
A3 Computer Architecture: Interfacing and Control

Dr I. Reid, Michaelmas 2003
[see http://www.robots.ox.ac.uk/ �ian/Teaching/ComputerArch]

� Up to now, have considered:

– Central Processing Unit (architecture, operation)
– Memory organization

� Now have sufficient knowledge to understand and even consider designing
a simple computer

� Without an interface to the outside world it would not be a very interesting
one!

S-1

Introduction

Introduction

You are entitled to ask the question “how can a computer be used in the
context of an engineering system?”

Answer: “as a general purpose, flexible tool for data collection, analysis and
system control”

� Measurement – the computer as a tool for data logging and analysis

� Communications – the computer as a tool for digital encoding and decod-
ing of communications data

� Control – the computer as a general purpose tool for controlling both dis-
crete and continuous devices.

S-2

Introduction

Introduction

In these lectures we will consider how to interface I/O devices (peripher-
als) to the CPU.

And we will consider the hardware and software issues that are raised if
we want the computer to control the devices.

Lecture 1 Introduction and motivation, Buses and Interfacing devices

Lecture 2 Input/Output, Polling and Interrupts, Communications

Lecture 3 Timing, scheduling and software

Lecture 4 Fast sampled digital control

S-3

Introduction

Input/Output Devices and Interfacing

Although many computer architecture texts discuss peripherals, they often
do so in terms of the PC as a stand-alone tool, and consider “standard” PC
devices:

S-4

Introduction

The “traditional” engineering view:

Materials

Internal
combustion
engine

aerodynamics
Mechanics /
Dynamics /
Kinematics

S-5

Introduction

But computer control, data logging and analysis, and communications are
becoming huge engineering issues, even in traditional areas:

wind tunnel
data logging

tyre pressure
sensors

controlled
suspension

Actively Engine
management
software

Computer controlled
communications

Fly−by−wire
throttle

S-6

Introduction

Matters arising and Course aims

When interfacing a computer to the outside world there are both

� theoretical and practical issues, involving both

� hardware and software

Aim of this course is to get to the point where you understand the theoretical
and practical issues of both hardware and software pertaining to computers
as components in an engineering system.

S-7

Introduction

Learning Outcomes

� How to interface a device to a computer/bus

� How to control the device via software

� Timing and software considerations of controlling multiple devices with a
single processor

� Theoretical considerations of using a computer to implement a (fast sam-
pled) digital control system

S-8

Introduction

Timing Considerations

� The world “inside” the computer is perfectly orderly, sequential and deter-
ministic; timing is controlled by a regular pulse – a clock.

� In contrast, the outside world is non-deterministic; interesting events hap-
pen at unscheduled moments

� Consequently we need some way of synchronizing the computer to these
events

� We must consider how the possibly competing demands of devices can be
appropriately scheduled

� In particular, we must consider issues of how to ensure the system responds
in time to important events

S-9

Introduction

Real-time systems

Real-time Computing: Computing for which the cor-
rectness of operation depends both on the logical results
of the computation and the time at which the results are
produced

Note that this applies equally to processing results and communication re-
sults.

Unlike a stand-alone PC in which the processes have no deadlines or “soft”
deadlines, the results of processing and communications in a computer con-
trol system have “hard” deadlines.

S-10

Introduction

The Digital/Analogue Interface

� The real world is mostly analogue; quantities tend to take on real-numbered
values, and vary continuously

� Computers represent the world digitally; numbers are represented with
finite precision, and we typically must deal with samples of continuous
signals/measurements

Thus an understanding of

� sampled data systems,

and

� analogue to digital and digital to analogue conversions (ADC and DAC)

is essential.

S-11

Introduction

Reading

No prescribed text for these four lectures; instead we draw various threads
from “standard” texts together.

For material covering various practical issues of computer hardware and in-
terfacing (eg buses, input/output, etc):

� *Clements, The Principles of Computer Hardware, 3rd ed, OUP, 2000,
Chapter 8 (see also Ch 12 for ADC/DAC and related topics)

� *Stallings, Computer Organization and Architecture, 5th ed, Prentice-Hall,
2000, Chapters 3 and 6

� Horowitz and Hill, The Art of Electronics, 2nd ed, CUP, 1989, Chapters
10 and 11 (excellent practical treatment)

S-12

Introduction

Reading, ctd

For material covering various software such as operating system support,
scheduling, real-time processing, see:

� *Bennett, Real-time Computer Control, 2nd ed, Prentice-Hall, 1994, Chap-
ters 1, 6 and 7

and for theoretical issues involving direct digital control such as sampling,
delays and difference equations, see especially

� *Franklin, Powell and Workman, Digital Control of Dynamic Systems, 3rd
ed, Addison-Wesley, 1998, Chapters 3 and 5

S-13

Introduction

Reading, ctd

Finally, for a practical though cursory treatment of the whole area,

� Bolton, Microprocessor Systems, Longman, 2000, Chs 2, 3, 10 and 11

is full of examples.

