
Tutorial: Evolutionary
Submodular Optimisation

Presenters:
Aneta Neumann1, Frank Neumann1, Chao Qian2

1 Optimisation and Logistics, The University of Adelaide, Australia.
2 School of Artificial Intelligence, Nanjing University, China.

Our task:

Given a function
and “set of feasible solutions”

Find

General purpose algorithms that can be applied without problem
knowledge

f : X ! R

D ✓ X

argmaxx2D f(x)

Why General Purpose Algorithms?
• Algorithms are the heart of every nontrivial computer

application.
• For many problems we know good or optimal

algorithms
– Sorting
– Shortest paths
– Minimum spanning trees

• What about a new or complex problems?
• Often there are no good problem specific algorithms.

Points that may rule out problem specific algorithms
• Problems that are rarely understood.
• Quality of solutions is determined by simulations.
• Problem falls into the black box scenario.

• Not enough resources such as time, money,
knowledge.

General purpose algorithms are often a good
choice.

x f (x)

General purpose algorithms for
optimizing a function

1. Choose a representation for the elements in
X.

2. Fix a function to evaluate the quality.
(might be different from f)

3. Define operators that produce new
elements.

f : X ! R

Evolutionary algorithms (EAs)
• Evolutionary algorithms are general purpose

algorithms.
• follow Darwin's principle (survival of the fittest).
• work with a set of solutions called population.
• parent population produces offspring population by

variation operators (mutation, crossover).
• select individuals from the parents and children to

create new parent population.
• Iterate the process until a “good solution” has

been found.
• EAs are adaptive and often yield good solutions for

complex, dynamic and/or stochastic problems

Motivation
• Want to understand a wide class of

problems that evolutionary algorithms can
solve or approximate well.

• Consider submodular functions which
allow to model a wide range of important
optimisation problems.

• Submodular functions can be considered
as the discrete counterpart of convexity in
the continuous domain (Lovasz, 1983).

Submodular Functions
• Let X={x1, …., xn} be a ground set

• Alternative definition of submodularity:

Maximizing submodular functions is NP-hard and
also NP-hard to approximate.

Important subclasses:

2

polynomial time [17]. On the other hand, submodular function maximization is
NP-hard as it generalizes many NP-hard combinatorial optimization problems,
like maximum cut [9, 13], maximum directed cut [14], maximum facility loca-
tion [1, 6], and several restricted satisfiability problems [9, 16]. As evolutionary
algorithms are especially useful for hard problems, we focus on the maximization
of submodular functions.

More formally, we consider the optimization problem max{f(S) : S ∈ I},
where X is an arbitrary ground set, f : 2X → R is a fitness function, and I ⊆ 2X

a collection of independent sets describing the feasible region of the problem. As
usual, we assume value oracle access to the fitness function; i.e., for a given
set S, an algorithm can query an oracle to find its value f(S). We also always
assume that the fitness function is normalized, i.e., f(∅) = 0, and non-negative,
i.e., f(A) ≥ 0 for all A ⊆ X. We will study the following variants of f and I:
• Submodular functions: A function f is submodular iff f(A∪B)+f(A∩B) ≤
f(A) + f(B) for all A,B ⊆ X.

• Monotone functions: A function is monotone iff f(A) ≤ f(B) for all A ⊆ B.
• Matroid: A matroid is a pair (X, I) composed of a ground set X and a non-
empty collection I of subsets of X satisfying (1) If A ∈ I and B ⊆ A then
B ∈ I and (2) If A,B ∈ I and |A| > |B| then B+x ∈ I for some x ∈ A \B.
The sets in I are called independent, the rank of a matroid is the size of any
maximal independent set.

• Uniform matroid: A uniform matroid (X, I) of rank k ∈ N contains all
subsets of size at most k, i.e., I = {A ⊆ X : |A| ≤ k}.

• Partition matroid: A partition matroid is a matroid formed from a direct
sum of uniform matroids, i.e., if the universe X is partitioned into k parts
X1, . . . , Xk, then in a partition matroid a set is independent if it contains at
most one element from each part.

• Intersection of k matroids: Given k matroids M1 = (X, I1) , M=(X, I2), . . . ,
Mk = (X, Ik) on the same ground set X, the intersection of these matroids is
the matroid (X, I) with I = {A ⊆ X | A ∈ Ii, 1 ≤ i ≤ k}. A simple example
for k = 2 is the family of matchings in a bipartite graph; or in general the
family of hypergraph matchings in a k-partite hypergraph.

Maximizing submodular functions is not only NP-hard, but also NP-hard to
approximate. We therefore also have to formalize the notion of an approximation
algorithm. We say an algorithm achieves an α-approximation if for all instances
of the considered maximization problem, the output returned by the algorithm
is at least α times the optimal value.

