Estimation |

lan Reid
Hilary Term, 2001

1 Introduction

Estimation is the process of extracting information abbettalue of a parameter, given some data
related to the parameter. In general the data are assumedstimie random sample from a “popu-
lation”, and the parameter is a global characteristic ofthygulation.

In an engineering context, we are often interested in iméding the output of a sensor or multiple
sensors: real sensors give inexact measurements for avafrieasons:

¢ Electrical noise — robot strain gauge;
e Sampling error — milling machine encoder (see figure 1);
e Calibration error — thermocouple

¢ Quantization/Shot noise — CCD (see figure 2)

We seek suitable mathematical tools with which to model aadipulate uncertainties and errors.
This is provided byprobability theory — the “calculus of uncertainty”.
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Figure 1: Position and velocity information from a millingachine encoder.
The following (by no means exhaustive) list of texts showdduseful:

e Bar-Shalom and Fortmann, “Tracking and Data Associatidiwgdemic Press, 1988.

e Brown, “Introduction to Random Signal Analysis and Kalmalteffing”, Wiley, 1983.
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Figure 2: Pixel data over time for a stationary camera.

Gelb (ed), “Applied Optimal Estimation”, MIT Press, 1974.

Jacaobs, “Introduction to Control Theory”, 2nd Edition, QUB93.

Papoulis, “Probability and Statistics”, Prentice-Hall.

Press, Flannery, Teukolsky, and Vetterling, “NumericatiRes in C”, CUP, 1988.

Riley, Hobson and Bence, “Mathematical Methods for Phyait$ Engineering”, CUP, 1998.

1.1 Modelling sensor uncertainty

Consider a sensor which measures a scalar quantity, amdjtake measurement. We could use this
measurement as astimateof the value of the sensor — just about the simplest estimateauld
think of.

However, in general the measurement will not exactly eduesirue value. Rather it will be displaced
from the true value because of the effects of noise, etc.

An appropriate way to model this is vigpaobability distribution , which tells us how likely partic-
ular measurementis, given the true value of the parametewiite this as?(Z|X), the probability
that Z is observed, given thaY is the true state being measured.

In a general case we may have ttais not a direct observation, and may be a function of time.
In a simple case, we may know measurement must lie witlihthe true value, but no more —i.e
the sensor model can be described ndorm distribution (see figure 3)

pz(zlz) ~U(x — €,z +€)

1.2 Modelling uncertain prior information

In addition to modelling a sensor as a probability distridwitin order to capture the notion of un-
certainty in the measurements, we can apply the same ideadellimg uncertain prior information,
since the parameter(s) to be estimated may have knowrtisttigroperties.
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Figure 3: Modelling a sensor by(Observatiofilrue stat¢ uniformly distributed around the true
value.
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Figure 4: A uniform prior

A simple example, once again, is where we have no knowleddglkeoparameter, other than that
it lies within a certain range of values. These could be fixgdiown physical constraints — for
example, the pressure of a gas in a cylinder is known to lievden 0k Pa and some upper limit
set by the strength of the cylinder, or the temperature ofesoralten iron in a furnace lies between
1535°C and2900°C. We could also use a uniform distribution here

px(z) ~ Ufa,b)

(see figure 4)

Of course we may know more about the parameter; the temperatwater in a kettle which is
switched off will lie somewhere between the ambient roomperature and00°C, depending on
how recently it was used, but is mdikely to be close to room temperature in the overall scheme of
things.

1.3 Combining information

We require some way of combining a set of measurements onaangéer (or parameters) and/or
some prior information into an estimate of the parameter(s)

Two different ways of combining will be considered:

Summation (figure 5(a)) Consider timing multiple stages of a race (R4C Rally). Given some

uncertainty model for each of the stage timings, how can vterdéne an uncertainty model
for the total time — i.e. the sum of a set of random variables?

Pooling (figure 5(b)) Now consider using two different watches todithe same stage of the race.



Can these two measurements be combined to obtain a moreaseestimate of the time for

the stage.
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Figure 5: Two ways of combining information.

In the latter case, an average of the two might seem like aropppte choice. Theample mean
of a set of observations,i = 1...n, is given by

This is alinear estimator, since it is a linear combination of the observations. It barshown (see
later) that it has a smaller variance than any of the indi@idneasurements, so in that sense it is
potentially a better estimator of the true valtie

Note that this estimator has not taken into account any priormation about the distribution far.
If p(z) is available, we can udgayes’ rule

p(z|z)p(x)

plals) = P28

to combine measuremeniéz|x) and theprior p(z), as in figure 6, obtaining theosterior.

1.4 Example: Navigation
Consider making an uncertain measurement on the locatiarbeficon, followed by an uncertain

motion, followed by another noisy measurement. Combingethe obtain an improved estimates of
the beacon’s and your own location — see figure 7.

1.5 Example: Differential GPS

GPS is the Global Positioning System. With a simple recaivsting a few hundred pounds you can
obtain an estimate of your latitude/longitude to withii00m from a network of satellites which
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Figure 7: Multiple views of a beacon to improve its locatictimate (a) conceptually; (b) applica-
tion to autonomous mobile robot navigation.

cover the globe. The system has accuracy down to a few metrésef military, but for civilian use
the signal is deliberately corrupted by noise. The noise is:

¢ identical for all locations for a given instant in time;
¢ highly correlated for closely spaced time intervals (ilewdy changing);

o effectively uncorrelated for time instants widely sepadain time.