Note that on the previous slides “*”-ed texts are considered essential read-
ing. The remainder are recommended but not essential.

The Engineering Library and all College Libraries should have copies of
all/most of these.

Finally, some examples � � �

S-14

Applications

Measurement and Data Logging

� Data acquisition; dedicated system or plug-in board for a PC

� Examples: Numerous – take your pick of any branch of engineering –
there is always a need to measure properties of physical systems.

Digital
Inputs

Analogue
Inputs

Control signals for multiplexer

Gain control for amplifier

ADCAmplifier

Sampled digital signal

Microprocessor
Printer

Disk

Analogue
multiplexer

Display
Digital

multiplexer

S-15

Applications

Communications Systems

� Examples: digital TV, mobile phones, internet, satellite comms

Display

SIM
cardKeypad

Vocoder

AmplifierModulator

Speaker

Microphone

ADC

DAC Demodulator Filters

Control module Processing module Radio transmission
and reception module

S-16

Applications

Discrete Computer Control

� Have seen in first year that a finite state machine can be built using some D-type latches,
or a PROM plus some latches

� and have seen in the previous lectures that microprocessors are just fancy finite state
machines

� One major application of microprocessors in computer control is state switching

– Example: washing machine has various programmes or cycles. CPU controls timing
and monitors the state of the system, switching between different stages of the cycle
(eg, pre-wash, wash, rinse, spin)

� Although a microprocessor is more complex and possibly more expensive than latches
plus PROM, it has the virtue of flexibility

– A particular manufacturer may make a range of machines, each with a different set
of legal cycles. But with a microprocessor can have the same control unit for every
machine, but running slightly different software tailored to the particular hardware of
the specific model.

S-17

Applications

Computer Control

Although you are now “experts” at understanding and designing continuous
control systems � � �

G(s)

Plant

Sensor

1

Continuous Controller

+

−

r(t) y(t)u(t)e(t)
D(s)

S-18

Applications

Computer Control

� � � many (even most) modern control systems involve some form of digital
computer:

ADC

clock

r(kT)r(t) Difference DAC

+ hold

Digital Controller

e(kT) u(kT)+

−

u(t)

y(kT)

y(t)
G(s)

Plant

Sensor

1

equations

S-19

Applications

Example:

A hot air blower

S-20

Applications

Example, ctd

S-21

Lecture 1: Buses and devices

LECTURE 1

Buses and devices

S-22

Lecture 1: Buses and devices

How does CPU “communicate”?

� CPU is just a fancy register transfer device

� Have previously seen that to transfer data to or from memory, CPU supports MAR and
MBR, and memory can be thought of a bunch of D-type latches

Decoder

MBR

MAR

CPU Memory

Location

� The same idea holds for a generic device (eg printer, DAC, video frame grabber)

Decoder

Serializer Parallelizer

Serial link

Parallel link

OR

CPU

Buffer Reg

Addr Reg

Device

IO Register

S-23

Lecture 1: Buses and devices

System Buses

In the previous 8 lectures on Computer Architecture you have already en-
countered the concept of a bus as a means for interconnecting computer
components:

CPU Memory I/O I/O

Control Bus

Data Bus

Address Bus

S-24

Lecture 1: Buses and devices

Modern bus typically consists of 50 to 100 separate lines on a printed circuit
board (the “motherboard”), with 3 functional groups:

Data lines Carry data from source to destination (e.g. CPU to memory)

Address lines Used to designate source or destination of the data on the data
bus. You have previously seen how these can be decoded to get, eg a
particular memory location

Control lines Carry functional information defining and controlling the cur-
rent bus activity; eg Clock, Memory R/W, IO R/W, Transfer ACK, Bus
request (and other arbitration), etc

For example, for a CPU � memory transfer or vice-versa, the minimal set
of control lines would be a MemRW and data strobe DS.

S-25

Lecture 1: Buses and devices

Example: PC ISA bus (1983 – 2000)

S-26

Lecture 1: Buses and devices

Buses may be classified as

� Synchronous

� Asynchronous

� Semi-synchronous (synchronous using a WAIT state)

Timing is an issue because of different device speeds, but also because of:

� logic/propagation delay — the time spent between input and output changes
of a gate (typically 3-6 ns)

� capacitive — around 0.08ns/pF, with delays of 5ns typical

� transit time —

�� �

where

�

and

�

are the inductance and capacitance
per unit length. Typical val around 6ns/m.

