the praeesseasurement
system.

3. Noise: we assume that the process and sensor noise processes ss@@.au

In this section we look at how to deal with each of these proisle

We begin by considering thiaformation filter which is a variant on the conventional Kalman filter
which gives more accurate results when there is no infoonmatbout the initial state.

Next we consider how to cope with modelling error. In mostctical cases the linear equations
describing the system and observation models of Equatidérand 15 in Section are not a good
approximation to reality. Although, as we have seen, it isslile to detect that our assumptions
about modelling and noise are invalid it is clear that whatnged to do is extend the estimation
approach to accommodate nonlinear models. Recall thdiédfalman filter algorithm, the estimate
is the conditional mean of the state given all the measurésngnto timek + 1. We showed in
Section 1 that under the assumption that the process was mel the noise processes white this
led to linear, recursive solution of the form,

ettt = Xeg1p + K1 [Zrr1 — Hip1Xeqap)- (97)

We show that there exists an equivalent version of Equatibthft can be used in the case of a
nonlinear system model. We do this by linearising the (rinedr) state and observation matrices
about the estimated trajectory. This leads to the so-catktended Kalman Filter (EKF) which is
the best linear estimator with respect to the minimum-msgunare error.

Finally we take a brief look at validating measurements whde to non-Gaussian sensor noise
some measurements could be confused with backgroundrautbeitliers.

4.1 The Information Filter

The information filter (or inverse covariance filter) is ateahative form of the Kalman filter algo-
rithm which is mathematically equivalent to the convensiddalman filter but used in preference to
it when either,
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1. the measurement dimension is large compared to that pftleess noise; or,

2. theinitial system state is unknown.

As with the conventional algorithm, the information filtera recursive linear estimator that repeat-
edly estimates the state of a variable calledittfiermation vector and its error covariance matrix
called theinformation matrix . This idea should be familiar from the first part of the coundeere
we discussed recursive least squares.

Theinformation vector at timek + 1 given a set of observations up to this time is defined as

R - .
Orriik+1 = Py Rtk (98)

It is then straightforward to prove that its covariance is iverse of the error covariance matrix,

71 . . .
Pk+1\k+1’ orinformation matrix .

Update equations: Recall that the conventional Kalman filter update equatiortie error covari-
ance matrix is given by

Piriprr = Prype — Ker it He 1 Py (99)
K1 Py i (Heg 1 P HY 4+ Riga) ™! (100)

The inverse of the (posterior) covariance matrix is given by

P—l

-1 T p-1
ittt = Prpae T Hepr Ry Heg (101)

+
Proof:
[P-PH " (H"PH” + R)"'HP|[P~' + H'R™'H]
= I+PH'R'H-PH'H"PH” + R)"'H - PH'(H"PH” + R) 'HPH'R 'H
I+ PH'[R! - (H'PHT + R)! - (H'PHT + R) '"HPH'R !|H

= I+PH'R'-H"PHT" + R)"'I+H"PH'R™")|H
= I+PH'R'-H"PH" +R)'(R+H"PH")R™'|H
= I+PH'I-TR'H

I

The gain can be written
Kit1 = Prpppp Hi Ry (102)
Proof:
K = P H' [HP H" +R]™!

- PHHkHP,;EllkHPkH‘kHTR*lR[HPkH‘kHT +R]!

- PkHMHP;&llkHPkH‘kHTR*l[HPkH‘kHTR*l +1t

= PkHlkH[P,;in +H'R 'HPy, H'R 'HP, H' R + 1)1

= Prapn[I+H R 'HP,,, JH R 'HP,,,HR '+1!

= P H'RT'I+HP,,,  HR'|HP,,,H R +17!

= PrpqH'R
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Next consider how to update the information vector:

. I .
Orriirt = Py Resijke
—1 A —1
Pt T = KH) Ry + Py Kz

= (Prlipy —H' R 'H)%y ), +H'R 'z
P

hipReee + HIR 2 (103)
Note that this is exactly the form we derived from Bayes’ Ruléhe first part of the course: itis an
information weighted sum of prediction and measurement

The update can be written succinctly as
9k+1\k+1 = 91c+1|1c + HgHR,;ileH
Prediction equations: Recall that the state prediction is defined by

)A(k+1|k = Fik|k+Gu
Poop = FP FT+Q

It follows that the corresponding prediction equationstfer information filter are

i = Pl FPybiy +Prl,  Gu (104)
_ —1
Pl = [FPyFT +Q (109)
4.1.1 Summary of key equations
Prediction:
ékﬂlk = Pl;il\kFPk““ék\k + Pl;il\kGu
_ —1
Pk—ﬁl-1|k = [FPkaFT + Q]
Update:
—1 -1 T —1
Poesr = Py T Hen Ry Hi
Oriiprs = Opp +H'R 'z

Comments: As noted at the beginning of this section certain problerasbatter solved using the
information filter rather than the conventional Kalman filte

In the case that there is no information about the initigiestaen the magnitude @, should be
set very large in the conventional Kalman filter. This maydléasignificant loss in accuracy. The
information filter does not have this problem as it uses therse of the initial state covariance error
matrix.