[Exercise: think about what the auto-correlation functaoxd power spectral density might look
like...]

Hence by keeping a unit in one place for a long period of timi@reraging the position data, you
can form a much more accurate estimate of where you are.

The idea of DGPS is to have two receivers which communicate.i®mobile, and the other is kept
stationary, hence its position is known rather more acelyahan the mobile one. However at any
one instant, the “noise” on the two estimates is perfectlyedated — i.e. identical — so the position
estimate for the mobile unit can be significantly improveshirthe+100m civilian spec to that of
the stationary unit. See figure 8.



Mobile unit

mobile measurement
uncertainty

Stationary unit

mobile unit
posterior uncertainty

-

time averaged unéeqainty

Figure 8: Differential GPS
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Figure 9: Feedback control using an observer (after Jac@bs)p

1.6 Example: Feedback control

Suppose a system is modelled by state equations (see figure 9)

x = Ax + Bu
or x;=Ax+ Bu

and we seek to control the system with a control law of the form
u=-Kx

in the presence of disturbances and noise on the sensortautpypically our sensor does not
measure the statedirectly, instead measuring some functipiof the state. We might try

u=-KCly

but it will often be the case th&f is rank-deficient.



Idea: devise an estimator for the statex, given prior information about, and a set of observations
y, and use the control law

A

u=-Kx

In the context of feedback control such an estimator is knaw@nobserver, and a particularly
useful and widespread one is tKalman filter which will be discussed in the second part of the
course.

2 Probabilistic Tools

We assume a certain amount of basic knowledge from prelioig)di much.

2.1 Independence
Two eventsd and B are independent if they do not affect each others outcoméhévizatically this
is formalized as
P(A,B) = P(A)P(B)
If the events are not independent then this equation becoetetmn
P(A,B) = P(A|B)P(B)

where the first term on the right hand side means the probabfleventA given eventB.

2.2 Random Variables
Informally a random variable is a variable which takes orugal(either discrete or continuous) at
random. It can be thought of as a function of the outcomes ahdam experiment.

The probability that a continuous random variable takespati§ic values is given by the (cumula-
tive) probability distribution :

Fx(z) = P(X < 7)
or by theprobability density function:

px(e) = 2 Fx(e)

i.e., infinitesimally
Pz < X <z +dz) =px(z)dz

From the definition we have the following properties:

/I px (z)dr = Fx(x)

— 00

/°° px(z)dr =1

— 00

b
[ px@ds = Fx() - Fx(@) = Pla< X <1



2.3 Expectation and Moments

In many trials, with outcome taking the valug with probabilityp;, we expect the “average” to be
>, piz;, hence thexpected valueof a random experiment with discrete outcomes is given by

Expected value oK = E[X] = Zpixi
i=1

For a continuous random variable we have

E[X] = / zpx (z)dz
[Exercise: verify that is a linear operator]
Thekth moment of X is defined to beZ[X*], i.e.:

E[X*] = / ¥ px (x)dx

—00

The first momentE[X] is commonly known as thmean The second moment is also of particular
interest since th@ariance of a random variable can be defined in terms of its first andrsgco
moments:

Variance ofX = Var[X] = E[(X — E[X])?] = E[X?] - E[X]?

[Exercise: Proof]

2.4 Characteristic Function

Thecharacteristic function of a random variable is defined as

o0

V(@) = Blexp(ioX)] = [ e py(a)ds

—0o0
Hence

o E[X}] = jnM|w:o

dwm

e Ux(w) isinthe form of a Fourier transform, hence

e px(z) = %f_oo eIV x (w)dw

[ee]

2.5 Univariate Normal Distribution

The most important example of a continuous density/distidin in thenormal or gaussiandistri-
bution, which is described by the density function (pictlirefigure 10)

_ 1 L(z—p)®
px(l‘) - \/W exp(§ o2 )




or by the characteristic function
1
Ux (w) = exp(pjw — 50°w?)
For convenience of notation we write

X ~ N(M702)

to indicate that the random variableis normally distributed with parameteusando?, respectively
the mean and variance.

o5k -

0.4k

031

0.2k

o1

Figure 10: Normal distribution for = 0,02 =1

The normal distribution is very important for a number ofsaas which will return to later...

2.6 Multiple Random Variables

We begin the discuss of multiple random variables with asien of material on discrete events.
Thejoint probability distribution of random variablest andB is given by
P(A, B) = Probability of events A and B both occurring

Of course this must satisfy

> P(4;,B)) =1
)

Theconditional probability distribution of A given B is given by
P(A|B) = P(A,B)/P(B)

Themarginal distribution of A is the unconditional distribution of A (similarly for B)

P(4) = 3 P(4,B)) = 3" P(A|B))P(B))

Combining expressions faP(A, B) and P(B, A) (which are of course equal) we obtédayes
rule
P(B|A)P(A) P(B|A)P(A)

P(A|B) = P(B) 3, P(BJA;)P(4;)




2.7 Discrete example

An example (albeit not a very realistic one) will illustrateese concepts. Consider a digital thermo-
couple used as an ice-warning device. We model the systemdsendom variables

