Computational Geometry

4 Lectures Michaelmas Term 2003
1 Tutorial Sheet Dr ID Reid
Overview

Computational geometry is concerned with efficient algorithms and representa-
tions for geometric computation.

Techniques from computational geometry are used in:

e Computer Graphics
e Computer Vision
e Computer Aided Design

e Robotics

Topics 0.1

e Lecture 1: Euclidean, similarity, affine and projective transformations. Homo-
geneous coordinates and matrices. Coordinate frames. Perspective projection
and its matrix representation.

e Lecture 2: Perspective projection and its matrix representation. Vanishing points.
Applications of projective transformations.

e Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and
quadrics, implicit and parametric forms, computation of intersections.

e Lecture 4: Bezier curves, B-splines. Tensor-product surfaces.



Useful Texts 0.2

e Bartels, Beatty and Barsky, “An introduction to splines for use in computer graphics and
geometric modeling”, Morgan Kaufmann, 1987. Everything you could want to know about
splines.

e Faux and Pratt, “Computational geometry for design and manufacture”, Ellis Horwood,
1979. Good on curves and transformations.

e Farin, “Curves and Surfaces for Computer-Aided Geometric Design : A Practical Guide”,
Academic Press, 1996.

e Foley, van Dam, Feiner and Hughes, “Computer graphics - principles and practice”, Addi-
son Wesley, second edition, 1995. The computer graphics book. Covers curves and surfaces
well.

e Hartley and Zisserman “Multiple View Geometry in Computer Vision”, CUP, 2000. Chapter
1is a good introduction to projective geometry.

e O’Rourke, “Computational geometry in C”, CUP, 1998. Very straightforward to read, many
examples. Highly recommended.

e Preparata and Shamos, “Computational geometry, an introduction”, Springer-Verlag, 1985.
Very formal and complete for particular algorithms.

Example I: Virtual Reality Models from Images 0.3

Input: Four overlapping aerial images of the same urban scene




1: Transformations, Homogeneous
Coordinates, and Coordinate Frames

Topics 1.1

e Lecture 1: Euclidean, similarity, affine and projective transformations. Ho-
mogeneous coordinates and matrices. Coordinate frames.

e Lecture 2: Perspective projection and its matrix representation. Vanishing
points. Applications of projective transformations.

e Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and
quadrics, implicit and parametric forms, computation of intersections.

e Lecture 4: Bezier curves, B-splines. Tensor-product surfaces.



Hierarchy of transformations 1.2

We will look at linear transformations represented by matrices
of increasing generality:

¢ Euclidean — Similarity — Affine — projective.

Consider both

¢ 2D — 2D mappings (“plane to plane”); and
¢ 3D — 3D transformations

as well as

e 3D — 2D mappings (“projections”)

Class I: Euclidean transformations: translation & rotation 1.3

1. Translation — 2 dof in 2D

(v)-(0)+ (%) A

O X
y
2. Rotation — 1 dof in 2D 0
'\ | cos§ —sinf T
y" ) | sinf cos#@ y 0
-
O X

In vector notation, a Euclidean transformation is written
x =Rx +t

where R is the orthogonal rotation matrix, RR" = I, and x’ etc are column vectors.



Build transformations in steps ... 14

Often useful to introduce intermediate coordinate frames.
Example: Object model described in body-centered coord frame. Pose (6,t) of
model frame given w.r.t. world coord frame. Where is xp in the world?

Y

y WAk Y. Y,
B Model B AA
e B
e N ) e
—————— >
n
XB / -
*w

( cosf —sinf )
Xgq = XpB

sinf cosf

Check the above using the point (1, 0). It should be (+ cos 6, + sin #) in the A frame.
Xw = XA + tOrigin of Bin W

Check the above using the origin of A. It should be topw in W frame ...



In3D... 1.5

In 3D the transformation X’ = R3.3X + T has 6 dof.

Two major ways of defining 3D rotation:

(i) rotation about successive new axes: eg YXY pan-tilt-verge, or XYZ tilt-pan-
cyclorotation

(ii) rotation about “old fixed axes”: eg ZXY roll-pitch-yaw

In each case the order is important, as rotations do not commute.

