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1 Introduction

Estimation is the process of extracting information about the value of a parameter, given some data
related to the parameter. In general the data are assumed to be some random sample from a “popu-
lation”, and the parameter is a global characteristic of thepopulation.

In an engineering context, we are often interested in interpreting the output of a sensor or multiple
sensors: real sensors give inexact measurements for a variety of reasons:� Electrical noise – robot strain gauge;� Sampling error – milling machine encoder (see figure 1);� Calibration error – thermocouple� Quantization/Shot noise – CCD (see figure 2)

We seek suitable mathematical tools with which to model and manipulate uncertainties and errors.
This is provided byprobability theory – the “calculus of uncertainty”.
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Figure 1: Position and velocity information from a milling machine encoder.

The following (by no means exhaustive) list of texts should be useful:� Bar-Shalom and Fortmann, “Tracking and Data Association”,Academic Press, 1988.� Brown, “Introduction to Random Signal Analysis and Kalman Filtering”, Wiley, 1983.
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Figure 2: Pixel data over time for a stationary camera.� Gelb (ed), “Applied Optimal Estimation”, MIT Press, 1974.� Jacobs, “Introduction to Control Theory”, 2nd Edition, OUP, 1993.� Papoulis, “Probability and Statistics”, Prentice-Hall.� Press, Flannery, Teukolsky, and Vetterling, “Numerical Recipes in C”, CUP, 1988.� Riley, Hobson and Bence, “Mathematical Methods for Physicsand Engineering”, CUP, 1998.

1.1 Modelling sensor uncertainty

Consider a sensor which measures a scalar quantity, and taking one measurement. We could use this
measurement as anestimateof the value of the sensor – just about the simplest estimate we could
think of.

However, in general the measurement will not exactly equal the true value. Rather it will be displaced
from the true value because of the effects of noise, etc.

An appropriate way to model this is via aprobability distribution , which tells us how likely partic-
ular measurement is, given the true value of the parameter. We write this asP (ZjX), the probability
thatZ is observed, given thatX is the true state being measured.

In a general case we may have thatZ is not a direct observation, andX may be a function of time.
In a simple case, we may know measurement must lie within� of the true value, but no more – i.e
the sensor model can be described by auniform distribution (see figure 3)pZ(zjx) � U(x� �; x+ �)
1.2 Modelling uncertain prior information

In addition to modelling a sensor as a probability distribution in order to capture the notion of un-
certainty in the measurements, we can apply the same idea to modelling uncertain prior information,
since the parameter(s) to be estimated may have known statistical properties.
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Figure 3: Modelling a sensor byp(ObservationjTrue state) uniformly distributed around the true
value.
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A simple example, once again, is where we have no knowledge ofthe parameter, other than that
it lies within a certain range of values. These could be fixed by known physical constraints – for
example, the pressure of a gas in a cylinder is known to lie between0kPa and some upper limit
set by the strength of the cylinder, or the temperature of some molten iron in a furnace lies between1535oC and2900oC. We could also use a uniform distribution herepX(x) � U(a; b)
(see figure 4)

Of course we may know more about the parameter; the temperature of water in a kettle which is
switched off will lie somewhere between the ambient room temperature and100oC, depending on
how recently it was used, but is morelikely to be close to room temperature in the overall scheme of
things.

1.3 Combining information

We require some way of combining a set of measurements on a parameter (or parameters) and/or
some prior information into an estimate of the parameter(s).

Two different ways of combining will be considered:

Summation (figure 5(a)) Consider timing multiple stages of a race (e.g.RAC Rally). Given some
uncertainty model for each of the stage timings, how can we determine an uncertainty model
for the total time – i.e. the sum of a set of random variables?

Pooling (figure 5(b)) Now consider using two different watches to time the same stage of the race.
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Can these two measurements be combined to obtain a more accurate estimate of the time for
the stage.

(a)

(b)

-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3-4

p
x

p
y

p
x+y

summation

-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3-4

p
x|z

p
x|z

p
x|z  ,z

pooling
1

1 2

2

Figure 5: Two ways of combining information.

In the latter case, an average of the two might seem like an appropriate choice. Thesample mean
of a set of observationszi; i = 1 : : : n, is given byx̂ = 1n nXi=1 zi
This is alinear estimator, since it is a linear combination of the observations. It canbe shown (see
later) that it has a smaller variance than any of the individual measurements, so in that sense it is
potentially a better estimator of the true valuex.

Note that this estimator has not taken into account any priorinformation about the distribution forx.
If p(x) is available, we can useBayes’ rulep(xjz) = p(zjx)p(x)p(z)
to combine measurementsp(zjx) and theprior p(x), as in figure 6, obtaining theposterior.

1.4 Example: Navigation

Consider making an uncertain measurement on the location ofa beacon, followed by an uncertain
motion, followed by another noisy measurement. Combine these to obtain an improved estimates of
the beacon’s and your own location – see figure 7.

1.5 Example: Differential GPS

GPS is the Global Positioning System. With a simple receivercosting a few hundred pounds you can
obtain an estimate of your latitude/longitude to within�100m from a network of satellites which
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Figure 6: Combining the priorp(x) with a measurementp(zjx) to obtain the posterior
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Figure 7: Multiple views of a beacon to improve its location estimate (a) conceptually; (b) applica-
tion to autonomous mobile robot navigation.

cover the globe. The system has accuracy down to a few metres for the military, but for civilian use
the signal is deliberately corrupted by noise. The noise is:� identical for all locations for a given instant in time;� highly correlated for closely spaced time intervals (i.e. slowly changing);� effectively uncorrelated for time instants widely separated in time.