X, the actual temperature < X < 2°C'
Z, thesensorreading < Z < 2°C)

The joint distribution is given in the “spreadsheet’®fX =i, Z = j):

X=0 X=1 X=2]|rowsum
Z=0 0.32 0.03 0.01
Z =1 0.06 0.24 0.02
Z =2 0.02 0.03 0.27
col sum

2.8 Multiple Continuous Random Variables
We now consider the continuous equivalents...
Thejoint probability distribution (cumulative) for random variable¥ andY” is given by

Thejoint density function is defined as

_ 62FXY(1',ZJ)
pxy(z,y) = ~owdy

Hence we have:
Py €)= [ [ pxvtepdedy
R

and if R is a differential region then

Pz < X <z +dz,y <Y <y+dy) =pxy(z,y)dedy
Themarginal or unconditional density ok (or similarly V') is given by

px(z) = /OO pxy (=, y)dy

— 00

Theconditional density can be determined by considering the probabilay this in a differential
strip, given thalt” is in a differential strip:

dxd
Plo< X <a+daly <Y <y+dy) = XY@ ydrdy

py (y)dy
Now we wave our hands, cancel ttigs, and write
d
P(x<X§x+dx|Y:y):w
py (y)

10



Hence

_ 2) = pxv(7,y)

(which is what we would have hoped for or expected). Toreditional momentsof a distribution
are given by

B = [ opay (o)

Bayes' rule follows directly from the definitions of conditional and faidensities:

_ pvix(¥)px (@)
pX\Y(ﬂf) = T(Z/)

Continuous random variablé§ andY” areindependentif and only if

pxy(z,y) = px(7)py (y)

2.9 Covariance and Correlation

Th expectation of the product of two random variables is goartant quantity. It is given by
EXY] = / / zypxy (,y)dzdy

If X andY are independent theR[XY] = E[X]E[Y]. Note that this is a necessabyt not
sufficientcondition for independence.

Thecovarianceof random variableX andY is defined as
CovX,Y] = E[(X - E[X])(Y — E[Y])] = E[XY] - E[X]E[Y]

[Exercise: Proof]

The correlation coefficient, pxy, between two random variables is a normalized measure of how
well correlated two random variables are.

CovX,Y]
Var[ X]/VarY]

PXYy =

For perfectly correlated variables (i.&X = +Y), pxy = =1, and for completely uncorrelated
variablespxy = 0.

2.10 Continuous Example
Now reconsider the thermocouple example, except now wigh(élver so) slightly more realistic

assumption thak’, the temperature and, the sensor output, are now continuously variable between
0 and2°C.

11



Figure 11: Joint density

Suppose the joint density (illustrated in figure 11) is gibgn

pxz(e,2) = 251 = (2 = 2))

Marginal distribution:

[Exercise: check normalization]

Mean
2
,usz[X]:/ dexp(z) =1, pz=1
0

Variance

0% = Var[X] = E[(X - ux)*] =
Conditional density

p(z[2) = p(x, 2)/p(2) =

Note that this is simply am-slice throughp(z, z), normalized so thaf02 p(z|z) dz = 1. Also note
that by symmetry inc andz in the density function, the marginals (z) andpz(z) are identically
distributed, as are the conditional densitipéy|z) andp(z|z). Figure 12 shows the density for
p(z|z). Since it is only weakly peaked, we can conclude that it issmery informative sensor.

Covariance

CoVX, Z] =

12
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Figure 12: Conditional densiiy(z|z)
E[z|x]
2
_"ideal

actual

Figure 13: Conditional expectatidi[Z| X ]

Correlation coefficient

_ Cov[X, 7]

Oy0

PXZ
Conditional moments
2
E[Z|X]=/ zp(z|z)dz
0

Figure 13 shows the the conditional expectafign|z) (and also the ideal response), indicating a
strong bias in the sensor for all values other than at exaedy

2.11 Sum of Independent Random Variables

Given independent random variablés,andY’, with probability densities respectiveby (z) and
py (y), we can derive the density of their suth= X + Y by considering the infinitesimal band

13



Figure 14: Sum of independent random variables

shown in figure 14, and arguing as follows.

pz(2)dz = P(z< Z<z+dz2)

/ pxy (z,y)dz dy

=—00

= / px (z)py (y)dzdy XY independent

= / px (z)py(z — x)dzdz change of variabley = 2z — =

=—00

Notice that this is a convolution of the two densities. Ttda either be evaluated “long-hand”, or by
taking Fourier transforms. It follows immediately fromghand the definition of the characteristic
function, that the characteristic function of the sum of raodom variables is the product of their
characteristic functions.

2.12 Properties of the Normal Distribution
We are now in a position to return to the promise of furthecasion of the various normal distri-
bution properties which make it both mathematically trattand so widespread naturally.

Closure under summationThe sum of two independent normal distributions is normélis Tol-
lows immediately from above, since the product of two norateracteristic functions gives:

. 1 ) 1 . 1
exp(p1jio — 50302 expljiaje — 503?) = exp((m + o) — 3 (0 + 03)?)

which corresponds to a normal distribution with mean+ x> and variance? + o3.
We could alternatively do the convolution directly, or ugsiourier transforms.