Our results. Optimizing single objective optimization problems by multi-
objective approaches such as the global simple evolutionary multiobjective opti-
mizer (GSEMO) has already been shown to be beneficial for many combinatorial
optimization problems [10, 19, 26]. We study GSEMO and prove the following
statements.

• Based on the seminal work of Nemhauser, Wolsey, and Fisher [24], we show
that GSEMO achieves in polynomial time a 1−1/e-approximation for maxi-
mizing monotone submodular functions under a uniform matroid constraint.

1 Introduction

We consider the problem of maximizing a nonnegative submodular function. This means, given a sub-
modular function f : 2X ! R+, we want to find a set S ✓ X maximizing f(S).

Definition 1.1. A function f : 2X ! R is submodular if for any S, T ✓ X,

f(S [T) + f(S \ T)  f(S) + f(T).

An alternative definition of submodularity is the property of decreasing marginal values: For any
A ✓ B ✓ X and x 2 X \B, f(B [{x})� f(B)  f(A[{x})� f(A). This can be deduced from the first
definition by substituting S = A [{x} and T = B; the reverse implication also holds.

We assume value oracle access to the submodular function; i.e., for a given set S, an algorithm can
query an oracle to find its value f(S).

Background. Submodularity, a discrete analog of convexity, has played an essential role in combina-
torial optimization [35]. It appears in many important settings including cuts in graphs [21, 42, 18], rank
function of matroids [10, 19], set covering problems [12], and plant location problems [8, 9]. In many
settings such as set covering or matroid optimization, the relevant submodular functions are monotone,
meaning that f(S)  f(T) whenever S ✓ T . Here, we are more interested in the general case where f(S)
is not necessarily monotone. A canonical example of such a submodular function is f(S) =

P
e2�(S) w(e),

where �(S) is a cut in a graph (or hypergraph) induced by a set of vertices S and w(e) is the weight
of edge e. Cuts in undirected graphs and hypergraphs yield symmetric submodular functions, satisfying
f(S) = f(S̄) for all sets S. Symmetric submodular functions have been considered widely in the litera-
ture [17, 42]. It appears that symmetry allows better/simpler approximation results, and thus deserves
separate attention.

The problem of maximizing a submodular function is of central importance, with special cases includ-
ing Max Cut [21], Max Directed Cut [26], hypergraph cut problems, maximum facility location [1, 8, 9],
and certain restricted satisfiability problems [27, 11]. While the Min Cut problem in graphs is a classical
polynomial-time solvable problem, and more generally it has been shown that any submodular function
can be minimized in polynomial time [45, 18], maximization turns out to be more di�cult and indeed all
the aforementioned special cases are NP-hard.

A related problem is Max-k-Cover, where the goal is to choose k sets whose union is as large as
possible. It is known that a greedy algorithm provides a (1 � 1/e)-approximation for Max-k-Cover and
this is optimal unless P = NP [12]. More generally, this problem can be viewed as maximization of a
monotone submodular function under a cardinality constraint, i.e. max{f(S) : |S|  k}, assuming f

submodular and 0  f(S)  f(T) whenever S ✓ T . Again, the greedy algorithm provides a (1 � 1/e)-
approximation for this problem [39] and this is optimal in the oracle model [40]. More generally, a
(1 � 1/e)-approximation can be achieved for monotone submodular maximization under a knapsack
constraint [46]. For the problem of maximizing a monotone submodular function subject to a matroid
constraint, the greedy algorithm gives only a 1

2 -approximation [16]. Recently, this has been improved to
an optimal (1� 1/e)-approximation using the multilinear extension of a submodular function [49, 6].

In contrast, here we consider the unconstrained maximization of a submodular function which is
not necessarily monotone. We only assume that the function is nonnegative.1 Typical examples of
such a problem are Max Cut and Max Directed Cut. Here, the best approximation factors have been
achieved using semidefinite programming: 0.878 for Max Cut [21] and 0.874 for Max Di-Cut [11, 31]. The
approximation factor for Max Cut has been proved optimal, assuming the Unique Games Conjecture [29,
38]. Without the use of semidefinite programming, only 1

2 -approximation for Max Cut was known for a
long time. For Max Di-Cut, a combinatorial 1

2 -approximation was presented in [26]. Recently, Trevisan
gave a 0.53-approximation algorithm for Max Cut using a spectral partitioning method [48].

1
For submodular functions without any restrictions, verifying whether the maximum of the function is greater than zero

is NP-hard and requires exponentially many queries in the value oracle model. Thus, no e�cient approximation algorithm

can be found for general submodular maximization. For a general submodular function f with minimum value f0, we can

design an approximation algorithm to maximize a normalized submodular function g where g(S) = f(S)� f0.