[Exercise: think about what the auto-correlation functionand power spectral density might look
like...]

Hence by keeping a unit in one place for a long period of time and averaging the position data, you
can form a much more accurate estimate of where you are.

The idea of DGPS is to have two receivers which communicate. One is mobile, and the other is kept
stationary, hence its position is known rather more accurately than the mobile one. However at any
one instant, the “noise” on the two estimates is perfectly correlated – i.e. identical – so the position
estimate for the mobile unit can be significantly improved from the�100m civilian spec to that of
the stationary unit. See figure 8.
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Figure 9: Feedback control using an observer (after Jacobs p217)

1.6 Example: Feedback control

Suppose a system is modelled by state equations (see figure 9):_x = Ax+Bu
or xi = Ax+Bu

and we seek to control the system with a control law of the formu = �Kx
in the presence of disturbances and noise on the sensor outputs. Typically our sensor does not
measure the statex directly, instead measuring some functiony of the state. We might tryu = �KC�1y
but it will often be the case thatC is rank-deficient.
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Idea: devise an estimator for the statex, x̂, given prior information aboutx, and a set of observationsy, and use the control law u = �Kx̂
In the context of feedback control such an estimator is knownas anobserver, and a particularly
useful and widespread one is theKalman filter which will be discussed in the second part of the
course.

2 Probabilistic Tools

We assume a certain amount of basic knowledge from prelims, but not much.

2.1 Independence

Two eventsA andB are independent if they do not affect each others outcome. Mathematically this
is formalized as P (A;B) = P (A)P (B)
If the events are not independent then this equation becomesrelationP (A;B) = P (AjB)P (B)
where the first term on the right hand side means the probability of eventA given eventB.

2.2 Random Variables

Informally a random variable is a variable which takes on values (either discrete or continuous) at
random. It can be thought of as a function of the outcomes of a random experiment.

The probability that a continuous random variable takes on specific values is given by the (cumula-
tive) probability distribution : FX(x) = P (X � x)
or by theprobability density function:pX(x) = ddxFX(x)
i.e., infinitesimally P (x < X � x+ dx) = pX(x)dx
From the definition we have the following properties:Z x�1 pX(x)dx = FX (x)Z 1�1 pX(x)dx = 1Z ba pX(x)dx = FX (b)� FX (a) = P (a < X � b)
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2.3 Expectation and Moments

In many trials, with outcome taking the valuexi with probabilitypi, we expect the “average” to bePi pixi, hence theexpected valueof a random experiment withn discrete outcomes is given by

Expected value ofX = E[X ℄ = nXi=1 pixi
For a continuous random variable we haveE[X ℄ = Z 1�1 xpX (x)dx
[Exercise: verify thatE is a linear operator]

Thekth moment of X is defined to beE[Xk℄, i.e.:E[Xk℄ = Z 1�1 xkpX(x)dx
The first moment,E[X ℄ is commonly known as themean. The second moment is also of particular
interest since thevariance of a random variable can be defined in terms of its first and second
moments:

Variance ofX = Var[X ℄ = E[(X �E[X ℄)2℄ = E[X2℄�E[X ℄2
[Exercise: Proof]

2.4 Characteristic Function

Thecharacteristic function of a random variable is defined as	X(!) = E[exp(j!X)℄ = Z 1�1 ej!xpX(x)dx
Hence� E[Xk℄ = jn dn	X (!)d!n j!=0� 	X(!) is in the form of a Fourier transform, hence� pX(x) = 12� R1�1 e�j!x	X(!)d!
2.5 Univariate Normal Distribution

The most important example of a continuous density/distribution in thenormal or gaussiandistri-
bution, which is described by the density function (pictured in figure 10)pX(x) = 1p2��2 exp(12 (x� �)2�2 )
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or by the characteristic function	X(!) = exp(�j! � 12�2!2)
For convenience of notation we write X � N(�; �2)
to indicate that the random variableX is normally distributed with parameters� and�2, respectively
the mean and variance.
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Figure 10: Normal distribution for� = 0; �2 = 1
The normal distribution is very important for a number of reasons which will return to later...

2.6 Multiple Random Variables

We begin the discuss of multiple random variables with a revision of material on discrete events.

The joint probability distribution of random variablesA andB is given byP (A;B) = Probability of events A and B both occurring

Of course this must satisfy Xi;j P (Ai; Bj) = 1
Theconditional probability distribution of A given B is given byP (AjB) = P (A;B)=P (B)
Themarginal distribution of A is the unconditional distribution of A (similarly for B)P (A) =Xj P (A;Bj) =Xj P (AjBj)P (Bj)
Combining expressions forP (A;B) andP (B;A) (which are of course equal) we obtainBayes’
rule P (AjB) = P (BjA)P (A)P (B) = P (BjA)P (A)Pi P (BjAi)P (Ai)
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2.7 Discrete example

An example (albeit not a very realistic one) will illustratethese concepts. Consider a digital thermo-
couple used as an ice-warning device. We model the system by two random variablesX; the actual temperature; 0 � X � 2oCZ; the sensor reading; 0 � Z � 2oC)
The joint distribution is given in the “spreadsheet” ofP (X = i; Z = j):X = 0 X = 1 X = 2 row sumZ = 0 0.32 0.03 0.01Z = 1 0.06 0.24 0.02Z = 2 0.02 0.03 0.27

col sum

2.8 Multiple Continuous Random Variables

We now consider the continuous equivalents...