S-27

Lecture 1: Buses and devices

Synchronous Bus

� Occurrence of events synchronized with a clock
� Sender assumes safe receipt

Advantages

� Fast

� Comms protocol is very
simple (partial handshaking)

Disadvantages

� Does not support mixing of
fast and slow devices

� Considerable care must be
taken with design

Clock

Read

Data

Address

A synchronous or “open-loop” read

S-28

Lecture 1: Buses and devices

Asynchronous Bus

� Timing is a property of the devices on the bus, rather than being imposed
by the bus itself.

� Data transfer requires acknowledgment

� That is, it is “closed-loop” or fully handshaked

Ready?, Yes, Here’s some data, Got it, OK

Advantages

� Mixture of fast and slow de-
vices can share the bus

� Can operate over longer dis-
tances

Disadvantages

� Full handshaking means it is
(relatively) slow

� Delays more unpredictable

S-29

Lecture 1: Buses and devices

Asynchronous Read

1. Master places address on the bus, then allows some settling time

2. Master indicates that address is active, requesting data from slave

3. Slave places data on the bus, allows some settling time, then indicates data is ready

4. Master reads the data, then acknowledges receipt by going inactive

5. Slave acknowledges Master’s receipt by going inactive, then removes the data.

Address

Master

Slave

Data

Master places
address on bus Address stable, so

Master requests data from slave

Data accepted by Master

Receipt by master

acknowledged by slave

Data placed on

bus by slave

Data declared stable by

the slave

Data removed

by slave

S-30

Lecture 1: Buses and devices

Asynchronous Write

1. Master places address and data on the bus, then allows some settling time

2. Master indicates that address and data are active

3. Slave reads the data, then acknowledges receipt

4. Master reads the data, then acknowledges receipt by going inactive

5. Master goes inactive (effectively acknowledging Slave’s receipt) and removes data and
address

Master

Slave

Data

Address

Master places
address and

data on bus

Master indicates

address & data stable
Data accepted by the
slave

Acceptance acknowledged

by Master

Master’s acknowledgment

acknowledged by slave

S-31

Lecture 1: Buses and devices

Programmed I/O

� Simplest – and most common – method of data transfer on system bus is
known as programmed IO, and involves the CPU

� Registers for input and output on the device are attached to the data bus

Decode Select Decode Select Decode Select

CPU Memory I/O I/O

Control Bus

Data Bus

Address Bus

S-32

Lecture 1: Buses and devices

Programmed I/O: Register I/O

� A number of CPUs (eg 80x86 as used in most modern PCs) support IN and OUT instruc-
tions, so-called register or isolated input/output

� Bus supports use of address lines for either port address or memory address, as deter-
mined by control lines (on older PCs, eg, (IOW, IOR, MEMR, MEMW)

� Example:

;; Intel 8080 instructions for register IO
MOV AL, 80h ;; get 80 into accumulator
OUT 03C0,AL ;; and send it to port 3C0

– place the address (3C0) of the receiving device on the address bus
– place the data to be sent (80) on the data bus
– strobe the appropriate bus control line (IOW) to indicate an IO write

� With any luck, there will be a device connected to the bus which recognizes (decodes)
the address and picks up the data.

S-33

Lecture 1: Buses and devices

Memory and port address space

IOR
IOW

D
ec

o
d

er

. .
 .

D
0−

D
7

CS CS

D
ec

o
d

er

. .
 .

0000

FFFF

A
0−

A
15

1000

7c00

4000

CC00

D
0−

D
7

MemR
MemW

A
0−

A
12

FFF

28F

000

Note that there will typically be significantly fewer

port addresses than memory addresses

However many CPUs do not support explicit IO instructions. How, then, do
they “talk” to the outside world??

S-34

Lecture 1: Buses and devices

Programmed I/O: Memory-mapped I/O

� Devices sit in the memory address space

� Each device (and we can include memory as a fast storage “device”) occu-
pies part of the address space and decodes the address lines appropriately

� A peripheral such as an ADC therefore appears to the CPU like any other
memory location, and

� IO is effected in the CPU via a standard memory transfer (eg using MAR
and MBR registers)

� Example:
;; Intel 8080 instructions for Memory Mapped IO
MOV AL,80h ;; get 80 into accumulator
MOV CC00,AL ;; and send it to location CC00

Most devices are at least partially memory mapped.