[ cosp —sinp 0]
Xw = sinp cosp O
| 0 0 1]
[ cose 0 —sine |
X; = 0 1 0
| sine 0 cose |
1 0 0 ]
Xy = 0 cosc —sinc
| 0 sinc cosc |

Rotation about an axis 1.6

The rotation matrix corresponding to a rotation of an angle 6 about an axis with
unit length a = [a,, a,, a,]" is given by:

[ cosf + (1 —cosf)a2 (1 —cosh)aza, —sinfa, (1— cosh)aza, + sin Qay-|
R= |(1—cosf)asa, +sinfa, cosf+ (1—cosb)a; (1 —cosh)aya, — sinba,
[(1 — cosb)aza, —sinfa, (1—cosf)a,a,+sinfa, cosf+ (1 —cosh)a? J

Conversely, for a given rotation matrix R, the direction of the axis is given by the
eqigenvector corresponding to the unit eigenvalue, and the angle by the solution
to trace(R) = 2cosf + 1.



Rotation example

1.7

Consider a pan-tilt device:




Rotation example: successive new axes 1.8

1. Tilt: rotate by angle ¢ about z-axis

1 0 0
Rpy = |0 cost —sint
0 sint cost

2. Pan: rotate by angle p about new y-axis

¥ = R,(t)y = [0, cost,sint]”

cos p —sinpsint sinpcost
Ry = R, = | sinpsint cosp+ (1 —cosp)cos’t (1 — cosp)costsint
—sinpcost (1 —cosp)costsint cosp+ (1 — cosp)sint?

Hence
cos p 0 sinp

Rop = Ro1Rip = | sintsinp cost —sintcosp
—costsinp sint costcosp



Rotation example: fixed axes

A little thought suggests an alternative derivation of Ryp.
Start at the end of the kinematic chain when all axes in their rest positions.

Now

1. Rotate pan axis around fixed y-axis

cosp 0 sinp
0 1 0
—sinp 0 cosp

2. Rotate tilt axis around z-axis which was unaffected by previous rotation

1 0 0
0 cost —sint
0 sint cost

Yielding
1 0 0 cosp 0 sinp cos p 0 sin p
0 cost —sint 0 1 0 = | sintsinp cost —sintcosp
0 sint cost —sinp 0 cosp —costsinp sint costcosp
as before.



Class II: Similarity transformations 1.10

A Euclidean transformation is an isometry — an action that preserves lengths
and angles.

An Isometry composed with isotropic scaling, s is called a similarity transforma-
tion.

A similarity — 4 degrees of freedom in 2D

x' = sRx + t —

A similarity
— preserves ratios of lengths, ratios of

areas, and angles.
— is the most general transformation
that preserves “shape”.

Class III: Affine transformations 1.11

An affine transformation (6 degrees of freedom in 2D)
— is a non-singular linear transformation followed by a translation:

()= 1G5

with A a 2 X 2 non-singular matrix.

In vector form:
x' =Ax+t

e Angles and length ratios are not preserved.

¢ How many points required to determine an affine transform in 2D?

10



Examples of affine transformation 1.12

1. Both the previous classes: Euclidean, similarity.

2. Scalings in the = and y directions

A:[/g ;?2] ©—><>

This is non-isotropic if p; # .

3. A a symmetric matrix.
Then A can be decomposed as: it's an eigen-decomposition

cos 0 —sin@] [)\1 0 ][ cos 6 sin@]

_ T _
A=RDR = [sin@ cos @ 0 X —sinf cosf

where \; and ), are its eigenvalues. i.e. scalings in two dirns rotated by 6.

Affine transformations map parallel lines to parallel lines 1.13

It is always useful to think what is preserved in a transformation ...

xa(A) = a+)\d
XB()\) = b-|—,Ud

X = Ax+t

xy(A) = A(a+ M) +t=(Aa+t)+ A(Ad)
= a' + \d

xg(e) = A(b+ pud)+t = (Ab+t) + p(Ad)
— b,+/1:dl

Lines are still parallel — they both have direction d’.