1

2

polynomial time [17]. On the other hand, submodular function maximization is
NP-hard as it generalizes many NP-hard combinatorial optimization problems,
like maximum cut [9, 13], maximum directed cut [14], maximum facility loca-
tion [1, 6], and several restricted satisfiability problems [9, 16]. As evolutionary
algorithms are especially useful for hard problems, we focus on the maximization
of submodular functions.

More formally, we consider the optimization problem max{f(S) : S ∈ I},
where X is an arbitrary ground set, f : 2X → R is a fitness function, and I ⊆ 2X

a collection of independent sets describing the feasible region of the problem. As
usual, we assume value oracle access to the fitness function; i.e., for a given
set S, an algorithm can query an oracle to find its value f(S). We also always
assume that the fitness function is normalized, i.e., f(∅) = 0, and non-negative,
i.e., f(A) ≥ 0 for all A ⊆ X. We will study the following variants of f and I:
• Submodular functions: A function f is submodular iff f(A∪B)+f(A∩B) ≤
f(A) + f(B) for all A,B ⊆ X.

• Monotone functions: A function is monotone iff f(A) ≤ f(B) for all A ⊆ B.
• Matroid: A matroid is a pair (X, I) composed of a ground set X and a non-
empty collection I of subsets of X satisfying (1) If A ∈ I and B ⊆ A then
B ∈ I and (2) If A,B ∈ I and |A| > |B| then B+x ∈ I for some x ∈ A \B.
The sets in I are called independent, the rank of a matroid is the size of any
maximal independent set.

• Uniform matroid: A uniform matroid (X, I) of rank k ∈ N contains all
subsets of size at most k, i.e., I = {A ⊆ X : |A| ≤ k}.

• Partition matroid: A partition matroid is a matroid formed from a direct
sum of uniform matroids, i.e., if the universe X is partitioned into k parts
X1, . . . , Xk, then in a partition matroid a set is independent if it contains at
most one element from each part.

• Intersection of k matroids: Given k matroids M1 = (X, I1) , M=(X, I2), . . . ,
Mk = (X, Ik) on the same ground set X, the intersection of these matroids is
the matroid (X, I) with I = {A ⊆ X | A ∈ Ii, 1 ≤ i ≤ k}. A simple example
for k = 2 is the family of matchings in a bipartite graph; or in general the
family of hypergraph matchings in a k-partite hypergraph.

Maximizing submodular functions is not only NP-hard, but also NP-hard to
approximate. We therefore also have to formalize the notion of an approximation
algorithm. We say an algorithm achieves an α-approximation if for all instances
of the considered maximization problem, the output returned by the algorithm
is at least α times the optimal value.

Our results. Optimizing single objective optimization problems by multi-
objective approaches such as the global simple evolutionary multiobjective opti-
mizer (GSEMO) has already been shown to be beneficial for many combinatorial
optimization problems [10, 19, 26]. We study GSEMO and prove the following
statements.

• Based on the seminal work of Nemhauser, Wolsey, and Fisher [24], we show
that GSEMO achieves in polynomial time a 1−1/e-approximation for maxi-
mizing monotone submodular functions under a uniform matroid constraint.

3

This approximation factor is optimal in the general setting [25], and it is
optimal even for the special case of Max-k-cover, unless P = NP [8].

• Based on the more recent work of Lee, Mirrokni, Nagarajan, and Sviridenko
[21], we show that GSEMO achieves in polynomial time a 1/((k+2)(1+ε))-
approximation for maximizing symmetric submodular functions over k ma-
troid constraints. Note that this result even holds for non-monotone func-
tions.

Outline. The paper is organized as follows. In Section 2, we describe the setting
for submodular functions and introduce the algorithm that is subject to our
investigations. We analyze the algorithm on monotone submodular functions
with a uniform constraint in Section 3 and consider the case of non-monotane
submodular functions under matroid constraints in Section 4. Finally, we finish
with a discussion on open problems in Section 5.

2 Preliminaries

Optimization of submodular functions and matroids have received a lot of atten-
tion in the classical (non-evolutionary) optimization community. For a detailed
exposition, we refer to the textbooks of Schrijver [28] and Korte and Vygen [18].

Submodular Functions.When optimizing a submodular function f : 2X →
R, we will often consider the incremental value of adding a single element. For
this, we denote by FA(i) = f(A+ i)− f(A) the marginal value of i with respect
to A. Nemhauser et al. [24, Proposition 2.1] give seven equivalent definitions for
submodular functions. Additionally to the definition stated in the introduction
we will also use that a function f is submodular iff Fi(A) ≥ Fi(B) for all A ⊆
B ⊆ X and i ∈ X \B. We call f symmetric iff f(A) = f(X \A) for all A ⊆ X.