S-35

Lecture 1: Buses and devices

Programmed I/O: Design considerations

� The designer of a peripheral must ensure that the address range decoded
by the device does not conflict with other devices
– Older plug-in cards have jumpers or DIP switches that can be set before installation
– This has gradually been replaced with programmable decoding; the address to decode

is stored in non-volatile ram on the device and can be changed if necessary
– Modern cards try to do this “intelligently” to hide the details, resulting in so-called

plug-and-play

� Since the CPU may be reading/writing to the device registers at the same
as the device, the registers must be dual-ported

R
eg

is
te

r

Device

CPU

� For devices on a synchronous bus we must of course ensure that IO register
transfers look just like a memory transfers from the point of view of timing
– Slow devices will often use a fifo buffer (ie first-in, first-out) which can accept (or

supply) a chunk of data rapidly.

S-36

Lecture 1: Buses and devices

Devices for Real-time Computer Control

� Many texts you read will discuss in some detail devices such as keyboards,
printers, disks, etc.

� The purpose of this course, however, is to explore the computer as part of
a general engineering system

� What sort of IO devices are need in this context?

Simple Digital Input: (e.g. a valve open/closed switch)

PLANT

Input registerDecoder

Digital inputs
Select

Enable

CPU

Data

Control

Address

S-37

Lecture 1: Buses and devices

and Digital Output:

PLANT

Decoder

Select

Enable

CPU

Output register

Data

Address

Control

Digital outputs

Example:

reset

wr

sel

solid state
relay

data
8 +

−

−
−

’273

D−type latch

Relay control for switching a large current

S-38

Lecture 1: Buses and devices

Pulse reading/writing:

� Reading shaft encoders

� Writing pulse width modulation for electric motors

Pulse counter

Decoder
Decoder

Select

Select

Reset
Enable

Pulse train
generator

Enable

Data

Address

Control

PLANT

S-39

Lecture 1: Buses and devices

Analogue input: eg any analogue sensor such as a thermistor, strain gauge,
etc

Sample
and
Hold

Analogue to
Digital
Converter IO

 In
te

rf
ac

e

CPU

Channel
select

PLANT

MUX

Convert

Sample

+

−

Vin
Vout

1

2

Hold circuit
V

t

Vin

Vout

Hold (switch position 2)

Track (switch position 1)

Hold circuit behaviour

3−bit binary
output

8−3
priority

encoder

Vref

Vin

gnd
0

1

3

2

4

5

6

7

gnd

A/D flash converter

S-40

Lecture 1: Buses and devices

Analogue output: eg continuous voltage or current control

CPU

IO Interface

Plant

DAC DAC DAC

Select

Vref
10V

R R R 2R

2R2R 2R 2R

1248

LSBMSB

R

R-2R ladder for D/A conversion

S-41

Lecture 1: Buses and devices

Timer / Real-time Clock: vital axillary device, used for synchronizing
events to a timer, controlling sampling intervals, time/date stamping sensor
data, etc

R/W

φ

Decoder

Select
CPU

Data

Address

Control

Control/Status
registers

Enable

IRQ

Timer

S-42

Lecture 1: Buses and devices

Timer / Real-time Clock:

� Fixed frequency oscillator feed a counter

� Typically programmable with one of a number of modes of operation:
– (a) Continuous mode: decrement pre-loaded value until zero, generate event (interrupt),

then reset and start counting again
– (b) Single pulse: as previous but count down just once
– (c) Frequency comparison: count the period of a signal applied to an input gate pin; ie

between two falling edges
– (d) Pulse width: count time between falling and rising edge of a pulse

Start

Start StopStart Stop

TimeoutStartTimeoutTimeout (b)

(d)(c)

(a)

S-43

Lecture 1: Buses and devices

Example: XY scope display

� Control the X and Y coordinates of an oscilloscope beam based on PC ISA bus (H & H, ch 10, p686)
� Consists of decoding circuitry, and two latches attached to a pair DACs

S-44

Lecture 1: Buses and devices

XY scope display: Notes

� The two ’574 latches are the device’s input registers (from the point of
view of the CPU they are output registers)

� To control the device the CPU must output data to the appropriate address

� The device does not have any output registers; there is no way for the CPU
to determine its state (other than remembering what it last told it to do)

� Circuit fully decodes the address lines; could in fact ignore A1 altogether
and use 2-input NANDs instead. What would be the effect?