Central limit theorem It is a quite remarkable result, that the distribution of sven ofn indepen-
dent random variables of any distribution, tends to the radistribution forn large.

if XiND(//,i,O'?), z':l,...n
then ZXi ~ N(p,0%), whereu= Zui, 02 = ZO’?

(3

14



function clt(n)

% denonstrate convergence towards nor nal i
% for multiple i.i.d uniformrandomvariables
t = [-10:0.01:10]; %define U0, 1) osf

pul se = zeros(2001, 1);

pul se(900: 1100) = ones(201,1);
plot(t, pulse); % pl ot U(O, 1) 0.6[-
hol d on;
pause;

res = pul se;
for i=1:n-1 % now iterate convol ution
new = conv(pul se,res);
res = new( 1000: 3000) *0. 005;
plot(t, res);
pause; . . .
end -6 -4 -2 0 2 4 6

Figure 15: Matlab code and resulting plots showing the ithistion of a sum of. uniform random
variables

A general proof can be found in Riley. Figure 15 demonstréatesesult for the case of i.i.d random
variables with uniform distribution.

Closure under poolingUnder suitable assumptions (independence, uniform pifor)
p(z|zi) ~ N(pi,00), i=1,2
then

p(CU|Z1, Z2) ~ N(/"/v U)

2.13 Multivariate Random Variables

Considem random variablex;, X, ... X,,, and let

X =[Xp,...X,]"
Now we define:
E[X] = [E[X1],... E[X,])]"
CovX] = E[(X — E[X])(X — E[X])"]
From the definition of theovariance matrix we can see that thigth entry in the matrix is

Cov(X)s; = { Var[X;] ifi=j

CoViX;,Y;] ifi#j

Clearly the covariance matrix must be symmetric.

[Exercise: prove that the covariance matrix satisfie€x > 0,Vx —i.e. thatC is positive semi-
definite]

15



p(x)

—>P(y)

Y

Figure 16: The centre of the dart board is the cartesian auatel(0,0)

2.14 Multivariate Normal

X is a vector of random variables, with corresponding meamd covariance matri.
The random variables which compriXeare said to bgintly normal if their joint density function
is given by

1 1 B
px(x) = @ Cl eXP(—§(X — ) C M (x —p)

Note that the exponent — u) "C~!(x — p) is a scalar, and that the covariance matrix must be

non-singular for this to exist.

Whenn = 1 the formula clearly reduces to the univariate case. Nowidenshe bi-variate case,
n = 2, beginning with an example. A dart player throws a dart abiberd, aiming for the bulls-eye.
We can model where the dart is expected to hit the board withrtermally distributed random
variables, one for the-coordinate and one for thecoordinate (see figure 16); i.e.

X ~N(0,0%), Y ~N(0,0%)

SinceX andY are independent, we have thaty (z,y) = px (z)py (), SO

@) = ——exp(— )~ exp(— )
x, = exp(— . exp(— =5
Pxy Y 27T0'X P 20_§( 27T(7Y p 20_%/
1 1 22 92
i v— eXp(‘jg + E))

S 1
= o exp( 5% Sx)

wherex = [z y]T andS =7?

16



Plots of the surfacgxy are shown in figures 17, and 18 for

=[0o o], C:B (1)]

Note that the “iso-probability” lines

x'Sx =d?

are circles.

Figure 17: A bivariate normal, surface plot

2

Figure 18: A bivariate normal, contour plot

Now suppose that the random variablésandY are not independent, but instead have correlation
coefficientp # 0. The covariance matrix is then:
— Ug( pPOXOY
POXOY 0'%/

17



We can see even without plotting values, that the iso-prilibatontours will be elliptical:

1 —rho
1—p2)o2 1—p2
x'Sx=x"| ( _’;h)gx (1=p iaxay x = d?
(1—p*)oxoy (1-p2)0%

Plots are shown in figures in figures 19, and 20 for

T 1 1.2
p=10 0], 02[1.2 4}

SN\

Wy I,'O I

s
TS

Figure 19: A bivariate normal, surface plot

-3t

Figure 20: A bivariate normal, contour plot

18



Figure 21: Confidence regions and intervals

2.15 Confidence Intervals and Regions

A confidence region (or intervalp aroundk at confidence leved < 1 is a region defined such that

PxeR)=p

We can use it to say (for example) “there i9%% chance that the true value falls within a region
around the measured value”, or that “there is onl§% chance that this measurement is not an
outlier”.

Typically choose a regular shape such as an ellipse. In figlire random experiment has been
conducted with observations generated from a bivariatenabdistribution. Various confidence
regions have been superimposed.

Relating variance/covariance and confidence

For a univariate random variable of any distribution, thebychev inequalityrelates the variance
to a confidence, by:
Var[X]

d?
This however gives quite a weak bound. For a univariate nbdeaibution N (i, o5, the bound is
muchtighter:

P(|X —pl >d) <

P X —pl <o) =~ 067
P(|X —p|<20) =~ 0.95
P(|X —pl <30) = 0.997

19



s can be verified by looking up standard normal distributadnids.

If x of dimensionn is normally distributed with mean zero and covariai¢ethen the quantity
x " C~'x is distributed as a>-distribution onn degrees of freedom.

The region enclosed by the ellipse

x'Clx =d?
defines a confidence region

P(x; <d’) =p

wherep can be obtained from standard tables (e.g. HLT) or computetenically.