Many common pseudo-Boolean and combinatorial fitness functions are sub-
modular. As we are not aware of any general results for the optimization of
submodular function by evolutionary algorithms, we list a few examples of well-
known submodular functions:

• Linear functions: All linear functions f : 2X → R with f(A) =
∑

i∈A wi for
some weights w : X → R are submodular. If wi ≥ 0 for all i ∈ X, then f is
also monotone.

• Cut: Given a graph G = (V,E) with nonnegative edge weights w : E → R≥0.
Let δ(S) be the set of all edges that contain both a vertex in S and V \ S.
The cut function w(δ(S)) is symmetric and submodular but not monotone.

• Coverage: Let the ground set be X = {1, 2, . . . , n}. Given a universe U with
n subsets Ai ⊆ U for i ∈ X, and a non-negative weight function w : U →
R≥0. The coverage function f : 2X → R with f(S) = |

⋃
i∈S Ai| and the

weighted coverage function f ′ with f ′(S) = w(
⋃

i∈S Ai) =
∑

u∈
⋃

i∈S Ai
w(u)

are monotone submodular.
• Rank of a matroid: The rank function r(A) = max{|S| : S ⊆ A,S ∈ I} of a
matroid (X, I) is monotone submodular.

Example: Sensor placement
Cover the largest possible area by selecting
k sensors:

Example: Sensor placement
Cover the largest possible area by selecting
k sensors:

Example Max Cut
• Given an undirected graph G=(V, E), find a

partitioning of the vertices such that the
number of edges crossing the two partitions
is maximal.

• A is a set of nodes chosen for the first
partition. Function f(A) counts the number of
edges between A and V \ A.

• f is symmetric, submodular, but not
monotone.

Matroids

Example:
• For given graph G=(V,E), M=(E, F) where F is the set of

all forests (subset of edges not containing cycles) is a
matroid. Maximal independent sets are spanning trees
(rank n-1).

• Given X all subsets of cardinality at most k build the
uniform matroid.

A matroid is a pair (X, I) composed of a ground set X and a non-empty
collection I of subsets of X satisfying (1) If A 2 I and B ✓ A then B 2 I and
(2) If A,B 2 I and |A| > |B| then B + x 2 I for some x 2 A \ B. The sets
in I are called independent, the rank of a matroid is the size of any maximal
independent set.

Some Examples of Submodular
Functions

3

This approximation factor is optimal in the general setting [25], and it is
optimal even for the special case of Max-k-cover, unless P = NP [8].

• Based on the more recent work of Lee, Mirrokni, Nagarajan, and Sviridenko
[21], we show that GSEMO achieves in polynomial time a 1/((k+2)(1+ε))-
approximation for maximizing symmetric submodular functions over k ma-
troid constraints. Note that this result even holds for non-monotone func-
tions.

Outline. The paper is organized as follows. In Section 2, we describe the setting
for submodular functions and introduce the algorithm that is subject to our
investigations. We analyze the algorithm on monotone submodular functions
with a uniform constraint in Section 3 and consider the case of non-monotane
submodular functions under matroid constraints in Section 4. Finally, we finish
with a discussion on open problems in Section 5.

2 Preliminaries

Optimization of submodular functions and matroids have received a lot of atten-
tion in the classical (non-evolutionary) optimization community. For a detailed
exposition, we refer to the textbooks of Schrijver [28] and Korte and Vygen [18].

Submodular Functions.When optimizing a submodular function f : 2X →
R, we will often consider the incremental value of adding a single element. For
this, we denote by FA(i) = f(A+ i)− f(A) the marginal value of i with respect
to A. Nemhauser et al. [24, Proposition 2.1] give seven equivalent definitions for
submodular functions. Additionally to the definition stated in the introduction
we will also use that a function f is submodular iff Fi(A) ≥ Fi(B) for all A ⊆
B ⊆ X and i ∈ X \B. We call f symmetric iff f(A) = f(X \A) for all A ⊆ X.

Many common pseudo-Boolean and combinatorial fitness functions are sub-
modular. As we are not aware of any general results for the optimization of
submodular function by evolutionary algorithms, we list a few examples of well-
known submodular functions:

• Linear functions: All linear functions f : 2X → R with f(A) =
∑

i∈A wi for
some weights w : X → R are submodular. If wi ≥ 0 for all i ∈ X, then f is
also monotone.

• Cut: Given a graph G = (V,E) with nonnegative edge weights w : E → R≥0.
Let δ(S) be the set of all edges that contain both a vertex in S and V \ S.
The cut function w(δ(S)) is symmetric and submodular but not monotone.

• Coverage: Let the ground set be X = {1, 2, . . . , n}. Given a universe U with
n subsets Ai ⊆ U for i ∈ X, and a non-negative weight function w : U →
R≥0. The coverage function f : 2X → R with f(S) = |

⋃
i∈S Ai| and the

weighted coverage function f ′ with f ′(S) = w(
⋃

i∈S Ai) =
∑

u∈
⋃

i∈S Ai
w(u)

are monotone submodular.
• Rank of a matroid: The rank function r(A) = max{|S| : S ⊆ A,S ∈ I} of a
matroid (X, I) is monotone submodular.