Affine transformations also preserve ...

11



Homogeneous notation — motivation 1.14

If the translation t is zero, then transformations can be concatenated by simple
matrix multiplication:

X1 = A1X and X9 = A2X1 THEN X9 = A2A1X

However, if the translation is non-zero it becomes a mess

x; = Aix+ 1ty

Xo = Agxy + 1t

Ag(A1x + t1) + to
(Agh1)x + (Agty + t2)

Homogeneous notation 1.15
i T

If 2D points ( y ) are represented by a three vector | y | then the transforma-
1

tion can be represented by a 3 x 3 matrix with block form:

a;n a2 : iy T
X, . At X o as1 a99 ty Y . Ax+t
1) |07 1 1) | .- 1
0 0 o1 |\

Transformations can now ALWAYS be concatenated by matrix multiplication
X1 . [ Al tl ] X . A1X+t1
1)~ |om 1|\1)~ 1
X9 . [ A2 tg ] X1 . AQ tg Al tl X
1)~ [oT 1|\ 1) [o" 1]|lo" 1]\1

. [ AoA; Aoty + to ] ( X ) . ( (AQAl)X + (Aztl + tg) )
o' N

1 1 1

12



Homogeneous notation — definition 1.16

x = (z,y)" is represented in homogeneous coordinates by any 3-vector

I
T2
T3

such that
T =u1x1/T3 Y=T2/%3

So the following homogeneous vectors represent the same point for any A # 0.

I1 /\ZEl
T9 and AT
I3 )\1173

For example, the homogeneous vectors (2,3,1)" and (4,6,2)"
represent the same inhomogeneous point (2,3)"

Homogeneous notation — rules for use 1.17

Then the rules for using homogeneous coordinates for transformations are

1. Convert the inhomogeneous point to

an homogeneous vector: NB the matrix needs only to be defined
up to scale.
( T ) z For example
— | Y
Y 1

101 2 0 2
020 and 040
2. Apply the 3 x 3 matrix transformation. 00 1 00 2

3. Dehomogenise the resulting vector:
represent the same 2D affine transforma-

I 1/ tion
1/%3 ,
T2 | — < ) Think about degrees of freedom ...

3 332/333

13



Homogeneous notation for R? 1.18

A point
X
X=1Y
7

is represented by a homogeneous 4-vector:

X1
Xy
X3
X4
such that X X x
x = 21 y — 22 7 23
X4 X4 X4
Example: The Euclidean transformation in 3D 1.19
X'=RX+T

where R is a 3 X 3 rotation matrix, and T a translation 3-vector, is represented as

X X
X} _[R T] Y _[R T](X)
X3 o' 1],.,| ~Z 0" 1 1
X} 1
with
X' L (X
X'=|Y = 57 X}
A 4\ X}

14



Application to coordinate frames: Example - stereo camera rig 1.20

- T O+ 1)

Application to coordinate frames: Example - Puma robot arm 1.21

Base Frame Tool Frame /

Kinematic chain:
Xr\  [Rre Tre R32 0| | Roy Tor | | Rip Tim Xg
1 N I 0" 1 B I R | 0" 1 0" 1 1

[0

15




A note on the inverse ... 1.22

-1
Rap Tam _ Rpa Tga
0" 1 0" 1

Now,
Rpa = Rjp
but what is Tga?

Tempting to say —Tap, but no.

X4 = RupXp+ Tap (Originof Bin A)
= Xp Rpa(X4 — Tug)
= Xp = RpaX4—RpsTup
BUT Xgp = RpuX4+ Tpa (OriginofAin B)
= Tpa = —RpaTup

Class IV: Projective transformations 1.23

A projective transformation is a linear transformation on homogeneous n-vectors

represented by a non-singular n X n matrix.
2D — plane to plane

!
T hi1 hi2 his T1
!
xy | = | hor hoa hos T3
!
5 hs1 hsa2 hss 3

e Note the difference from an affine transformation is only in the first two ele-
ments of the last row.

