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Exercise 3: Regression, ill-conditioning and function-norms

The purpose of this exercise is to reinforce your understanding of polynomial regression and of its associated
ill-conditioning problems. Regression is a valuable tool for interpreting experimental data. It can also be used to
identify patterns automatically, as the examples towards the end, on recognition of spoken words, show.

1 Preparation

Reassure yourself that the polynomial regression problem can be formulated as follows:

A� = y

where � is the vector of unknown coefficients, y is a vector of known y coordinates, and the i; jth entry of the
matrix A is given by (xi)

j .

A above is known as the “Vandermonde” matrix. Compute the Vandermonde matrix for cubic regression on
the points (0.1,0.2), (0.2,0.4), (0.3,0.5), (0.4,0.4), (0.5,0.2), (0.6,0.1), (0.7,0.2), (0.8, 0.4).

Let polynomials p(x) and q(x) have coefficients �i and �i (i = 0 : : : n) respectively. Show that the polyno-
mial p(x) � q(x) has coefficients �i � �i.

The n�n Hilbert Matrix is defined to be the matrix whose i; jth entry is 1=(i+ j�1). Prove that this matrix

is equivalent to the matrix whose i; jth entry is the inner product of the monomials x i�1 and xj�1; i.e.
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The L2 norm of a function g is denoted kgk and defined by kgk 2 =
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dx. Show that for a polynomial
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and hence, using the result above, that the L2 norm of a polynomial is given by
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1=2

where H is the appropriate sized Hilbert matrix. (Hint: note that (
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2 Lab Work

A. Regression

Begin by copying across the files testlin.m, getpoints.m, getsound.m, linear.m, valpoly.m,
plotpoly.m, play.m, envelope.m and pn.m from the directory /packages/demo/comp/lab3/ into
a directory called lab3 in your own area. Now, in matlab, type testlin and the graphics window will pop up,
with an invitation to plot points using the mouse, and fit a linear function as in figure 1. Try this out for several
different sets of points, to make sure the linear fits look as you would expect them to. Satisfy yourself that you
understand how the functions getpoints, linear and plotpoly work.
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Figure 1: Linear regression to a series of points selected using the mouse.

Now your task is to write a function testpoly for polynomial regression which you should be prepared to
demonstrate when your exercise is assessed. It should work just like testlin, except that it fits polynomials of
any desired degree M. Its definition should begin

function testpoly(M)

and the line

alpha = linear(xa, ya);

should be replaced by

alpha = regress(xa, ya, M);

You need to write the function regress starting from the function linear, but with a suitably generalised form
of the Vandermonde matrix. The following matlab stuff may be helpful:

� the operator .ˆ raises each element of a vector x to a given power, as in x.ˆn

� an entire column of a matrix can be specified using the “:” special character, as in A(:; i) for the ith column
of matrix A (similarly for rows).

� a loop over an index variable can be specified using a for statement, e.g.

for i = 0:n
...

end

[Incidental note: matlab has built-in versions of regress and valpoly, called polyfit and polyval.
Be careful if you ever use them — they assume that the vector alpha stores parameters in the opposite order, from
the nth polynomial coefficient down to the 0th.]

B. Ill-conditioning

Ill-conditioning can occur under a variety of circumstances, as you will discover.
Add the line

cond(A’ * A)
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to your regress function so that it prints out the condition number k(A>A). Note that by omitting the “;” from
the end of any line, matlab will automatically print the answer when the calcuation is complete.

Now make a data-set xa, ya of 11 (x; y) points, evenly spaced along the x-axis, choosing the y-values as
you wish. You can do this either using the mouse as before, or from the keyboard, e.g.

>> xa = [0:0.01:1]’; ya = xa .ˆ 2;

1. Apply regress to the data-set you just made, using each of the three polynomial orders M = 2; 3; 4. In each
case, record k(A>A) and compare with k(HM ), the condition number of the corresponding Hilbert matrix
(i.e. cond(hilb(M+1)) in matlab.

Record what you notice about the values of the various condition numbers.

2. Now repeat the above with the same xa but a different ya, either selected with the mouse as above, or e.g.

>> ya = xa .ˆ 3;

Note down how k(A
>

A) is affected by the change of y-values, and explain.

3. Load the arrays xa1, xa2, ya1, ya2 from the file arrays.mat:

>> load /packages/demo/comp/lab3/arrays.mat

Apply regress withM = 3 in each of the 4 possible sets (xa1,ya1), (xa1,ya2), (xa2,ya1), (xa2,ya2).