Submodular Optimisation
Research in this area can be characterized by
the type of
• Functions to be optimized
– Submodular / close to submodular
– monotone / non-monotone
– Additional function characteristics

• Types of constraints
– Uniform, linear constraints
– General cost constraints
– Matroid / partition constraints.
– Other types of constraints

Bi-objective approach / Pareto
Optimisation

B Cost value

Function value
Bi-objective approach
using multi-objective
EAs enables greedy
behavior, local search
and benefit of
interactions between
trade-offs solutions

Theory: Greedy
behavior allows to
obtain approximation
results

Practice: Benefit of
evolution leads to
high performance in
practice

Constraint bound

GSEMO
• Given submodular function f, solutions are encoded as bitstrings

of length n.

• Maximize bi-objective function g(x)=(z(x), |x|0), where z(x)=f(x) iff x
is feasible and z(x)=-1 otherwise

• Analyze expected time (number of fitness evaluations) to
obtain good approximations

5

Algorithm 1: GSEMO Algorithm

1 choose x ∈ {0, 1}n uniformly at random
2 determine g(x)
3 P ← {x}
4 repeat
5 choose x ∈ P uniformly at random
6 create x′ by flipping each bit xi of x with probability 1/n
7 determine g(x′)
8 if x′ is not strictly dominated by any other search point in P then
9 include x′ into P

10 delete all other solutions z ∈ P with g(z) ≤ g(x′) from P

11 until stop

Theorem 1. The expected time until GSEMO has obtained a (1 − 1
e)-

approximation for a monotone submodular function f under a uniform constraint
of size k is O(n2 (log n+ k)).

Proof. We first study the expected time until GSEMO has produced the solu-
tion 0n for the first time. This solution is Pareto optimal and will therefore stay
in the population after it has been produced for the first time. Furthermore, the
population size is upper bounded by n+1 as it contains for each i, 0 ≤ i ≤ n at
most one solution having exactly i 1-bits. The solution 0n is feasible and has the
maximum number of 0-bits. This implies that the population will not include
any infeasible solution to the submodular function f after having included 0n.

For this step, we consider in each iteration the individual y that has the
minimum number of 1-bit among all individuals in the population and denote
ℓ = |y|1 the number of 1-bits in this individual. Note, that ℓ can not increase
during the run of the algorithm. For 1 < ℓ ≤ n a solution y′ with |y′|1 = ℓ− 1 is
produced with probability at least ℓ/(en2) as y′ can be produced by selecting y
for mutation and flipping one of the ℓ 1-bits. The expected waiting time to
include the solution 0n for the first time into the population is therefore upper

bounded by
∑n

ℓ=1

(
ℓ

en2

)−1
= O(n2 log n).

For the remainder of the proof, we follow the ideas of the proof for the greedy
algorithm in Nemhauser et al. [24]. We show that GSEMO produces in expected
time O(n2k) for each 0 ≤ j ≤ k a solution Xj with

f(Xj) ≥
(
1−

(
1− 1

k

)j
)

· f(Opt), (1)

where f(Opt) denotes the value of a feasible optimal solution. Note, that a
solution is feasible iff it has at most k 1-bits. After having including the solution
0n into the population this is true for j = 0. The proof is done by induction.
Assume that GSEMO has already obtained a solution fulfilling Equation 1 for
each j, 0 ≤ j ≤ i < k. We claim that choosing the solution x ∈ P with |x|1 = i

Monotone submodular functions
under uniform constraint

A solution x is feasible iff its has at most k elements (1-
bits), i.e.

is the set of feasible solutions.

Result (Friedrich, Neumann (ECJ 2015)):
GSEMO achieves a (1-1/e)-approximation in expected time
O(n2(k + log n)).

F = {x | x 2 X ^ |x|1  k}

Proof Idea
• GSEMO obtains empty set in expected time O(n2log n).
• Afterwards mimics greedy approach (Nemhauser et al

1978) and obtains for each j, 0 ≤ j ≤ k, a solution Xj
with

where f(OPT) is value of feasible optimal solution.
Key induction argument:
– Assume that we already have

• Xk is (1-1/e)-approximation and obtained after O(n2k) steps.

5

Algorithm 1: GSEMO Algorithm

1 choose x ∈ {0, 1}n uniformly at random
2 determine g(x)
3 P ← {x}
4 repeat
5 choose x ∈ P uniformly at random
6 create x′ by flipping each bit xi of x with probability 1/n
7 determine g(x′)
8 if x′ is not strictly dominated by any other search point in P then
9 include x′ into P

10 delete all other solutions z ∈ P with g(z) ≤ g(x′) from P

11 until stop

Theorem 1. The expected time until GSEMO has obtained a (1 − 1
e)-

approximation for a monotone submodular function f under a uniform constraint
of size k is O(n2 (log n+ k)).