20



2.16 Transformations of Random Variables

A transformation from one set of variables (say, inputs)rother (say, outputs) is a common situa-
tion. If the inputs are stochastic (i.e. random) how do weatizrize the ouptuts?

Supposg is an invertible transformation
y = g(x)

and we will considex to be a realisation of a random varial¥e If we know the density functioon
for X is given bypx (x) theny is a realisation of a random variab¥e whose density is given by

py (y) = px(h(y))|Jh(y)|
where
h=g', x=h(y)

and|Jh(y)| is the Jacobian determinant fof

Proof:
Z

Example: rectangular to polar coordinates

Suppose we have a bivariate joint density function

1 (22442 s
pxy(z,y) = WG (@+y7)/2

i.e. bivariate normal density with' andY” independent with zero mean and identical variance.

Now we wish to find the corresponding density function in temh polar coordinates andé (see
figure 22):

r = rcosb

= rsinf

e

2.17 Linear Transformation of Normals

As we have seen a normal distribution can be completely 8pddiy its mean and variance (1st and
2nd moments). Furthermore, the linear combinations of a¢gm@re also normal. Suppose we effect
the transformation

y=Ax+c
where A andc are a matrix and vector constant (repectively), and a realisation of a random

variableX which is normally distributed with megm and covarianc€.

21



Figure 22: Transformation of a random variable

We now have that

E[Y] AEX] +c
CoY] = ACofX]JAT
[Exercise: Proof]

Theinformation matrix is the inverse of the covariance matrix. Suppose we chodsear ltrans-
formation which diagonalizeS = C~'. SinceS is symmetric, positive semi-definite, its eigende-
composition is real and orthonormal:

S=VAVT
Let us transformx according to
y=V'i(x—-p)

then the random variabl@ are normally distributed with mean zero and diagonal cevene (i.e.
the individual random variables are independent [proof@tice that the eigenvectors 8f(equiv-
alentlyC) are the principal axes of the ellipsoids of constant prditabdensity —i.e. the confidence
region boundaries. The square roots of the eigenvaluediggveelative sizes of the axes. A small
eigenvalue ofs (equivalently a large eigenvalue €f) indicates a lack of information (high degree
of uncertainty), while a large eigenvalue®fequivalently a small eigenvalue €f), indicates low
degree of uncertainty.

A further transformationw = A'/?y yields a vectow of standard normals, w; ~ N (0,1).

3 Estimators

We consider the problem of estimating a parametbased on a number of observationsn the
presence of noise on the observationgi.e. we will treat thew; as zero mean random variables)

2 = h(la z, wl)

To begin, we will look briefly at general important propestiaf estimators.

22



3.1 Mean square error

Themean square errorof an estimatok of a parametex is defined to be

MSE(X) = E[(% — x)?]

Note that here we are potentially dealing with vector quegtiand sq% — x)? has the obvious
meaning

x-x)?=|x-x=&-%"&-x)

3.2 Bias
An estimatork of a parametex is said to bainbiasedif (and only if)
E[x] =x

i.e. its distribution is “centred” on the true value.

The mean square error then becomes equal to the variance egtimator plus the square of the
bias. Oviously, therefore, an unbiased estimator has nopsars error equal to its variance. For the
most part we will consider only unbiased estimators.

Example: sample mean

Given a set of independent measuremepts=1,...n, where
zi=p+wi, w; ~N(0,07)

(hencez; ~ N (u,0?))

We can estimate the mean of the distribution using the samp#mn, given byt = 1/n )", z;. Itis
clearly unbiased since

Elz] = E[% Zzz] = %ZE[%] = %nu =u

i

The variance of the estimator is

Example: sample variance

Consider estimating the variance using the estimator
1 _
n 2y
(3

This estimate is biased!

23



Proof:

e

For this reason you will often see the sample variance write

1 =12
n—lz(zi_x)

(3

3.3 Consistency and Efficiency

A mathematical discussion of these is beyond the scope abilnese (and what most people require),
but — perhaps moreso than unbiasedness — these are degitgiseties of estimators.

A consistent estimatoris one which provides an increasingly accurate estimatlheoparameter(s)
asn increases. Note that the sample mean is clearly consisteetthe variance of the sample mean
is o2 /n, which decreases as— .

An efficient estimatoris one which minimizes the estimation error (it attainslitsdretical limit)

3.4 Least Squares Estimation

Suppose that we have a setrobbservationg; which we wish to fit to a model withn parame-
tersd;, where the model predicts a functional relationship betwtbe observations and the model
parameters:

Z; = h(i;Ol,...Om) + w;

In the absence of any statistical knowledge about the nojssnd the model parameters we might
consider a minimizing a least-squares error:
n
6 = i
arg 0m1n Z w

1:+:Um

i=1
n

= argemin Z(zl — h(i;01,...0m))*

i=1

Example 1: Sample mean (again)
Suppose
Zi = 0 + Wi
(i.e. h(i;8) = ) So the least squares estimate is given by
- ) e
6 = arg min ;(zZ 0)

hence § = l/nZzi

2

i.e. the sample mean.
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Figure 23: Fitting data to a straight line

Example 2: Fitting data to a straight line

Suppose
2 = ax; + [+ w;

(see figure 23) where noisy observatiansare made at known locations (assumed noise free).
The least squares estimate is given by

6= argmoin Z(zl —az;— )%, 0=[ap]"

i

General Linear Least Squares

In the examples abové(i; 6., .. .6,,) is linear in the parametefy. Recall that you have encoun-
tered a more general form than either of these examples in sexond year Engineering Com-
putation; i.e. polynomial regression, where the model whsesar combination of the monomials
l‘j.