The joint probability distribution (cumulative) for random variablesX andY is given byFXY (x; y) = P (X � x; Y � y)
The joint density function is defined aspXY (x; y) = �2FXY (x; y)�x�y
Hence we have: P (X;Y 2 R) = Z ZR pXY (x; y)dxdy
and ifR is a differential region thenP (x < X � x+ dx; y < Y � y + dy) = pXY (x; y)dxdy
Themarginal or unconditional density ofX (or similarlyY ) is given bypX(x) = Z 1�1 pXY (x; y)dy
Theconditional density can be determined by considering the probability thatX is in a differential
strip, given thatY is in a differential strip:P (x < X � x+ dxjy < Y � y + dy) = pXY (x; y)dxdypY (y)dy
Now we wave our hands, cancel thedys, and writeP (x < X � x+ dxjY = y) = pXY (x; y)dxpY (y)
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Hence p(xjy) = pXjY (x) = pXY (x; y)pY (y)
(which is what we would have hoped for or expected). Theconditional momentsof a distribution
are given by E[X jY ℄ = Z 1�1 xpXjY (x)dx
Bayes’ rule follows directly from the definitions of conditional and joint densities:pXjY (x) = pY jX(y)pX (x)pY (y)
Continuous random variablesX andY areindependentif and only ifpXY (x; y) = pX(x)pY (y)
2.9 Covariance and Correlation

Th expectation of the product of two random variables is an important quantity. It is given byE[XY ℄ = Z 1�1 Z 1�1 xypXY (x; y)dxdy
If X andY are independent thenE[XY ℄ = E[X ℄E[Y ℄. Note that this is a necessarybut not
sufficientcondition for independence.

Thecovarianceof random variablesX andY is defined as

Cov[X;Y ℄ = E[(X �E[X ℄)(Y �E[Y ℄)℄ = E[XY ℄�E[X ℄E[Y ℄
[Exercise: Proof]

Thecorrelation coefficient, �XY , between two random variables is a normalized measure of how
well correlated two random variables are.�XY = Cov[X;Y ℄p

Var[X ℄pVar[Y ℄
For perfectly correlated variables (i.e.X = �Y ), �XY = �1, and for completely uncorrelated
variables�XY = 0.

2.10 Continuous Example

Now reconsider the thermocouple example, except now with the (ever so) slightly more realistic
assumption thatX , the temperature andZ, the sensor output, are now continuously variable between
0 and2oC.
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Figure 11: Joint density

Suppose the joint density (illustrated in figure 11) is givenbypXZ(x; z) = 310(1� 14(x� z)2)
Marginal distribution: p(x) = Z 20 p(x; z)dz =
[Exercise: check normalization]

Mean �X = E[X ℄ = Z 20 dx xp(x) = 1; �Z = 1
Variance �2X = Var[X ℄ = E[(X � �X )2℄ =
Conditional density p(xjz) = p(x; z)=p(z) =
Note that this is simply anx-slice throughp(x; z), normalized so that

R 20 p(xjz) dx = 1. Also note
that by symmetry inx andz in the density function, the marginalspX(x) andpZ(z) are identically
distributed, as are the conditional densities,p(xjz) andp(zjx). Figure 12 shows the density forp(zjx). Since it is only weakly peaked, we can conclude that it is nota very informative sensor.

Covariance

Cov[X;Z℄ =
12
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Figure 12: Conditional densityp(zjx)
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Figure 13: Conditional expectationE[ZjX ℄
Correlation coefficient �XZ = Cov[X;Z℄�x�z =
Conditional moments E[ZjX ℄ = Z 20 zp(zjx)dz
Figure 13 shows the the conditional expectationp(zjx) (and also the ideal response), indicating a
strong bias in the sensor for all values other than at exactly1oC.

2.11 Sum of Independent Random Variables

Given independent random variables,X andY , with probability densities respectivelypX(x) andpY (y), we can derive the density of their sumZ = X + Y by considering the infinitesimal band
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Figure 14: Sum of independent random variables

shown in figure 14, and arguing as follows.pZ(z)dz = P (z < Z � z + dz)= Z 1x=�1 pXY (x; y)dx dy= Z 1x=�1 pX(x)pY (y)dx dy X,Y independent= Z 1x=�1 pX(x)pY (z � x)dx dz change of variables; y = z � x
Notice that this is a convolution of the two densities. This can either be evaluated “long-hand”, or by
taking Fourier transforms. It follows immediately from this and the definition of the characteristic
function, that the characteristic function of the sum of tworandom variables is the product of their
characteristic functions.

2.12 Properties of the Normal Distribution

We are now in a position to return to the promise of further discussion of the various normal distri-
bution properties which make it both mathematically tractable and so widespread naturally.

Closure under summationThe sum of two independent normal distributions is normal. This fol-
lows immediately from above, since the product of two normalcharacteristic functions gives:exp(�1j! � 12�21!2): exp(�2j! � 12�22!2) = exp((�1 + �2)j! � 12(�21 + �22)!2)
which corresponds to a normal distribution with mean�1 + �2 and variance�21 + �22 .

We could alternatively do the convolution directly, or using Fourier transforms.