Proof. We first study the expected time until GSEMO has produced the solu-
tion 0n for the first time. This solution is Pareto optimal and will therefore stay
in the population after it has been produced for the first time. Furthermore, the
population size is upper bounded by n+1 as it contains for each i, 0 ≤ i ≤ n at
most one solution having exactly i 1-bits. The solution 0n is feasible and has the
maximum number of 0-bits. This implies that the population will not include
any infeasible solution to the submodular function f after having included 0n.

For this step, we consider in each iteration the individual y that has the
minimum number of 1-bit among all individuals in the population and denote
ℓ = |y|1 the number of 1-bits in this individual. Note, that ℓ can not increase
during the run of the algorithm. For 1 < ℓ ≤ n a solution y′ with |y′|1 = ℓ− 1 is
produced with probability at least ℓ/(en2) as y′ can be produced by selecting y
for mutation and flipping one of the ℓ 1-bits. The expected waiting time to
include the solution 0n for the first time into the population is therefore upper

bounded by
∑n

ℓ=1

(
ℓ

en2

)−1
= O(n2 log n).

For the remainder of the proof, we follow the ideas of the proof for the greedy
algorithm in Nemhauser et al. [24]. We show that GSEMO produces in expected
time O(n2k) for each 0 ≤ j ≤ k a solution Xj with

f(Xj) ≥
(
1−

(
1− 1

k

)j
)

· f(Opt), (1)

where f(Opt) denotes the value of a feasible optimal solution. Note, that a
solution is feasible iff it has at most k 1-bits. After having including the solution
0n into the population this is true for j = 0. The proof is done by induction.
Assume that GSEMO has already obtained a solution fulfilling Equation 1 for
each j, 0 ≤ j ≤ i < k. We claim that choosing the solution x ∈ P with |x|1 = i

Non-monotone symmetric
under Matroid Constraints

Given k matroids M1, …, Mk together with their independent
systems I1, …, Ik, we consider the problem

We assume that f is symmetric, submodular and non-negative,
but not necessarily monotone.

• For this setting, a local search capability is beneficial to
obtain good approximations.

• In particular, dependent on the number of matroids, a local
improvement in a neighborhood dependent on k can be
obtained if the current solution is not of sufficient quality (Lee
et al, STOC 2009).

max
n
f(x) | x 2 F :=

Tk
j=1 Ij

o
.

Non-monotone symmetric
under Matroid Constraints

Result (Friedrich, Neumann (ECJ 2015)):
GSEMO achieves a -approximation in expected time
Proof idea:
• In expected time O(n2log n), GSEMO produces the search point 0n.
• Introducing the element with the largest gain gives a solution of

quality at least OPT/n.
• Afterwards from the currently best feasible solution x, in expected

time O(nk+2) a solution y with f(y) ≥ (1 + ε/n4) · f(x) can be produced if
stated approximation guarantee has not yet been obtained.

• Total number of such local improvements required to obtain
approximation is at most

Remark: k=1 gives (1/(3(1+ε))-approximation for Max-Cut

⇣
1

(k+2)(1+✏)

⌘

Approximately Submodular Functions

Approximately submodular application

Sparse regression [Tropp, TIT’04]: given observation variables 𝑉 = {𝑣!, … , 𝑣"},
a predictor variable 𝑧 and a budget 𝐵, to find a subset 𝑋 ⊆ 𝑉 such that

𝑚𝑎𝑥#⊆% 	 𝑅&,#(=
Var 𝑧 − MSE&,#

Var 𝑧
	 𝑠. 𝑡. 	 𝑋 ≤ 𝐵

observation variables predictor
variable 𝑧

Var 𝑧 : variance of 𝑧 MSE!,#: mean squared error of predicting 𝑧
 by using observation variables in 𝑋

a subset 𝑋 of observation variables

𝑅!,#$: squared multiple correlation, which is approximately submodular

Submodular ratio

Submodular ratio [Das & Kempe, ICML’11; Zhang & Vorobeychi, AAAI’16] :

Submodular [Nemhauser et al., MP’78] :

∀𝑋 ⊆ 𝑌 ⊆ 𝑉, 𝑣 ∉ 𝑌:	 𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ≥ 𝑓 𝑌 ∪ 𝑣 − 𝑓 𝑌 ;

or ∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 	 𝑓 𝑌 − 𝑓 𝑋 ≤ ∑)∈+\- 𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋

𝛾.,/(𝑓) = 𝑚𝑖𝑛
#⊆.,	+: + 2/,	#∩+4∅

∑)∈+𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋
𝑓 𝑋 ∪ 𝑌 − 𝑓(𝑋)