Note down your comments on the variation, from set to set, of

(a) the condition numbers

(b) the regression parameter-vector �

(c) the shapes of the fitted curves.

C. Some speech signals

Various speech signals are provided (in /packages/demo/comp/lab3) which are to be used as data for the
remaining parts of this lab exercise. The aim is to recognise utterances, and to do this some sort of measure of the
difference between two utterances is needed.

There are three utterances each of the words “on”, “off”, “fast” and “slow”. Type e.g.

>> play(’/packages/demo/comp/lab3/slow1.dat’);

to hear the utterances. (Note: if your computer doesn’t have speakers, you won’t hear anything. Try to hide your
obvious disappointment and carry on with the exercise.)

Each utterance is a digitised electrical signal, captured from a microphone, at a sample rate of approximately
12 kHz, and stored as a sequence of 16-bit integers. You can read a signal into a matlab array using the function
getsound provided. Read in the four utterances slow1.dat, slow2.dat, fast1.dat, fast2.dat into
arrays:

>> slow1 = getsound(’/packages/demo/comp/lab3/slow1.dat’);
>> slow2 = getsound(’/packages/demo/comp/lab3/slow2.dat’);
>> fast1 = getsound(’/packages/demo/comp/lab3/fast1.dat’);
>> fast2 = getsound(’/packages/demo/comp/lab3/fast2.dat’);

Now use plot to display these 4 signals, and note how noisy they are. (The noise occurs because of the random
way in which vocal chords vibrate, and because of turbulence of the airflow in throat.)

How could you use the computer to compare utterances? One idea is simply to subtract one signal array from
another using a function such as the one below:
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function diff = soundsub(s1, s2)
% can only subtract arrays of equal length so
% truncate both to the minimum length
len = min(length(s1), length(s2));
diff = s1(1:len) - s2(1:len);

Type this function into your computer and now plot the differences between: (slow1, slow2) and (slow1, fast1).
Make sure your two plots have the same scales. You should see that array differencing is not a useful way to
compare utterances.

Note down some reasons for this, based on your plots.

Direct differencing of speech signals didn’t work. Now, instead, you apply polynomial regression to the pro-
cessing of speech signals. The idea is to capture the general shape or envelope of the signal, while ignoring the
noisy, fine structure. Real speech processing systems use somewhat more general methods, based on linear filter-
ing, which are capable of dealing with larger databases of words. The approach used here is good enough for small
vocabularies of a few words.

Apply the function envelope provided to each of the 4 utterances above, and note how the general shape of
each signal is captured (use plotpoly), e.g.:

>> pslow1 = envelope(slow1);
>> plotpoly(pslow1);

Note that envelope normalises the signal to have unit length, and also rescales the envelope to have maximum
value of one. Compare some speech signals with their envelopes, to check that the envelope does indeed capture
gross shape. The envelope function uses polynomials of order 6 — was that appropriate do you think, or would
more, or less have been better?

Write a function

function alpha = envdiff(e1, e2)

which takes two envelopes (computed using envelope) and returns the difference between them as a polynomial,
represented by the parameter vector alpha – recall from the preparation that this will be a rather simple function.

Apply envdiff to the envelopes of the utterance pairs (slow1, slow2) and (slow1, fast1) from the previous
exercise. Plot each difference polynomial (using plotpoly with appropriately modified axes).

Record the results and comment on why this new procedure – envelope differencing – might make a better
basis for recognition of utterances.

D. Comparing fitted signals using the L2 norm

The final part of this exercise illustrates an important method in pattern recognition: the use of norms to compare
patterns. In the previous part, the difference between envelopes was plotted as a (polynomial) function. Now the
aim is to express the overall size of that difference as a single number. Then, when the size of the difference
between two envelopes is small, it will be more likely that they represent two utterances of the same word.

A function pn is provided that computes the L2 norm of a polynomial by the method you proved in the
preparation. Check the code to verify it implements your proof.

Complete the table below, showing the norms of the differences between the envelopes of various utter-
ances fast1.dat, off1.dat etc., taken to be “laboratory standard”, with “test” utterances fast2.dat,
off2.dat, etc.:

Record what you notice about the values of norm-differences along the diagonal of your table. Does it look
promising for successful recognition of spoken words?
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