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Ian Reid, 15/12/1999
Exercise 2: Iterative solution of simultaneous equations

The purpose of this exercise is to explore the use of iterative algorithms for solving simultaneous equations
— the “Jacobi” algorithm and close relatives. This is done in the context of a (simplified) engineering problem:
modelling an elastic surface under load.

1 Preparation

Read the relevant parts of the lecture notes.

A. Simulating a springy surface

In this exercise we try to model a (one-dimensional) membrane on an elastic base. Consider Figure 1(a) in which
the membrane is modelled as a set of n evenly spaced points held together by a tensile force of one unit in the
horizontal direction, affected by a load b j at the jth point, and with each point experiencing an elastic restoring
force proportional to its deflection from zero. This might be a pausible model for an elastic deformation of a road
surface as a vehicle moves over it.

Show by resolving forces vertically at each point that:

xj�1 � 2xj + xj+1 = bj + �xj ; 1 � j � m; (1)

(where � � 0 is the constant that governs the relative strength of a restoring force). Exerting pressure at one point
(bj = 0 except for one value of j) causes an indentation of the surface as in figure 1(b).
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Figure 1: Computing the shape of a membrane on an elastic base, deformed by a downward force acting at a point.

Show that equation (1) above can be expressed in the form (D + E)x = b, where D is a diagonal matrix
with entries on the diagonal �(2 + �), and E is a matrix with ones on either side of the main diagonal and zeros
elsewhere (including on the diagonal).
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B. The Jacobi algorithm

The Jacobi iteration is given by x(n+1) = D
�1
b�D�1Ex(n). Show that for the membrane problem the

jth component of the update becomes

xj(n+ 1) = �(bj � xj�1(n)� xj+1(n))=(2 + �)

C. The Gauss-Seidel algorithm

The Gauss-Seidel iteration for solution of Ax = b is derived by expressing

A = D+ L+U

where D is diagonal, L is strictly lower triangular and U is strictly upper triangular. The update is then given by
x(n+1) = D

�1
b�D�1Lx(n+1)�D�1Ux(n). Explain the presence of the term x(n+1) on the right-hand

side of the equation, and show that for the membrane problem the Gauss-Seidel update for the jth component is
given by:

xj(n+ 1) = �(bj � xj�1(n+ 1)� xj+1(n))=(2 + �)

2 Lab Work

A. Simulating a springy surface

Copy the files springy.m and jacobi.m from /packages/demo/comp/lab2 to a directory called lab2
in your own area.

Compare the code in the file jacobi.m with your derivation in sections A and B of the preparation. Satisfy
yourself that you understand the operation of the function springy and write down the role of each of its four
parameters.

Try it out by typing

springy(0.1, 50, 10, 3)

First the program computes an accurate solution for the deformed surface under a point load, using many iterations.
(The use of many iterations, in this way, is of course impractical in real applications, but is done here for tutorial
purposes only.) Then (press RET) it computes some intermediate solutions, to show how the Jacobi algorithm
converges.

Note down what happens when you vary the values of the parameter lambda that relates to the stiffness of
the membrane, and m, n, that concern the detail and accuracy of the computed solution.

B. Using norms to look at convergence

Now you use the “absolute error” en = xn�s (where s is the true solution vector of the linear equations) to inves-
tigate convergence experimentally. The 2-norm k : : : k 2, denoted here just k : : : k for brevity, is used throughout. It
is computed by the matlab function norm (see help norm and look under “vectors”). Ideally, you would like
your iterative algorithm to terminate when kenk becomes smaller than some pre-specified value.