𝛼6 = 𝑚𝑖𝑛
#⊆+,)∉+

𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋
𝑓 𝑌 ∪ 𝑣 − 𝑓(𝑌)

Characterize to what extent a set function 𝑓 satisfies the submodular property,
i.e., the degree of approximate submodularity
For example, when 𝑓 is monotone,
• 𝛼6 ∈ [0,1], the larger, more close to submodular
• 𝑓 is submodular if and only if 𝛼6 = 1

Submodular ratio

Submodular ratio [Das & Kempe, ICML’11; Zhang & Vorobeychi, AAAI’16] :

Submodular [Nemhauser et al., MP’78] :

∀𝑋 ⊆ 𝑌 ⊆ 𝑉, 𝑣 ∉ 𝑌:	 𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋 ≥ 𝑓 𝑌 ∪ 𝑣 − 𝑓 𝑌 ;

or ∀𝑋 ⊆ 𝑌 ⊆ 𝑉: 	 𝑓 𝑌 − 𝑓 𝑋 ≤ ∑)∈+\- 𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋

𝛾.,/(𝑓) = 𝑚𝑖𝑛
#⊆.,	+: + 2/,	#∩+4∅

∑)∈+𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋
𝑓 𝑋 ∪ 𝑌 − 𝑓(𝑋)

𝛼6 = 𝑚𝑖𝑛
#⊆+,)∉+

𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋
𝑓 𝑌 ∪ 𝑣 − 𝑓(𝑌)

For example, when 𝑓 is monotone,
• ∀𝑈, 𝑘: 𝛾.,/ 𝑓 ∈ [0,1], the larger, more close to submodular
• 𝑓 is submodular if and only if ∀𝑈, 𝑘: 𝛾.,/(𝑓) = 1

Characterize to what extent a set function 𝑓 satisfies the submodular property,
i.e., the degree of approximate submodularity

Submodular ratio

Submodular ratio [Das & Kempe, ICML’11; Zhang & Vorobeychi, AAAI’16] : characterize
to what extent a general set function satisfies the submodular property

𝛾%,&(𝑓) = 𝑚𝑖𝑛
#⊆%,):) +&,#∩)-∅

∑/∈)𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋
𝑓 𝑋 ∪ 𝑌 − 𝑓(𝑋)

𝛼1 = 𝑚𝑖𝑛
#⊆),/∉)

𝑓 𝑋 ∪ 𝑣 − 𝑓 𝑋
𝑓 𝑌 ∪ 𝑣 − 𝑓(𝑌)

• Sparse regression: 𝛾%,&(𝑓) ≥ 𝜆345(C, 𝑈 + 𝑘) [Das & Kempe, ICML’11]

• Sparse support selection: 𝛾%,&(𝑓) ≥ 𝑚/𝑀 [Elenberg et al., Annals of Statistics’18]

• Bayesian experimental design [Bian et al., ICML’17]:
𝛾%,&(𝑓) ≥ 𝛽$/ V $ 𝛽$ + 𝜎6$ V $

• Determinantal function maximization [Qian et al., IJCAI’18]:
𝛼1 ≥ (𝜆5 A − 1)/ (𝜆7 A − 1)∏4-7

567𝜆4 A

Lower bounds on submodular ratio for some concrete applications

Pareto optimization for approximately submodular 𝑓

The POSS algorithm [Qian, Yu and Zhou, NIPS’15]

Transformation:

Initialization: put the special solution {0}!
into the population 𝑃

Reproduction: pick a solution 𝒙 randomly
from 𝑃, and flip each bit of 𝒙 with prob.
1/𝑛 to produce a new solution

Updating: if the new solution 𝒙" is not
dominated by any solution in 𝑃, put it
into 𝑃 and delete those solutions weakly
dominated by 𝒙"

Output: select the best feasible solution

𝑚𝑎𝑥𝒙∊{;,!}!	 𝑓 𝒙 	 𝑠. 𝑡. 	 𝒙 ≤ 𝐵 original

𝑚𝑖𝑛𝒙∊{;,!}!	 (−𝑓 𝒙 , |𝒙|) bi-objective

Theoretical analysis

Theorem 2. For the Exponential Decay subclass of sparse regression, POSS using
E 𝑇 = 𝑂(𝐵$ 𝑛 − 𝐵 𝑛 log 𝑛) finds an optimal solution, while the greedy algorithm
cannot

POSS can do better than the greedy algorithm in cases
[Das & Kempe, STOC’08]

Theorem 1. For monotone approximately submodular maximization with a size
constraint, POSS using E 𝑇 ≤ 2𝑒𝐵$𝑛 finds a solution 𝒙 with 𝒙 ≤ 𝐵 and