These are all cases of a general formulationliftgar least squares in which the model is a lin-
ear combination of a set of arbitrabasis functionswhich may be wildly non-linear — it is the
dependence ofy; which must be linear. The model expressed as

z=HO+w

(so for polynomial regressioH is the so-called Vandermonde matrix). The sum of squares the
becomes

J = wa =w'w=(z—-H6O) ' (z—HO)

(3
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Differentiating.J w.r.t. 8 and setting equal to zero yields
H'z=H"HE
which are thenormal equationsfor the problem. If rankl = m thenH ™ H is invertible and we
have a unique least squares estimatefor
f=MHH) 'H z

If rankH < m then there exists a family of solutions.

Weighted Least Squares

If we have some idea (how?) of the relative reliability of leaxbservation we can weight each
individual equation by a factar—2, and then minimize:

20;2(% —h(i;0))*> = (z—HO) 'R !(z — HO)

where
R = diago},...02)
More generallyR. could beanyn x n symmetric, positive definite weighting matrix.
Theweighted least squares estimatis then given by
f=MHR'H) 'H R 'z

Note that these results have no probabilistic interpratafl hey were derived from an intuition that
minimizing the sum of residuals was probably a good thingdo@onsequently least squares esti-
mators may be preferred to others when there is no basissmrasg probability density functions
toz (i.e. w) andf.

3.5 Maximum Likelihood Estimation

Alternatively, we can adopt thmaximum likelihood philosophy, where we take as our estiméte
that value which maximizes the probability that the measiemsz actually occurred, taking into
account known statistical properties of the noise on tkem

For the general linear model above the density;afiven®, p(z;|0) is just the density ofv; centred
atH@. If the w is zero mean normal with covarianBe (w; not necessarily independent, Ronot
necessarily diagonal), then

1
exp _§(Z —HO)"R™'(z — HO)
To maximize this probability we minimize the exponent, whis clearly equivalent to the weighted
least squared expression from the previous section, watkveiight matrix determined by the covari-
ance matrixR. — i.e. a probabilistic basis for choosing the weights novstsxiThe result, restated,
is

1
p(z|0) = (27_‘,)(”/2) |R|1/2

f=MHR 'H) 'H'R 'z

This estimate is known as thmaximum likelihood estimate or MLE . We have thus shown that
for normally distributed measurement errors, the leasaspi(LS) and maximum likelihood (MLE)
estimates coincide.
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Example (non-Gaussian)

Let us consider an example which does not involve normatibligtons (for a change). Suppose
instead, that the lifetime of a part is given by a random \deiavith exponential distribution:

ar

px(xz) =ae” **, x>0
We now measure the lifetime of a set of such payts.. , z, in order to estimate the parametein

the exponential distribution. To do this, we maximize likelihood function L(a) = p(z|a) over
the parametet:

AaMLE = arg max L(a)

= argmax Hae‘“z"
a

arg max nloga—aZzi
= n/Zzl

If, after some timel’ some of the parts have not yet failed (say parts- 1,...n), then we can
measure the probability that they are still working using ¢imulative distribution:

P(X;>T)=eT

Now the probability of making the measurements, given the #alue of a is

m n
P= Hp(zi|a)dzi X H el
i=1 i=m+1
Maximizing this probability yields
m n
aMrp = argmax Hp(zﬂa)dzi X H el
¢ =1 i=m+1

m
= argmax a” exp(—az zi—(n—m)T

i=1
= argmax mloga — aZzi —a(n—m)T
m
Szi—(n—m)T

Note that thelz; are independent of the parameteand so can be cancelled.

3.6 Bayes’ Inference

If in addition to the noise distribution for the observatowe also have a prior for the parameter(s),
we can employ Bayes' rule to obtain a posterior density ferthrameter, given the observations:
p(z|z)p(z)  likelihood x prior

p(z)  normalizing factor

p(z]z) =
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Example: Uniform

e Sensor modelp(z|z)
e Prior information:p(z)

e Posterior from Bayes' rulep(z|z) x p(z|z)p(x)

Now recall figure 6, reproduced in figure 24.

p(x|2)
""""" RETY
PO :
. X
a b o
€ €

Figure 24: Combining the prig¥(z) with a measurement{z|z) to obtain the posterior

Example: Normal
e Sensor model(z|z) o< exp(—(z — z)?/202)
e Prior information:p(z) o exp(—(x — pz)?/202)
e Posterior from Bayes’ rule:

p(z|z) x p(zlx)p(z), X|Z ~ N(p,0?)
Hence we have:

e Posterior densityp(z|z) =
e Varianceio =2 =

e Mean:u =

Example: Independent Sonar Distance Sensors

Suppose we have a point whose likely range centres at 150mnsarormally distributed with
standard deviation 30; i.6( ~ N (150, 30?) is the prior.