� In reality the pair of latches and pair of DACs would probably be replaced
by DACs with built-in latches

S-45

Lecture 1: Buses and devices

XY scope display: Code

8080 assembly code to drive the device:

;; 8080 assembly code to drive XY scope display
INIT: MOV SI,xpoint ;init address of x array

MOV DI,ypoint ;init address of y array
MOV CX,npoint ;init counter

PLOT: MOV AL,[SI] ;get x byte
OUT 03C0h,AL ;output it
MOV AL,[DI] ;get y byte
OUT 03C1h,AL ;output it
INC SI ;advance x address
INC DI ;advance y address
DEC CX ;decrement counter
JNZ PLOT ;not done, plot next point
JMP INIT ;done, so start again

S-46

Lecture 1: Buses and devices

Micro-controllers

In a world in which there seems to be a VLSI chip for just about any task we
might like to think about, it will be no surprise to learn that there are chips
which integrate:

� CPU

� Memory (ROM, RAM and (E)EPROM)

� IO Ports (digital and A/D, pulse, serial/parallel comms, etc)

� IO control and status registers

� Timers

� Internal bus to connect the components

onto a single chip.

These devices are known as micro-controllers and widely used in embed-
ded systems for control-oriented activities

S-47

Lecture 1: Buses and devices

Micro-controllers

Program
store
(EPROM)

Data
store
RAM

Interrupt
controller

Oscillator

CPU

I/O Ports
(4)

Hardware timers

External bus

controller
communication
Serial

Instruction
address

Data
address

RAM
Progran
memory CPU

DataInstruction

The “Hardvard” architecture, as used in the
PIC family of micro-controllers

Examples:

� Motorola 68HC11, PIC16C6x/7x family, 8051 (8/16-bit micro-controllers,
typically

��

per unit)

S-48

Lecture 1: Buses and devices

Microcontroller: example application

Engine management:

S-49

Lecture 1: Buses and devices

S-50

Lecture 2: I/O, Interrupts and Comms

LECTURE 2

Input/Output, Interrupts and Communications

S-51

Lecture 2: I/O, Interrupts and Comms

Buffered I/O

� Although I/O is driven at the speed of bus transfers, the physical device
may not be able to keep up if a constant stream of data is being supplied.

� One solution is to buffer data by having some fast memory on the device

FIFO buffer

. .
 .

Peripheral

Slow
part of
device

� What happens if the buffer fills up?

S-52

Lecture 2: I/O, Interrupts and Comms

Scheduling I/O

� A device needs some way of indicating to the sender (typically CPU) that it
is ready or not; minimally it must have a bit in a status register indicating
READY (=1) or NOT READY (=0)

Three main ways of controlling the timing of I/O:

� Polling

� Interrupts

� Direct memory access (DMA)

S-53

Lecture 2: I/O, Interrupts and Comms

Polling

� Polling is a software solution to determine is a device is ready

� CPU constantly (or periodically) checks the status of the device

Check device
status

to device
Transfer data

Yes

No
Ready?

;; Pseudo 68000 assembly language polling loop
MOVE #128,D1
LEA 1000,A0 ;Load addr reg A0 with loc of data
LEA 8000,A1 ;Load addr reg A1 with loc of output port
LEA 8002,A2 ;Load addr reg A2 with loc of status byte

LOOP MOVE (A0)+,D0 ;Get byte from table into ac, and inc A0
WAIT MOVE (A2),D2 ;Read status byte into D2

AND #1,D2 ;Logical AND with LSB: sets the Zflag
BEQ WAIT ;If Z=0 jump to wait
MOVE D0,(A1)
SUB #1,D1
BNE LOOP ;If Z not set then goto LOOP.

68000 assembly code to transfer a block of data to a device

S-54

Lecture 2: I/O, Interrupts and Comms

� Processor may spend a lot of time waiting

� Example: Fast ink-jet printer

– printing speed approx 100 characters (bytes) per second
– typical modern bus (eg PCI) transfers at in excess of 40 Mb/sec
– typical modern processor cycles at 1Gz.

Four instructions at the core of the polling loop get executed over and over
LOOP MOVE (A0)+,D0 ;Get byte from table into ac, and inc A0
WAIT MOVE (A2),D2 ;Read status byte into D2

AND #1,D2 ;Logical AND with LSB: sets the Zflag
BEQ WAIT ;If Z=0 jump to wait

A 1GHz processor, with 4 cycles per instruction will take

� � � �� � � � ���

	 � � �
 �

secs

so the polling loop will execute approx

�� ��

�� � ���
�

	 � � �
 � � 	� million

times while waiting for the printer to be ready again� � �

S-55

Lecture 2: I/O, Interrupts and Comms

Check device
status

to device
Transfer data

Yes

No
Ready?

Check device
status

to device
Transfer data

Yes

No
Ready?