¢ In inhomogeneous (normal) notation, a projective transformation is a non-
linear map
, _xy  hum A4 hioy + s , Ty hoix + hooy + hag

r = — = ) _ —
zs  hziz + hsay + hss Y zs  hsiz + hsay + hss

e The 3 x 3 matrix has 8 dof ...

16



Class I'V: 3D-3D Projective transformations 1.24

3D
X1 [pn P12 P13 p14-| X1
Xy | _ | P21 P22 P23 P X
X3 {Psl D32 P33 p34‘ X3
Xy D4l P42 D43 Paa X4

e The 4 x 4 matrix has 15 dof ...

Perspective projection is a subclass of projective transformation
1.25

17



Perspective (central) projection — 3D to 2D 1.26

The camera model Mathematical ideal-
ized camera 3D — 2D

¢ Image coordinates zy

e Camera frame XY Z (origin at optical

centre)
e Focal length f, image plane is at Z =
f.
Similar triangles
r X y Y
77 f-z Xy

where x and X are 3-vectors, with
x=(z,y,f)", X=(X,Y,2)".

AY

O

‘-«  Image
plane

ISR

Examples 1.27
1. Circle in space, orthogonal to and centred on the Z-axis:
Y
« X(0) = (acosb,asinf,Z)"
T/ x(0) = (& cos 0,&311&0, N’
i a Z Z
i B A
e = (z,y) = = (cosf,sinb)
Z

2. Now move circle in X direction:
X1(0) = (acosf + Xg,asinb, Z)"

Image is a circle of radius fa/Z
— inverse distance scaling

Exercise What happens to the image? Is it still a circle? Is it larger or smaller?

18



Examples ctd/ 1.28

3. Sphere concentric with Z-axis:

grazing
rays

Intersection of cone with image plane is a circle.

Exercise Now move sphere in the X direction. What happens to the image?

The Homogeneous 3 x 4 Projection Matrix 1.29

X

Choose f = 1 from now on.

Homogeneous image coordinates (z1, z2, x3) " correctly represent x = X/Z if

1 [IOOO-I ‘;( X
m | =10100(]| :[1|0]<1>
T3 [0010J
1
because then
I X T2 Y
r=— =2 =_

T3 - ? v= T3 N Z
Then perspective projection is a linear map, represented by a 3 x 4 projection
matrix, from 3D to 2D.

19



Example: a 3D point 1.30

X 6
Non-homogeneous | Y | = | 4 | isimaged at (z,y) = (6/2,4/2) = (3, 2).
Z 2

In homogeneous notation using 3 x 4 projection matrix:

AT 1 1000 i 6
Ay | =12 |=([0100 5 | = 4
A z3 0010 1 2
which is the 2D inhomogeneous point (z,y) = (3, 2).
Supppose scene is describe in a World coord frame 1.31

The Euclidean transformation between the camera and world coordinate frames
is X¢g =RXw + T:

()=l 110

Concatenating the two matrices ...

1 1000
AR HIEHICORTELIRTES
T3 0010

which defines the 3 x 4 projection matrix P = [R| T] from a Euclidean World
coordinate frame to an image.

20



Suppose scene is described as set of Objects and Poses ... 1.32

¢ Now each 3D object O is described in it own Object frame ...
e Each Object frame is given a Pose [R,, T,] relative to World frame ...

e Cameras are placed at [R., T] relative to world frame ...

x:\ _y 88 Re To]1 '[Re To] (X,
1) 10 o' 1 0" 1 1

¢ 3 X 3 matrix K. allows each camera to have a different focal length etc ...

O O =
O = O

¢ You can now do 3D computer graphics ...

Isn’t every projective transformation a perspective projection? 1.33

e A projective trans followed by a projective trans is a .........cccececeviiviiiniinnnnne,

e So a perspective trans followed by a perpspective transisa .........ccccecevveiiinininnnn.

T C
A
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