We have two (unbiased) sonar sensors giving independersurezaents of the point’s range:

Zi|X ~ N(2,10%), Z5|X ~ N(z,20?)
What can we say about the posterior when:
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Figure 25: Pooling information from sensor readings andrpriformation

prior of X as above and sensor reading= 130
prior of X as above and sensor reading= 250
no prior, sensor readings = 130, zo = 170

prior of X as above and sensor readings= 130, zo = 170 (see figure 25)

a M w N E

biased sensdf; | X ~ N(x + 5,10)

e

3.7 MMSE and MAP Estimation
In the previous sections we were computing, using Bayes;, the posterior density of a parameter
(or parameters) given observed data and a prior model fqaremeter.

Here, we decide to choose some representative point fropotsterior as an estimate of our param-
eter. Two “reasonable” ideas present themselves:

1. Choose the estimate to be the mean of the postBfige], which is what would would get by
requiring our estimate to minimize the mean square errarh@n estimate is known (funnily
enough) as aminimum mean square error (MMSE) estimate Furthermore if the estimate
is unbiased then it is minimum variance (unbiased) estimate (MVUE)

Eyvmse = argmin E[(2 — 2)°|z] = E[z|z]
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2. Choose the estimate as the mode, or peak value, of theripostistribution. This is named
maximum a posteriori estimation (or MAP). We obtain the estimate by maximizipgz|z)
overz. Note that the denominator p{z|z) does not depend on the parameatend therefore
does not affect the optimization — for this reason we oftefit dm

p(z|z) o likelihood x prior
and
Zpmap = argmax p(z|z) = argmax p(z|z)p(z)
T T

Clearly if z|z (the posterior density) is normal then the MAP estimates p is the meanE|[z|z],
since the normal density attains its maximum value at thenmea

3.8 Multivariate Pooling
e Sensor model:
p(z]|x) x exp <—%(z —Hx) R '(z— Hx))
e Prior information:
1
p(x) oc exp <—§(X —x0x) Po ™' (x — Xox)>
e Posterior from Bayes’ rule:
p(x|z) o< p(z[x)p(x), x|z ~ N(x,C)
Hence we have:

e Posterior densityp(x|z) =
e CovarianceC =

e Mean:x =

Example 1: Visual Navigation, 2D Measurements

Suppose the bivariate gaussian prior for they) location of a beacon is known. We have a sensor
which gives an unbiased 2D measurement of position (e.gn Bimocular cameras) corrupted by
Zzero mean gaussian noise; i.e:

z=Hx+w, H=1
Both are shown in figure 26(left) (using the values indicatetthe matlab fragment below).

>> x =[-1; -1]; P=1[21; 1 3]; %prior
>z =[1, 2]; R=][10; 01]; % sensor
>>

> S =inv(P); R =inv(R;

>> Pnew = inv(S + R );

>> xnew = Pnew * (S*Xx + Ri*z);

The posterior computed in the matlab fragment above is sliofigure 26(right)

30



-8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8

Figure 26: Mean and 3-sigma covariance ellipses for priormeasurement (left), and mean and
3-sigma covariance ellipse for posterior (right)

Example 2: Visual Navigation, 1D Measurements

Now suppose that our visual system is monocular —i.e. we cimeake 1D measurements. Further
suppose that our system for localizing the beacon takes aureraent parallel to they-axis; i.e.

z=[1 0] m+w, H=[1 0]

wherew ~ N(0,0?)

>> x =[-1; -1]; P=1[21; 1 3]; %prior
>z =1, R=2, H=][10]; % sensor
>>

>> Pnew = inv(H *inv(R)*H + inv(P));

>> xnew = Pnew * (inv(P)*x + H*inv(R) *2);

The prior, measurement and posterior are shown in figure 27.

3.9 Multivariate MAP

More generally, suppose that we have a vector of measuremeniz,, ... z,]" corrupted by zero
mean, gaussian noise. Then the likelihood function is

p(z|x) = kexp <—%(z —Hx)"R™(z - Hx)>

If the prior onx is multivariate normal with meagro and covarianc@®, then the posterior has
distribution

p(x|z) = k' exp <—%(z —~-Hx)'R !(z - Hx)) X exp <—%(x —x0) Py H(x— xo))
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Figure 27: Mean and 3-sigma covariance ellipses for priormeasurement (left), and mean and
3-sigma covariance ellipse for posterior (right)

which is maximized when

0 1 To —1 1 T -1 —
e —§(z—Hx) R (z—Hx)—i(x—xo) Po "(x—x0)| =0

i.e. when

x=(Po '+HR'H)™" (Py 'xo + H' R '2)

An alternative derivation of this equation comes if we shdar a minimum variance Bayes’
estimateby minimizing

J= /Z . /O:o(x —x)"S(% — x)p(x|z)dz; ...dz,,

whereS is any symmetric, positive definite matrix, and does notciffee result. Differentiate’
w.r.t. X and set equal to zero to see thias minimized when

% =E[x|z] = (Po ' +H'R'H)™" (Py 'xo + H' R '2)
Comparing this result to the previous estimators we see that

e AsPy ! — 0 (i.e. prioris less and less informative), we obtain the espion for the MLE.