Do other stuff
� Loop on left is inefficient, but this may not matter for small, single task, dedicated ma-

chine

Example: cash-machine (ATM); waits for a card to be inserted, then waits for keys to
be pressed, etc

� Loop on right avoids lots of wasted cycles, but relies on program to make sure the device
is checked sufficiently often

S-56

Lecture 2: I/O, Interrupts and Comms

Interrupts

� With only a few devices needing quick response (eg fast disks or latency
sensitive I/O) a polling machine would rapidly become bogged down check-
ing status flags

� Better to have devices signal the CPU that they are ready

Interrupt: a spontaneous hardware request for attention
by a peripheral, producing a program jump to a dedicated
handler routine (usually resulting in some programmed
I/O) followed by a return to the code that was interrupted

S-57

Lecture 2: I/O, Interrupts and Comms

Interrupt driven I/O

� Most CPUs have hardware support for
interrupting the CPU during normal pro-
gram execution

� A device requests an interrupt by lowering
a dedicated line on the control bus, an in-
terrupt request line

� Micro-instructions in the CPU test for
presence/absence of interrupt request (ie
polling at the microinstruction level)

� Somewhere in memory we have an inter-
rupt service routine, a sub-routine to do
whatever is necessary (eg read a character
from a keypad, or power down a plant that
has signalled an alarm)

Decode

IRQ active

Interrupt service
routine

Normal
instruction
cycle

Fetch

Execute

No

Yes

S-58

Lecture 2: I/O, Interrupts and Comms

Interrupt servicing

What does the CPU do on receiving an interrupt?

� Finish the current macro instruction

� “Recognize” the interrupt (i.e. determine which service routine is needed)

� Save the Program Counter, Registers and Status Word

� Jump to the routine

� Run the service routine

� Resume normal service: restore PC, Regs and Status Word and continue
normal execution

S-59

Lecture 2: I/O, Interrupts and Comms

Some considerations:

� Multiple devices may be connected, so we need hardware support for the
following:
– A way of identifying which device interrupted (so the appropriate service routine can

be called)
– A way of prioritizing devices to reflect the fact that some will require more urgent

attention that others
– Some way to prevent interrupt service routines constantly being interrupted themselves

� From the software point of view we also need:
– Service routines which are short and to the point!
– Routines which do not corrupt the current state of the machine (this is why the registers

and status word are saved, so that the CPU state appears exactly the same after the
interrupt as before)

– Why must the status word be saved??

S-60

Lecture 2: I/O, Interrupts and Comms

Interrupt Priorities and Masking

� Some devices are more important or impatient than others (eg clock, alarms, time critical
devices such as controllers)

� Many CPUs allow for a number of different interrupt priorities

� Implemented by separate control lines on the system bus (ie one line per level)

� Processor can deliberately ignore, or mask interrupts at a given priority or lower
Achieved by having bits in the processor’s status word indicating the current mask. Each
subsequent interrupt is first compared with the mask before being allowed to proceed (or
being blocked)

� Masking does not cancel an interrupt; just prevents it being serviced temporarily

� To ensure low priority devices do not interrupt high priority ones the CPU will usually
block lower priority interrupt requests during the interrupt service routine
When an interrupt at level � occurs, subsequent interrupts at that level and lower are
masked off until the service routine completes. However higher priority interrupts � �

may interrupt the service routines of lower priority ones.

� The most urgent interrupt is non-maskable; usually associated with system functions
affecting the machine’s well-being (eg reset button)

S-61

Lecture 2: I/O, Interrupts and Comms

Multilevel interrupts: Example

IRQ1 IRQ1 IRQ2

"Normal" processing

Interrupt service routine

0

3

2

1

In
te

rr
u

p
t

le
ve

l

IRQ3

IRQ2

Task activation in an interrupting system

S-62

Lecture 2: I/O, Interrupts and Comms

Sharing interrupt lines

� In simple machines such as old PCs (pre-early 1990s) only one device may be attached
to an interrupt request line (IRQs in old PCs were edge-driven)

� More commonly interrupt request lines are level-driven, and can be shared:

� How, though, does the CPU determine which device has interrupted? And what does it
do when it has this information?