When the dimension of the measurement veetois significantly larger than that of the process
noisep the information filter is computationally more efficient thlhe conventional Kalman filter.
This is because one of the computationally expense stepther ease is matrix inversion. In the

case of the conventional Kalman filter the inversion of the< m matrix (HkHPZHlkH;{H +
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Ry+1) is required. In the case of the inverse covariance filter wamde the inverse of the x p
matrix defined by Equation 105.

Finally, note that given the output from one filter it is eagyibd the equivalent output of the other
filter using Equation 98 and the imformation matrix (invecsgariance).

4.2 Extended Kalman Filter

In this section we consider the extension of Kalman filteithens to the case of non-linear system
models.

We assume that the system can be represented by a nonlise@tditime state-space model of the
form

Xk4+1 = f(Xka ug, k) + Wk, (106)
Zp = h(Xk, k) + Vi, (107)

wheref (., ., k) is a nonlinear state transition matrix ahd, ., k) is the nonlinear observation matrix.

We assume that the process and measurement noise are Gaussi@related and zero-mean, and
have no cross-correlation. Thus

Ewg] = 0
Evie] = 0
E[wiw]T] = 0;Q;
E[viv]T] = ;R

Ewivi] = 0

J

4.2.1 Prediction
As in the linear case, we assume that we have attime
)A(k‘k :E[xk|Zk], Pk\k

To generate the prediction we expand Equation 106 in a Tayderies about the predicticy),;, up
to the first-order terms.

. of . L
X = £k, k) + | 52| b~ Rl + O~k +we (108

where the Jacobian df is evaluated aky .. Taking the Expectation of Equation 108, ignoring
higher than first order terms, and assuming #)at is approximately equal to the conditional mean
and that the process noise has zero mean, yields

Rppip = Elxep|ZF]
= f(f(k\k,llk,k) (109)
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The state covariance can be found as follows. First the gtiedierror is given by

Xpyilk = Xkt1 — Xppipk
. of .
= f(Xgpp, ug, k) + [&} (X — g [k)
+O([xr — Xpi]®) + Wi — £(Rp g, up, k)
~ || _ 4
S b [xXk — Rgjk] + Wi
of] ..
= [&} (Xpik] + Wi (110)

The prediction covariance is then found by taking the Exgiém of the product of the prediction
error with it's transpose:

Piyiew = E[ik+1|kig+1|k|zk]
I g | Bl + w0 ] B+ w7128

2 pisusim) [ 2]+ pvet

ox ox

of of 1"
[&} Py |:6_X:| + Qp (111)

Note that the prediction covariance has the same form @séarlequivalent with the Jacobiégg]
playing the role of transition matrik',.

4.2.2 Observation Prediction and Innovation

The observatiom can be written as a Taylor series expanded about the preehci, ;.

oh] . -
= | Berape = Xie1] + O(Rpa e — Xn41]?) + Wi
ox

Zrr1 = hXppp) +
Truncating to first order and taking expectations yieldsiteglicted observation
Zrar ~ h(Xepr) (112)
The innovation is then found as
Vil = Zg41 — h(f(k-i-l\k) (113)
and the innovation covariance is found as follows:

Skt1 = Bvkaviy]

= El(zk+1 — hRpp1)k) (21 — BRpp1 i) 7]

oh oh]"
~ E <[8_x} (Xk+1|k - Xp) +Wk+1> ((Xk-Hk —Xk)T |:8_X] +w{+1>]
oh oh]"
= [&] Pri [&} + Ryt (114)
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where the Jacobian &f is evaluated a; ;. Again note that Equation 114 is in the same form as
its linear counterpart except thﬁg] has replaced; .

4.2.3 Update

By similar reasoning to that made for the linear case it isjids to derive from first principles the
equations for the filter gain, state update and covariandatep The forms turn out to be the same
as for the linear Kalman filter witk;, , replaced by{%]. Thus, the Kalman gain is given by

onl’ .,
Kit1=Pryap |:8_X:| Skt1 (115)
The state update is given by
Kkt = Xeg1pe + Kir1 [Zrr1 — h(Xppn)] (116)
and the covariance update is given by
Piiijpst = Pryie — Kep1Sen Ki (117)
4.2.4 Summary of key equations
Prediction:
fck+1\k = f(fik\k,uk,k) (118)
of of”
Py = [&} P |:6_X:| + Q (119)
Update:
Ker1jkrr = Xegipp + Kepr[Zerr — h(Zppn)] (120)
Piiiper = Prop — Kepi S Ky, (121)
where
onl’ |
K1 =P [a—x} Sii1 (122)
and
oh oh|"
Skt1 = [a_x k1 [k 8_X} + Rg41 (123)

4.3 Some general comments

1. The Jacobianég—i] and [%] are functions of both the state and timestep; they are net con
stant.

41



2. Stability: Since we are dealing with perturbation models of the stadev@gervation matrices
about the predicted trajectory, it is important that prédits are close enough to the true states
otherwise the filter will be poorly matched and possibly diee

3. Initialisation:  Unlike in the linear case, special care has to be taken wh#aliging the
Extended Kalman filter.

4. Computational cost: The Extended Kalman filter is computationally significantipre ex-
pensive than it’s linear counterpart. This limited its garse in applications. However, today
real-time computing implementations of the EKF can be agdaising moderate computing
resources.