Central limit theorem It is a quite remarkable result, that the distribution of thesum ofn indepen-
dent random variables of any distribution, tends to the normal distribution forn large.

if Xi � D(�i; �2i ); i = 1; : : : n
then

Xi Xi � N(�; �2); where � =Xi �i; �2 =Xi �2i
14



function clt(n)
% demonstrate convergence towards normal
% for multiple i.i.d uniform random variables

t = [-10:0.01:10]; % define U(0,1)
pulse = zeros(2001,1);
pulse(900:1100) = ones(201,1);
plot(t, pulse); % plot U(0,1)
hold on;
pause;

res = pulse;
for i=1:n-1 % now iterate convolution

new = conv(pulse,res);
res = new(1000:3000)*0.005;
plot(t, res);
pause;

end −6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

Figure 15: Matlab code and resulting plots showing the distribution of a sum ofn uniform random
variables

A general proof can be found in Riley. Figure 15 demonstratesthe result for the case of i.i.d random
variables with uniform distribution.

Closure under poolingUnder suitable assumptions (independence, uniform prior), ifp(xjzi) � N(�i; �i); i = 1; 2
then p(xjz1; z2) � N(�; �)
2.13 Multivariate Random Variables

Considern random variablesX1; X2; : : : Xn, and letX = [X1; : : : Xn℄>
Now we define: E[X℄ = [E[X1℄; : : : E[Xn℄℄>

Cov[X℄ = E[(X�E[X℄)(X �E[X℄)>℄
From the definition of thecovariance matrix we can see that theijth entry in the matrix is

Cov(X)jij = �
Var[Xi℄ if i = j
Cov[Xi; Yj ℄ if i 6= j

Clearly the covariance matrix must be symmetric.

[Exercise: prove that the covariance matrix satisfiesx>Cx � 0;8x – i.e. thatC is positive semi-
definite]
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Figure 16: The centre of the dart board is the cartesian coordinate (0,0)

2.14 Multivariate NormalX is a vector of random variables, with corresponding mean� and covariance matrixC.

The random variables which compriseX are said to bejointly normal if their joint density function
is given by pX(x) = 1(2�)n=2jCj1=2 exp(�12(x� �)>C�1(x� �))
Note that the exponentx � �)>C�1(x � �) is a scalar, and that the covariance matrix must be
non-singular for this to exist.

Whenn = 1 the formula clearly reduces to the univariate case. Now consider the bi-variate case,n = 2, beginning with an example. A dart player throws a dart at theboard, aiming for the bulls-eye.
We can model where the dart is expected to hit the board with two normally distributed random
variables, one for thex-coordinate and one for they-coordinate (see figure 16); i.e.X � N(0; �2X); Y � N(0; �2Y )
SinceX andY are independent, we have thatPXY (x; y) = pX(x)pY (y), sopXY (x; y) = 1p2��X exp(� x22�2X ): 1p2��Y exp(� y22�2Y )= 12��X�Y exp(�12( x2�2X + y2�2Y ))= pjSj2� exp(�12x>Sx)
wherex = �x y�> andS =??
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Plots of the surfacepXY are shown in figures 17, and 18 for� = �0 0�> ; C = �1 00 1�
Note that the “iso-probability” lines x>Sx = d2
are circles.
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Figure 17: A bivariate normal, surface plot
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Figure 18: A bivariate normal, contour plot

Now suppose that the random variablesX andY are not independent, but instead have correlation
coefficient� 6= 0. The covariance matrix is then:C = � �2X ��X�Y��X�Y �2Y �
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We can see even without plotting values, that the iso-probability contours will be elliptical:x>Sx = x> " 1(1��2)�2X �rho(1��2)�X�Y�rho(1��2)�X�Y 1(1��2)�2Y #x = d2
Plots are shown in figures in figures 19, and 20 for� = �0 0�> ; C = � 1 1:21:2 4 �
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Figure 19: A bivariate normal, surface plot
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Figure 20: A bivariate normal, contour plot
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Figure 21: Confidence regions and intervals

2.15 Confidence Intervals and Regions

A confidence region (or interval)R around̂x at confidence levelp � 1 is a region defined such thatP (x 2 R) = p
We can use it to say (for example) “there is a99% chance that the true value falls within a region
around the measured value”, or that “there is only a5% chance that this measurement is not an
outlier”.

Typically choose a regular shape such as an ellipse. In figure21 a random experiment has been
conducted with observations generated from a bivariate normal distribution. Various confidence
regions have been superimposed.

Relating variance/covariance and confidence

For a univariate random variable of any distribution, thechebychev inequalityrelates the variance
to a confidence, by: P (jX � �j � d) � Var[X ℄d2
This however gives quite a weak bound. For a univariate normal distributionN(�; �2, the bound is
muchtighter: P (jX � �j � �) � 0:67P (jX � �j � 2�) � 0:95P (jX � �j � 3�) � 0:997
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s can be verified by looking up standard normal distribution tables.

If x of dimensionn is normally distributed with mean zero and covarianceC, then the quantityx>C�1x is distributed as a�2-distribution onn degrees of freedom.

The region enclosed by the ellipse x>C�1x = d2
defines a confidence region P (�2� < d2) = p
wherep can be obtained from standard tables (e.g. HLT) or computed numerically.
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2.16 Transformations of Random Variables

A transformation from one set of variables (say, inputs) to another (say, outputs) is a common situa-
tion. If the inputs are stochastic (i.e. random) how do we characterize the ouptuts?