Write a new function springynorm similar to springy which returns two arrays iter and e, each of length
n+1. The array iter should contain the iteration number, and the array e the absolute error at each iteration.
Some sample code is given below.
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function [iter,e] = springynorm(lambda, m, n)
% lambda: relative elasticity
% m: number of nodes
% n: number of iterations

b = (1:m+2)*0; % array of 0’s - downward forces
b(m/2)=1; % with 2 1’s in middle - vehicle wheels
x = (1:m+2)*0; % array of 0’s - initial heights

% iterate 200 times to get "true" solution
xx = jacobi(lambda, x, b, 200);

iter = [0:n]; % iteration number 0,1,2,...n
e(1) = norm(x-xx); % initial error

for k = 2:n+1
x = jacobi(lambda, x, b, 1);
e(k) = norm(x-xx);

end

Run your new function for 30 iterations and plot the results:

>> [iter, Jnorms] = springynorm(0.1, 50, 30);
>> plot(iter, Jnorms);

What is the convergence rate — the ratio ken+1k=kenk of successive values of absolute error — when
lambda=0.1 and m=50? You will find it more helpful to use a log-linear plot (matlab function semilogy). It
may also be useful to examine the numerical values of the array Jnorms.

C. Gauss-Seidel

Write a replacement for the function jacobi, called GS, that applies the Gauss-Seidel algorithm to the same problem
of computing deformation under load. Use the function jacobi as a starting point and

� change the function name (obviously to GS);

� change the line anew(j) = ... (see preparation, section C);

� save the new function in a file called GS.m.

Alter your function springynorm to use GS in place of jacobi. A good way to do this is to “comment out” the
relevant line in your function and replace it with the new line.

% x = jacobi(lambda, x, b, 1);
x = GS(lambda, x, b, 1);

That way you can easily switch between the two algorithms.
Using your program, create arrays iter, Jnorms and GSnorms such that you can plot the convergence of

both the Jacobi and Gauss-Seidel algorithms, for parameter values lambda=0.1 and m=50, over 30 iterations.

Generate (and record in your log-book) the plots, all on one set of log-linear axes as follows.

semilogy(iter, Jnorms, ’r’, iter, GSnorms, ’g’)

Compute the rate of convergence for the two algorithms when lambda=0.1,0.2. Compute the square root
of the convergence rate for GS and compare to the convergence rate of the Jacobi algorithm. What do you notice
(and why)?
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D. Automatic termination of iteration (optional)

By monitoring the rate at which the relative error

Æ(n) = x(n+ 1)� x(n)

decreases, it should be possible to terminate the Gauss-Seidel algorithm automatically when the solution is accurate
to within a chosen precision p. Clearly this is desirable — no user of computer code wants to have to say how
many iterations should be used; instead, the required precision is a sensible thing to be asked to specify. The steps
in deciding when to terminate are:

1. Estimate the asymptotic convergence ratio � = limn!1 �n where �n = kÆn+1k=kÆnk.

2. Use � to estimate the norm of the absolute error en. To do this, use the fact that

�en = Æn + Æn+1 + : : :

so that, by the triangle inequality for norms,

kenk � kÆnk+ kÆn+1k+ : : : = kÆnk(1 + �n + �n�n+1 + : : : )

and approximating �n � �,

kenk � kÆnk(1 + �+ �
2 + : : : ):

3. Terminate the algorithm when the average error kenk=
p
m is less than p (Why the factor of

p
m?)

Now write a new function GSauto that terminates automatically. A skeleton is given below:

function anew = GSauto(lambda,b,p);

m = length(b) - 2; % no of nodes, excl. bdys
a = (1:m+2)*0; % starting solution all zeros
anew = a;
alpha = 0;
err = 1+p; % ensure first time through loop happens

for j = 2:m+1 % interior of array, missing boundaries
anew(j) = (anew(j-1) + a(j+1) - b(j))/(2 + lambda);

end
delta = ???;
a = anew;

while err > p,
for j = 2:m+1 % interior of array, missing boundaries

anew(j) = (anew(j-1) + a(j+1) - b(j))/(2 + lambda);
end
deltanew = ???;
alpha = ???;
err = ???;

a = anew;
delta = deltanew;

end

Call your function appropriately and plot the results.
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