S-63

Lecture 2: I/O, Interrupts and Comms

Recognizing interrupts

� Devices daisy-chained together

IACK_INIACK_IN IACK_IN

IACK_OUTIACK_OUT IACK_OUT

IRQIRQ

BYPASS1

Device 1

IRQ

BYPASS3

Device 3Device 2

BYPASS2

to CPU

Daisy-chained devices

� Once the CPU knows which device interrupted it, it can
look up the interrupt vector table, a list of the loca-
tions (or vectors) of the various service routines

� It then forces a jump (ie change in the PC) to the loca-
tion specified in the table

in
te

rr
u

p
t

ve
ct

o
r

ta
b

le

0000

FFFF

...

routine
service
interrupt

A100

C3B0

821C

6550
A100

S-64

Lecture 2: I/O, Interrupts and Comms

Example: Vectored Interrupts in the 68000

You will explore this further in the Computer Systems Lab � � �

� 68000 has 7 interrupt levels; 0 (no interrupt), 1 (least urgent), � � � 7 (highest
priority)

� Devices can share interrupt lines using the daisy-chaining mechanism out-
lined above

S-65

Lecture 2: I/O, Interrupts and Comms

IRQ1

IACK2

IPL0

IPL1

IPL2

IRQ4
IRQ5
IRQ6
IRQ7

IRQ2
IRQ3

IACK3

IACK5
IACK6
IACK7

IACK4

Encoded
interrupt
request
input

In an IACK cycle
the CPU puts the
level of the IACK
on the address
bus

Function code
indicates type
of bus cycle.
1,1,1 = IACK
cycle

Interrupt mask
bits set the
level below which
interrupts will
not be processed

IRQ IACKIRQ IACK

Peripheral

IVEC

FC2

IACK1

FC0

E

FC1

A03

A02

A01

68000 microprocessor

Priority
encoder

3−to−8
decoder

Memory

Address bus

Data bus

Processor status

I0I1I2

interrupt vector

Stack pointer
Reset vector

0000

Peripheral

IVEC

S-66

Lecture 2: I/O, Interrupts and Comms

Recognizing interrupts

� Interrupting device pulls its IRQ low

� Priority encoder outputs (in 3 bit encoded form) the highest interrupt being requested

� Encoded request is then masked by the interrupt mask (part of the processor’s status
word). If the mask is at the same level or higher, the interrupt cannot proceed.

� Once past the mask, processor interruption is inevitable. CPU finishes current (macro)
instruction, then sets the bus condition flags FC2,1,0 = 1, 1, 1. This indicates to devices
on the bus that the processor is acknowledging an interrupt.

� The CPU then places the level of the interrupt being acknowledged onto the lowest three
address lines A3, A2, A1. These are decoded to give 7 IACK lines

� IACK lines are daisy-chained in and out of devices on the bus.

� BYPASS is asserted by all devices not requesting an interrupt

� Thus the first interrupting device in the chain to “capture” the IACK signal does not pass
it on down the chain.

� Capturing device places an 8-bit interrupt vector number onto the data bus (D0-D7)

S-67

Lecture 2: I/O, Interrupts and Comms

Example, ctd.

� The CPU multiplies the interrupt vector number by 4 to generate a memory address. This
address is one of a table of such addresses. The contents of this address is the address of
the interrupt service routine to which the processor should jump.

100

400
404

396

1000

1000

1020

1020

Memory

addresses

Int Serv Rtne

Int Serv Rtne

Interrupt Vector

Table

CPU

MEMORY

PERIPHERAL

100

400

D0−7

S-68

Lecture 2: I/O, Interrupts and Comms

IRQ1

IACK2

Interrupt
vector
table

IPL0

IPL1

IPL2

IRQ4
IRQ5
IRQ6
IRQ7

IRQ2
IRQ3

IACK3

IACK5
IACK6
IACK7

IACK4

Interrupt vector
register supplies
interrupt vector
during IACK cycle

IRQ IACK

address of the level
is used to access the
The interrupt vector

6 interrupt handling
routine in memory

IACK
indicates an
code 1,1,1
The function

FC2

1

0

0

IACK1

1

0

FC0

1

E

FC1

Interrupt handler1234

100

A03

A02

A01

00001234

68000 microprocessor

Priority
encoder

3−to−8
decoder

Memory

IACK at
level 6

Peripheral

IVEC 40

High during
IACK cycle

Address bus

Data bus

0 0 1 = 1 1 0
level 6 IRQ

S-69

Lecture 2: I/O, Interrupts and Comms

I/O using Direct Memory Access

� If large quantities of data need to be shipped from one place to another (eg
memory to a disk), it is wasteful of CPU time for all the data to have to
pass through the CPU

� DMA is much more efficient, but also requires special hardware support

� A DMA controller orchestrates the data transfer, leaving the CPU to get
on with its processing

Bus switch Bus switch Bus switchBus
switch

DMA

Controller
CPU

Request

DMA

DMA DMA

Memory Peripheral

S-70

Lecture 2: I/O, Interrupts and Comms

Communications

� System buses, esp synchronous ones, operate over short distances; usually internal to
computer

� Parallel data transmission requires multiple data paths, leading to expensive cabling; usu-
ally restricted to short distances

� For communications over longer distances, say between two separate computers, serial
communication is much more common

Start
bit

Stop
bit

11 0 0 1 0 1 1

MSBLSB
data bits

one byte

data sample times

time

Asynchronous serial communication of one 8-bit word. Start bit tells receiver when to start looking for

data. Assume that sender and receiver have separate clocks whose speed is matched to within 10%.