Supposeg is an invertible transformation y = g(x)
and we will considerx to be a realisation of a random variableX. If we know the density functioon
for X is given bypX(x) theny is a realisation of a random variableY whose density is given bypY(y) = pX(h(y))jJh(y)j
where h = g�1; x = h(y)
andjJh(y)j is the Jacobian determinant ofh.

Proof:

Example: rectangular to polar coordinates

Suppose we have a bivariate joint density functionpXY (x; y) = 12��2 e�(x2+y2)=2�2
i.e. bivariate normal density withX andY independent with zero mean and identical variance.

Now we wish to find the corresponding density function in terms of polar coordinatesr and� (see
figure 22): x = r 
os �y = r sin �
2.17 Linear Transformation of Normals

As we have seen a normal distribution can be completely specified by its mean and variance (1st and
2nd moments). Furthermore, the linear combinations of normals are also normal. Suppose we effect
the transformation y = Ax+ 

whereA and
 are a matrix and vector constant (repectively), andx is a realisation of a random
variableX which is normally distributed with mean� and covarianceC.

21



x

y

θ
r

r

θ

Figure 22: Transformation of a random variable

We now have that E[Y℄ = AE[X℄ + 

Cov[Y℄ = ACov[X℄A>

[Exercise: Proof]

The information matrix is the inverse of the covariance matrix. Suppose we choose a linear trans-
formation which diagonalizesS = C�1. SinceS is symmetric, positive semi-definite, its eigende-
composition is real and orthonormal: S = V�V>
Let us transformx according to y = V>(x� �)
then the random variablesY are normally distributed with mean zero and diagonal covariance (i.e.
the individual random variables are independent [proof?]). Notice that the eigenvectors ofS (equiv-
alentlyC) are the principal axes of the ellipsoids of constant probability density – i.e. the confidence
region boundaries. The square roots of the eigenvalues givethe relative sizes of the axes. A small
eigenvalue ofS (equivalently a large eigenvalue ofC) indicates a lack of information (high degree
of uncertainty), while a large eigenvalue ofS (equivalently a small eigenvalue ofC), indicates low
degree of uncertainty.

A further transformationw = �1=2y yields a vectorw of standard normals, wi � N(0; 1).
3 Estimators

We consider the problem of estimating a parameterx based on a number of observationszi in the
presence of noise on the observationswi (i.e. we will treat thewi as zero mean random variables)zi = h(i; x; wi)
To begin, we will look briefly at general important properties of estimators.
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3.1 Mean square error

Themean square errorof an estimator̂x of a parameterx is defined to beMSEx(x̂) = E[(x̂� x)2℄
Note that here we are potentially dealing with vector quantities and so(x̂ � x)2 has the obvious
meaning (x̂� x)2 = jjx̂� xjj2 = (x̂� x)>(x̂ � x)
3.2 Bias

An estimator̂x of a parameterx is said to beunbiasedif (and only if)E[x̂℄ = x
i.e. its distribution is “centred” on the true value.

The mean square error then becomes equal to the variance of the estimator plus the square of the
bias. Oviously, therefore, an unbiased estimator has mean square error equal to its variance. For the
most part we will consider only unbiased estimators.

Example: sample mean

Given a set of independent measurementszi; i = 1; : : : n, wherezi = �+ wi; wi � N(0; �2)
(hencezi � N(�; �2))
We can estimate the mean of the distribution using the samplemean, given by�x = 1=nPi zi. It is
clearly unbiased sinceE[�x℄ = E[ 1nXi zi℄ = 1nXi E[zi℄ = 1nn� = �
The variance of the estimator isE[(�x� �)2℄ = E[(X(zi � �))2℄=n2 = �2=n
Example: sample variance

Consider estimating the variance using the estimator1nXi (zi � �x)2
This estimate is biased!
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Proof:

For this reason you will often see the sample variance written as1n� 1Xi (zi � �x)2
3.3 Consistency and Efficiency

A mathematical discussion of these is beyond the scope of thecourse (and what most people require),
but – perhaps moreso than unbiasedness – these are desirableproperties of estimators.

A consistent estimatoris one which provides an increasingly accurate estimate of the parameter(s)
asn increases. Note that the sample mean is clearly consistent since the variance of the sample mean
is �2=n, which decreases asn!1.

An efficient estimator is one which minimizes the estimation error (it attains its theoretical limit)

3.4 Least Squares Estimation

Suppose that we have a set ofn observationszi which we wish to fit to a model withm parame-
ters�j , where the model predicts a functional relationship between the observations and the model
parameters: zi = h(i; �1; : : : �m) + wi
In the absence of any statistical knowledge about the noisewi and the model parameters we might
consider a minimizing a least-squares error:�̂ = arg min�1:::�m nXi=1 w2i= arg min�1:::�m nXi=1(zi � h(i; �1; : : : �m))2
Example 1: Sample mean (again)

Suppose zi = � + wi
(i.e. h(i; �) = �) So the least squares estimate is given by�̂ = argmin� Xi (zi � �)2

hence �̂ = 1=nXi zi
i.e. the sample mean.
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Figure 23: Fitting data to a straight line

Example 2: Fitting data to a straight line

Suppose zi = �xi + � + wi
(see figure 23) where noisy observationszi are made at known locationsxi (assumed noise free).
The least squares estimate is given by�̂ = argmin� Xi (zi � �xi � �)2; � = [� �℄>
General Linear Least Squares