4.4 Implementation

Implementation issues are similar to those of the lineantéal filter and you can test the perfor-
mance of the filter using all the techniques introduced irtiSe.

In particular, special care has to be taken to check wheltteesyistem and noise process modelling
assumptions are met. There are obviously some errors inteatby using a linearised model.

A further important point to note is that the state covar@anmatrix is only an approximation to the
mean square error and not a true covariance. RecalRhaf ., determines the weight given to
new measurements in the updating procedure. Thi if; ;. is erroneous and becomes small,
the measurements have little affect on the estimation asditite possible that the EKF will diverge.

4.5 Example - a simple robot vehicle

Consider the simplified description of a robot vehicle in imofllustrated in Figure 20. The state is
described by, = [z, vk, ¢1]T. Control is provided by an input control vector which deteres
the velocity of travelyy, = [V, ox]7.

The motion of the vehicle can be described by the nonlineae stansition equation

Thot xp + AtVy cos(or + o)
Ykt1 | = | yr+ AtVisin(ér +¢r) | + ar (124)
Prr1 o1, + Y Atsin(py,)

Here, At is the time interval between time stefs|s the wheel baseline anyj, is the noise vector
which combines errors in modelling the process and control.

We assume that measurements of range (depth) and bearintpdeeto a set of beacons at fixed
locationsB; = [X;,Y;]T,i = 1,... N. The nonlinear observation model is therefore

o — H _ [\/<X o T (T =)

tan~! (3=2) - o

+rp (125)

wherer,, is the observation noise.

Prediction:
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Bi

z(k)=(r, 6)

x(k)=(x,y,6) "

-
»

origin X
Figure 20:Example: geometry of a simple robot vehicle.

From equation 109 the predicted st#ig ,;, is given by

Thy1|k Trk + AtV COS({’W + k)
Yk+1|k = ‘ﬁklk;‘_ AtVy, Sin(¢k|k + vk) + Qg (126)
Ph+1]k i + At sin(py,)
The prediction covariance matrix is
of of"
Prie = [@} Pk {8_)(] + Qk (127)
where
of 1 0 AtV sin(q?k\k + ¢r)
|:6_X:| =10 1 +AtV, cos(¢k|k + k) (128)
0 0 1
Update:
The equations for the updating of the state and its covagiane:
Ritiht1 = Keppp + Kera[ze — h(Xppr)]
Piitjerr = Prpir — KepiSen Ki (129)
where
oh|"
Kit1 = Pryapk |:8_X} St (130)
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and

oh oh]"
Skt1 = [B_X k1 [k B_X} + Rg41 (131)
and
oh Zrp1p—X Jrt1x—Y 0
[a_x} _ [ _gk;fd‘:,y fk+1dfzrx o (132)

Hered = /(X — &py11)? + (Y — Grrap)?

4.6 Measurement Validation - coping with Non-Gaussian Nois

Recall that in the first part of the course we considered tioblpm ofvalidating new measure-
ments. Such considerations are particularly importanppiieations such as sonar tracking where
measurement ‘outliers’ are common; i.e. the sensor digtdb (conditioned on the true value) is no
longer Gaussian.

The solution to this problem we developed was to set uglialation gate or innovation gate any
measurement lying in the “region” of space defined by the atensidered to be associated with
the target. Note that since the measurement vector typicali a number of components (say N) the
“region” will be a region in N-dimensional space (typicadly ellipsoid). We use the same approach
with the Kalman Filter and recap it here.

Assume that we already have a predicted measurement,, hence thennovation, v, and its
associated covarian®, ;. Under the assumption that the innovation is normally iisted, the
normalised innovatiow; 1S}, v}, , is distributed as a? distribution onn degrees of freedom,
wheren is the dimension of the vector.

Hence, as we saw in the first part of the course, we can definafalence region (which we call
here the validation gate) such that

R(Y) = {z/(zre1 — Zep1n) St (Zerr — Zrprpe) <7}
= {zv{ 1S ivre <) (133)

wherey can be obtained from standayd distribution tables.

In the context of the Kalman Filter algorithm, Equation 188istrains the region of space where we
look for a measurement. We assume that the correct measutraifieoe detected in this region. It
is possible, however, that more than one measurement witi bee valid region. The problem of
distinguishing between the correct measurement and mesasuits arising from background clutter
and other targets (false alarms) is caltkata association This topic falls outside of the scope of
the course (see, for example, Bar-Shalom and Fortmann).
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