¢ If the measurement errors are uncorrelated and equal earithen we obtain the expression
for unweighted LS.

e The mean and the mode (peak) of a gaussian coincide (in théstbe gaussian is the mul-
tivariate one forx conditioned on the measuremenjs therefore the minimum variance es-
timate and the MAP estimate are the same as we have probaidipated from the similar
univariate result above.

¢ This equation corresponds exactly to a Kalman Filter updbtiee state mean.
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3.10 Recursive regression

In our previous formulations of our estimators we have f@ thost part assumed that data were
available to be processed in “batch”. Suppose instead tbatrey continually making new observa-

tions and wish to update our current estimate. One podgilithuld be to recalculate our estimate

at every step. If we are estimating a parameter using the Isamgan, a little thought shows, the

batch approach is not necessary:

CEn—i—l

Consider again the regression problem where our (scalagreations are of the form
z; = hiTO + w;
whereh; is a column vector, ang; is zero mean gaussian noise with variang¢eso
2|0 ~ N(h] 0, 0?)
For example for cubic regressidy = [1 z; 2?7 zf].

We can now consider formulating #erativeprocess where at iterationwe use the previous step’s
posterior density as the prior for the current one:

e prior:
6~ N@,P,)
e likelihood:
2|0 ~ N(h, 0,02)
e posterior:
P,i1 = (P;'+h h,/o2)™"
01 = P[P0, +h)z,/00]

We have a slight problem with this formulation since to begith our covariance matrix will be
“infinite” — i.e. zero information. Instead we can perfornetieration on the information matrix,
the inverse of the covariance mat8x= P!, and on thénformation weighted meanS#:

Sp41 = S,+h'h,/02
Sni10ni1 = SuB,+hz,/02

~

With this iteration we can initialize the process wiih = 0, So€ = 0, or with any prior model we
may have, and obtain the solution by invertifig (which will hope by then will be non-singular).
Thus (for independent gaussian errors) we obtain a MLE estirof the regression parameters and
a covariance on the regression parameters. If we have aqrithre regression parameters then the
estimate is also MAP.
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3.11 Stochastic difference equations

To this point we have considered estimating a set of unkndiweg parameters. However, given
that we can do this recursively, the obvious next step is fsicter estimating a state which evolves
over time.

Hence, we now return briefly to one of the motivating examptlest of feedback control. Recall
that we modelled the system with state equations of the fatso (ecall figure 9):
x(k+1) = Ax(k)+ Bu(k) +v(k)
y() = Ox(k) +w(k)

where thev (k) andw (k) are vectors of zero mean, independent random variablesltimgdstochas-
tic exogenous variables and unknown constanta6d sensor noisex). The effect of the introduc-
tion of these stochastic variables means that the time digmesystem variables such as the state
and the outpuy also become stochastic variables. These equations dovethaue solutions for

(say)x(k) for all values oft as would the deterministic versions withautw. Future values of the
solutionx (k) are random variables. Consider, for example a scalar diffar equation:

2(k+1) = ax(k) +v(k), p(v(k)) = N(0,0%)
Hence
o p(a(k+ D|z(k)) = N(az(k),0?)
o p(a(k +2)|z(k)) = N(a’z(k),0?(1 + a?))

e etc

The effect is that the future values become less and lessirteou can see this in figure 28 where
a set of random walk paths has been generated using matlab:

function path(sO,v,s,N %s0: initial sd. v: vertical drift velocity
%s: randomstep sd. N no of steps

x =[1:N; y = [1N;

x(1) =s0*randn(1); %initialise
y(1)=s0*randn(1);
for n=2: N

x(n) x(n-1) + s * randn(1);

y(n) ;y(n-l) +s * randn(1) + v;
end;
plot (x, ¥, x(1),¥(1). "+ x(N, Y(N), " *");

>> for i=1:100
>> pat h(0, 0. 01, 0. 01, 50);
>> end
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Figure 28: Random evolution of a simple stochastic diffeeeequation

3.12 Kalman filter

In the second half of this course you will encounter the Kairfdter in much more detail (and
arrive at it via a slightly different path). However since maw have all the mathematical ideas in
place, we might as well derive it from Bayes’ rule.

Consider the general system above. At each time step thensysate evolves according to:
x(k+1) = Ax(k) + Bu(k) + v

The idea is to make prediction of the state according to the stochastic difference equaabove.
We can determine the p.d.f. of the prediction as

pe(k +1)|z(k)) = N(AR(k|k)+ Bu(k), AP(k|k)AT)
= N(&(k+1|k),P(k + 1]k))

This becomes oygrior for the update step.

Now we make a measurement and hence determiné#iibiood function p(z(k + 1)|z(k + 1)):

p(z(k+1)|z(k+ 1)) = N(Hx(k + 1]k),R)
We can now compute a posterior density by combining the pridrlikelihood. Our previous results
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tell us that this will be normal, and will have mean and cosmace:

P(k+1]k+1) (Pk+1k)""+H RT'H)™!
(k+1k+1) = Pk+1k+1)[Pk+1k) "%k +1k) + H R '2(k + 1)]

which are the Kalman Filter update equations. The latterdsenften seen in the form

%(k+1k+1) =%k +1k) + P(k+ 1|k + VHR ™ [2(k + 1) — Hx(k + 1]k)]

e

3.13 Further reading topics

e Principal components analysis

e Outlier rejection and robust estimation
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