In the examples above,h(i; �1; : : : �m) is linear in the parameters�j . Recall that you have encoun-
tered a more general form than either of these examples in your second year Engineering Com-
putation; i.e. polynomial regression, where the model was alinear combination of the monomialsxj . zi = mXj=0 �j(xi)j
These are all cases of a general formulation forlinear least squares, in which the model is a lin-
ear combination of a set of arbitrarybasis functionswhich may be wildly non-linear – it is the
dependence on�j which must be linear. The model expressed asz =H� +w
(so for polynomial regressionH is the so-called Vandermonde matrix). The sum of squares then
becomes J =Xi w2i = w>w = (z�H�)>(z �H�)
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DifferentiatingJ w.r.t. � and setting equal to zero yieldsH>z =H>H�
which are thenormal equations for the problem. If rankH = m thenH>H is invertible and we
have a unique least squares estimate for�:�̂ = (H>H)�1H>z
If rankH < m then there exists a family of solutions.

Weighted Least Squares

If we have some idea (how?) of the relative reliability of each observation we can weight each
individual equation by a factor��2, and then minimize:Xi ��2i (zi � h(i;�))2 = (z�H�)>R�1(z�H�)
where R = diag(�21 ; : : : �2n)
More generallyR could beanyn� n symmetric, positive definite weighting matrix.

Theweighted least squares estimateis then given by�̂ = (H>R�1H)�1H>R�1z
Note that these results have no probabilistic interpretation. They were derived from an intuition that
minimizing the sum of residuals was probably a good thing to do. Consequently least squares esti-
mators may be preferred to others when there is no basis for assigning probability density functions
to z (i.e.w) and�.

3.5 Maximum Likelihood Estimation

Alternatively, we can adopt themaximum likelihood philosophy, where we take as our estimate�̂
that value which maximizes the probability that the measurementsz actually occurred, taking into
account known statistical properties of the noise on themw.

For the general linear model above the density ofzi given�, p(zij�) is just the density ofwi centred
atH�. If thew is zero mean normal with covarianceR (wi not necessarily independent, soR not
necessarily diagonal), thenp(zj�) = 1(2�)(n=2)jRj1=2 exp��12(z�H�)TR�1(z�H�)�
To maximize this probability we minimize the exponent, which is clearly equivalent to the weighted
least squared expression from the previous section, with the weight matrix determined by the covari-
ance matrixR – i.e. a probabilistic basis for choosing the weights now exists. The result, restated,
is �̂ = (H>R�1H)�1H>R�1z
This estimate is known as themaximum likelihood estimate or MLE . We have thus shown that
for normally distributed measurement errors, the least squares (LS) and maximum likelihood (MLE)
estimates coincide.

26



Example (non-Gaussian)

Let us consider an example which does not involve normal distributions (for a change). Suppose
instead, that the lifetime of a part is given by a random variable withexponential distribution:pX(x) = ae�ax; x > 0
We now measure the lifetime of a set of such partsz1; : : : ; zn in order to estimate the parametera in
the exponential distribution. To do this, we maximize thelikelihood function L(a) = p(zja) over
the parametera: âMLE = argmaxa L(a)= argmaxa nYi=1 ae�azi= argmaxa n log a� aX zi= n=X zi
If, after some timeT some of the parts have not yet failed (say partsm + 1; : : : n), then we can
measure the probability that they are still working using the cumulative distribution:P (Xi > T ) = e�aT
Now the probability of making the measurements, given the true value of a isP = mYi=1 p(zija)dzi � nYi=m+1 e�aT
Maximizing this probability yieldsâMLE = argmaxa mYi=1 p(zija)dzi � nYi=m+1 e�aT= argmaxa am exp(�a mXi=1 zi � (n�m)T= argmaxa m log a� aX zi � a(n�m)T= mP zi � (n�m)T
Note that thedzi are independent of the parametera and so can be cancelled.

3.6 Bayes’ Inference

If in addition to the noise distribution for the observations, we also have a prior for the parameter(s),
we can employ Bayes’ rule to obtain a posterior density for the parameter, given the observations:p(xjz) = p(zjx)p(x)p(z) = likelihood� prior

normalizing factor
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Example: Uniform� Sensor model:p(zjx)� Prior information:p(x)� Posterior from Bayes’ rule:p(xjz) / p(zjx)p(x)
Now recall figure 6, reproduced in figure 24.

a b

p(x)

x

p(z|x)

p(x|z)

z

ε ε

Figure 24: Combining the priorp(x) with a measurementp(zjx) to obtain the posterior

Example: Normal� Sensor model:p(zjx) / exp(�(z � x)2=2�2z)� Prior information:p(x) / exp(�(x� �x)2=2�2x)� Posterior from Bayes’ rule:p(xjz) / p(zjx)p(x); X jZ � N(�; �2)
Hence we have:� Posterior density:p(xjz) =� Variance:��2 =� Mean:� =
Example: Independent Sonar Distance Sensors

Suppose we have a point whose likely range centres at 150mm and is normally distributed with
standard deviation 30; i.e.X � N(150; 302) is the prior.