S-71

Lecture 2: I/O, Interrupts and Comms

RS-232

The most commonly used serial interface is RS-232. Provides point to point
bidirectional asynchronous communications.

� Old (1962)

� Slow: 115200 baud (bits per second) or slower

� Very common � � � examples: modem, integrated servo motor/controller

� Real-time (ie send/receive time may be slow, but is guaranteed)

� Consists of 3 categories of signals

– Data: two lines, send and receive
– Handshaking: handshaking signals to control data flow
– Timing: for synchronous operation, clock signals

� Signals are +12V (logic 1) and -12V (logic 0)

S-72

Lecture 2: I/O, Interrupts and Comms

RS-232

� Simplest implementation connects only data lines plus ground

TXD

RXD

SG

2

3

7 7

3

2
TXD

RXD

SG

� Parallel data from microprocessor is converted into a serial bit-stream by a
UART (Universal Asynchronous Receiver/Transmitter), which has buffers,
control and status registers and is interfaced to the CPU on the system bus

Decode

Buffer

R
D

at
a

T
D

at
a

S
ta

tu
s

C
o

n
tr

o
l

Handshaking
Receive
Transmit

φ

IRQ

UART

S-73

Lecture 2: I/O, Interrupts and Comms

Serial communications

� Most micro-controllers have an integrated UART

– One main use is for down-loading code, up-loading data and other com-
munications with a “host” computer

� Modern PCs retain RS-232 ports, but also provide higher spec serial lines

– USB (Universal Serial Bus), 10 Mbit/sec
[there are microcontroller interfaces for USB as well]

– IEEE-1394 (Firewire, I-Link), 400 Mbit/sec
[no micro-controller interfaces here yet, but maybe soon� � �]

S-74

Lecture 2: I/O, Interrupts and Comms

Ethernet
While RS232 provides point-to-point (or “peer-to-peer”) two-way com-
munication, when multiple computers are locally connected they are more
commonly networked using using a “bus-like” architecture

� Network communications between computers most commonly done by
ethernet

� Modern ethernet yields up to 1Gbit/sec

� Nodes listen to a single transmit/receive cable

� Sender waits for “silence” then sends a packet of data

� There is a possibility (because of the propagation delays between nodes
and in each node’s ethernet hardware) that two nodes try to send at once
resulting in a collision; the packets are garbled and must be re-sent

� For this reason one should be aware that for ethernet or similar technolo-
gies (eg Bluetooth) send/receive times cannot be guaranteed; this may be
important in the context of a real-time system.

S-75

Lecture 2: I/O, Interrupts and Comms

Communications Bandwidth

1. Beware that a quoted bandwidth of a communications medium may refer
to the average bandwidth over time, not a guaranteed rate

� Not a problem if the fluctuations up and down are fairly frequent and we
can afford the delays associated with buffering

� Streaming internet audio/video (eg RealPlayer or MediaPlayer) rely on
an average bandwidth of the internet and use a buffer to smooth out the
irregular arrival times of data packets.

� Problematic if we need to avoid delays, eg closed-loop control – maybe
tele-surgery over the internet is not such a great idea � � �

2. Beware that the bandwidth does not necessarily tell us about the transmis-
sion time

� It would not matter how high the data rate to/from the Mars rover “So-
journer”, real-time closed-loop control was impossible because the round
trip journey time is 20 minutes.

S-76

Lecture 2: I/O, Interrupts and Comms

A general design solution, and which applied in an extreme form to the
Mars rover is to use an inner loop (local, fast, synchronous), responding
to demands communicated (possibly asynchronously) from a slower outer
loop.

� The Mars rover was equipped with simple visual and laser-range-finding
sensors. These sesnors were used by a local controller on the vehicle re-
sponsible for achieving a higher level goal set by the NASA boffins (“tra-
verse this path”) while (i) avoiding obstacles and (ii) monitoring the system
state for dangerous or extreme conditions.

� A more down-to-earth (literally!) and very common scenario is to have a
local micro-controller dedicated to performing a fast servo-loop, but com-
municating via an RS232 link with another processor.

S-77