We have two (unbiased) sonar sensors giving independent measurements of the point’s range:Z1jX � N(x; 102); Z2jX � N(x; 202)
What can we say about the posterior when:

28



50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 25: Pooling information from sensor readings and prior information

1. prior ofX as above and sensor readingz1 = 130
2. prior ofX as above and sensor readingz1 = 250
3. no prior, sensor readingsz1 = 130; z2 = 170
4. prior ofX as above and sensor readingsz1 = 130; z2 = 170 (see figure 25)

5. biased sensorZ1jX � N(x+ 5; 10)
3.7 MMSE and MAP Estimation

In the previous sections we were computing, using Bayes’ rule, the posterior density of a parameter
(or parameters) given observed data and a prior model for theparameter.

Here, we decide to choose some representative point from theposterior as an estimate of our param-
eter. Two “reasonable” ideas present themselves:

1. Choose the estimate to be the mean of the posteriorE[xjz℄, which is what would would get by
requiring our estimate to minimize the mean square error. Such an estimate is known (funnily
enough) as aminimum mean square error (MMSE) estimate. Furthermore if the estimate
is unbiased then it is aminimum variance (unbiased) estimate (MVUE).x̂MMSE = argminx̂ E[(x̂� x)2jz℄ = E[xjz℄
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2. Choose the estimate as the mode, or peak value, of the posterior distribution. This is named
maximum a posteriori estimation (or MAP ). We obtain the estimate by maximizingp(xjz)
overx. Note that the denominator ofp(xjz) does not depend on the parameterx and therefore
does not affect the optimization – for this reason we often omit it:p(xjz) / likelihood� prior

and x̂MAP = argmaxx p(xjz) = argmaxx p(zjx)p(x)
Clearly if xjz (the posterior density) is normal then the MAP estimatex̂MAP is the meanE[xjz℄,
since the normal density attains its maximum value at the mean.

3.8 Multivariate Pooling� Sensor model: p(zjx) / exp��12(z �Hx)>R�1(z�Hx)�� Prior information: p(x) / exp��12(x� x0x)>P0�1(x� x0x)�� Posterior from Bayes’ rule:p(xjz) / p(zjx)p(x); xjz � N(x̂;C)
Hence we have:� Posterior density:p(xjz) =� Covariance:C =� Mean:x̂ =
Example 1: Visual Navigation, 2D Measurements

Suppose the bivariate gaussian prior for the(x; y) location of a beacon is known. We have a sensor
which gives an unbiased 2D measurement of position (e.g. from binocular cameras) corrupted by
zero mean gaussian noise; i.e: z = Hx+w; H = I2
Both are shown in figure 26(left) (using the values indicatedin the matlab fragment below).

>> x = [-1; -1]; P = [2 1; 1 3]; % prior
>> z = [1; 2]; R = [1 0; 0 1]; % sensor
>>
>> S = inv(P); Ri = inv(R);
>> Pnew = inv(S + Ri);
>> xnew = Pnew * (S*x + Ri*z);

The posterior computed in the matlab fragment above is shownin figure 26(right)
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Figure 26: Mean and 3-sigma covariance ellipses for prior and measurement (left), and mean and
3-sigma covariance ellipse for posterior (right)

Example 2: Visual Navigation, 1D Measurements

Now suppose that our visual system is monocular – i.e. we can only make 1D measurements. Further
suppose that our system for localizing the beacon takes a measurementz parallel to they-axis; i.e.z = �1 0� �xy�+ w; H = �1 0�
wherew � N(0; �2)
>> x = [-1; -1]; P = [2 1; 1 3]; % prior
>> z = 1; R = 2; H = [1 0]; % sensor
>>
>> Pnew = inv(H’*inv(R)*H + inv(P));
>> xnew = Pnew * (inv(P)*x + H’*inv(R)*z);

The prior, measurement and posterior are shown in figure 27.

3.9 Multivariate MAP

More generally, suppose that we have a vector of measurementsz = [z1; : : : zn℄> corrupted by zero
mean, gaussian noise. Then the likelihood function isp(zjx) = k exp��12(z�Hx)TR�1(z�Hx)�
If the prior onx is multivariate normal with meanx0 and covarianceP0 then the posterior has
distributionp(xjz) = k0 exp��12(z�Hx)TR�1(z�Hx)�� exp��12(x� x0)TP0�1(x� x0)�
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Figure 27: Mean and 3-sigma covariance ellipses for prior and measurement (left), and mean and
3-sigma covariance ellipse for posterior (right)

which is maximized when��x ��12(z�Hx)TR�1(z �Hx)� 12(x� x0)TP0�1(x� x0)� = 0
i.e. when x̂ = (P0�1 +H>R�1H)�1 �P0�1x0 +H>R�1z�
An alternative derivation of this equation comes if we search for a minimum variance Bayes’
estimateby minimizingJ = Z 1�1 : : : Z 1�1(x̂� x)>S(x̂� x)p(xjz)dx1 : : : dxm
whereS is any symmetric, positive definite matrix, and does not affect the result. DifferentiateJ
w.r.t. x̂ and set equal to zero to see thatJ is minimized whenx̂ = E[xjz℄ = (P0�1 +H>R�1H)�1 �P0�1x0 +H>R�1z�
Comparing this result to the previous estimators we see that:� AsP0�1 ! 0 (i.e. prior is less and less informative), we obtain the expression for the MLE.� If the measurement errors are uncorrelated and equal variance then we obtain the expression

for unweighted LS.� The mean and the mode (peak) of a gaussian coincide (in this case the gaussian is the mul-
tivariate one forx conditioned on the measurementsz), therefore the minimum variance es-
timate and the MAP estimate are the same as we have probably anticipated from the similar
univariate result above.� This equation corresponds exactly to a Kalman Filter updateof the state mean.
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3.10 Recursive regression

In our previous formulations of our estimators we have for the most part assumed that data were
available to be processed in “batch”. Suppose instead that we are continually making new observa-
tions and wish to update our current estimate. One possibility would be to recalculate our estimate
at every step. If we are estimating a parameter using the sample mean, a little thought shows, the
batch approach is not necessary:�xn+1 = 1n+ 1 n+1Xi=1 zi= 1n+ 1 (zn+1 + nXi=1 zi)= �xn + 1n+ 1 (zn+1 � �xn)
Consider again the regression problem where our (scalar) observations are of the formzi = h>i � + wi
wherehi is a column vector, andwi is zero mean gaussian noise with variance�2i , sozij� � N(h>i �; �2i )
For example for cubic regressionh>i = �1 xi x2i x3i �.
We can now consider formulating aniterativeprocess where at iterationn we use the previous step’s
posterior density as the prior for the current one:� prior: � � N(�̂n;Pn)� likelihood: znj� � N(h>n �; �2n)� posterior: Pn+1 = (P�1n + h>nhn=�2n)�1�n+1 = Pn+1 �P�1n �n + h>n zn=�2n�
We have a slight problem with this formulation since to beginwith our covariance matrix will be
“infinite” – i.e. zero information. Instead we can perform the iteration on the information matrix,
the inverse of the covariance matrixS = P�1, and on theinformation weighted meanS�̂:Sn+1 = Sn + h>nhn=�2nSn+1�n+1 = Sn�n + h>n zn=�2n
With this iteration we can initialize the process withS0 = 0;S0�̂ = 0, or with any prior model we
may have, and obtain the solution by invertingSn (which will hope by then will be non-singular).
Thus (for independent gaussian errors) we obtain a MLE estimate of the regression parameters and
a covariance on the regression parameters. If we have a prioron the regression parameters then the
estimate is also MAP.
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3.11 Stochastic difference equations

To this point we have considered estimating a set of unknown,fixed parameters. However, given
that we can do this recursively, the obvious next step is to consider estimating a state which evolves
over time.

Hence, we now return briefly to one of the motivating examples, that of feedback control. Recall
that we modelled the system with state equations of the form (also recall figure 9):x(k + 1) = Ax(k) +Bu(k) + v(k)y(k) = Cx(k) +w(k)
where thev(k) andw(k) are vectors of zero mean, independent random variables modelling stochas-
tic exogenous variables and unknown constants (v) and sensor noise (w). The effect of the introduc-
tion of these stochastic variables means that the time dependent system variables such as the statex
and the outputy also become stochastic variables. These equations do not have unique solutions for
(say)x(k) for all values ofk as would the deterministic versions withoutv;w. Future values of the
solutionx(k) are random variables. Consider, for example a scalar difference equation:x(k + 1) = ax(k) + v(k); p(v(k)) = N(0; �2)
Hence� p(x(k + 1)jx(k)) = N(ax(k); �2)� p(x(k + 2)jx(k)) = N(a2x(k); �2(1 + a2))� etc

The effect is that the future values become less and less certain. You can see this in figure 28 where
a set of random walk paths has been generated using matlab:

function path(s0,v,s,N) % s0: initial sd. v: vertical drift velocity
% s: random step sd. N: no of steps

x = [1:N]; y = [1:N];
x(1)=s0*randn(1); % initialise
y(1)=s0*randn(1);
for n=2:N
x(n) = x(n-1) + s * randn(1);
y(n) = y(n-1) + s * randn(1) + v;

end;
plot(x,y,x(1),y(1),’+’,x(N),y(N),’*’);

>> for i=1:100
>> path(0,0.01,0.01,50);
>> end

34



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 28: Random evolution of a simple stochastic difference equation

3.12 Kalman filter

In the second half of this course you will encounter the Kalman Filter in much more detail (and
arrive at it via a slightly different path). However since wenow have all the mathematical ideas in
place, we might as well derive it from Bayes’ rule.

Consider the general system above. At each time step the system state evolves according to:x(k + 1) = Ax(k) +Bu(k) + v
The idea is to make aprediction of the state according to the stochastic difference equations above.
We can determine the p.d.f. of the prediction asp(x(k + 1)jx(k)) = N(Ax̂(kjk) +Bu(k);AP(kjk)A>)= N(x̂(k + 1jk);P(k + 1jk))
This becomes ourprior for the update step.

Now we make a measurement and hence determine thelikelihood function p(z(k + 1)jx(k + 1)):p(z(k + 1)jx(k + 1)) = N(Hx̂(k + 1jk);R)
We can now compute a posterior density by combining the priorand likelihood. Our previous results
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tell us that this will be normal, and will have mean and covariance:P(k + 1jk + 1) = (P(k + 1jk)�1 +H>R�1H)�1x̂(k + 1jk + 1) = P(k + 1jk + 1) �P(k + 1jk)�1x̂(k + 1jk) +H>R�1z(k + 1)�
which are the Kalman Filter update equations. The latter is more often seen in the formx̂(k + 1jk + 1) = x̂(k + 1jk) +P(k + 1jk + 1)HR�1 [z(k + 1)�Hx̂(k + 1jk)℄
3.13 Further reading topics� Principal components analysis� Outlier rejection and robust estimation
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