𝑓 𝒙 ≥ (1 − 𝑒68) P OPT

POSS can achieve the optimal approximation guarantee,
previously obtained by the greedy algorithm

the optimal polynomial-time approximation ratio
[Das & Kempe, ICML’11; Harshaw et al., ICML’19]

Experiments – sparse regression

greedy algorithms relaxation methods

POSS is significantly better than all the
compared algorithms on all data sets

the size constraint: 𝑩 = 𝟖 the number of iterations of POSS: 𝟐𝒆𝑩𝟐𝒏

exhaustive search

● denotes that POSS is significantly beZer by the
𝑡-test with confidence level 0.05

POSS tightly follows OPT, and has a
clear advantage over the rest algorithms

different size constraints: 𝑩 = 𝟑 → 𝟖

Experiments – sparse regression

POSS can be more efficient in practice

OPT: 𝑛>/𝐵> greedy algorithms (FR): 𝐵𝑛 POSS: 2𝑒𝐵(𝑛

theoretical
running time

Experiments – sparse regression

Running time comparison

General cost constraints

𝑚𝑎𝑥!⊆# 	 𝑓 𝑋 	 𝑠. 𝑡. 	 𝑐(𝑋) ≤ 𝐵

Original problem

𝑚𝑎𝑥!⊆# 	 𝑓 𝑋 	 𝑠. 𝑡. 	 𝑋 ≤ 𝐵 size constraints

general cost
constraints

extension

𝑓(𝑋): a monotone approximately submodular objective function

𝑐(𝑋): a monotone approximately submodular cost function

Pareto optimization for general cost constraints

The POMC algorithm [Qian, Shi, Yu and Tang, IJCAI’17]

Transformation:
𝑚𝑎𝑥𝒙∊{;,!}!	 𝑓 𝒙 	 𝑠. 𝑡. 	 𝑐(𝒙) ≤ 𝐵 original

𝑚𝑖𝑛𝒙∊{;,!}!	 (−𝑓 𝒙 , 𝑐(𝒙)) bi-objective

Initialization: put the special solution {0}!
into the population 𝑃

Reproduction: pick a solution 𝑥 randomly
from 𝑃, and flip each bit of 𝑥 with prob.
1/𝑛 to produce a new solution

Updating: if the new solution 𝒙" is not
dominated by any solution in 𝑃, put it
into 𝑃 and delete those solutions weakly
dominated by 𝒙"

Output: select the best feasible solution

Theoretical analysis

Theorem 3. For monotone approximately submodular maximization with a general
cost constraint, POMC using E 𝑇 ≤ 𝑒𝑛𝐵𝑃3:;/𝛿< finds a solution 𝒙 with 𝑐(𝒙) ≤ 𝐵 and

𝑓 𝒙 ≥
𝛼1
2

1 −
1
𝑒=!

P OPT

POMC can achieve the best-known approximation guarantee,
previously obtained by the generalized greedy algorithm

the best-known polynomial-time approximation ratio
[Zhang & Vorobeychik, AAAI’16]

Proof

the optimal function valuesubmodularity ratio

Roughly speaking, the improvement on 𝑓 by adding a specific item
is proportional to the current distance to the optimum

𝑓(𝑋 ∪ { X𝑣}) − 𝑓(𝑋) ≥ 𝛼6
𝑐 𝑋 ∪ X𝑣 − 𝑐(𝑋)

𝐵
(OPT − 𝑓(𝑋))

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one element 𝑣̀ ∈ 𝑉 ∖ 𝑋 such that

Proof

Main idea:

• consider a solution 𝒙 with 𝑐 𝒙 ≤ 𝑖 ∈ [0, 𝐵) and 𝑓(𝒙) ≥ 1 − 1 − 𝛼1
4
>&

&
P OPT	

𝑖 = 0 𝑖 + 𝑐 𝒙 ∪ X𝑣 − 𝑐(𝒙) ≥ 𝐵

initial solution 00…0

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item 𝑣̀ ∈ 𝑉 ∖ 𝑋 such that

𝑓 00…0 = 0
𝑐(00…0) = 0

a subset

𝑓(𝑋 ∪ { X𝑣}) − 𝑓(𝑋) ≥ 𝛼6
𝑐 𝑋 ∪ X𝑣 − 𝑐(𝑋)

𝐵
(OPT − 𝑓(𝑋))

𝑓(𝒙 ∪ X𝑣) ≥ 1 − 1 − 𝛼6
?@A 𝒙∪ C) DA(𝒙)

>(/@!)

/@!
] OPT

≥ 1 − 𝑒DG"] OPT

𝑐 𝒙 < 𝐵 ≥ 1 − 1 − 𝛼6
>

>(/@!)

/@!
] OPT

Proof

Main idea:

• consider a solution 𝒙 with 𝑐 𝒙 ≤ 𝑖 ∈ [0, 𝐵) and 𝑓(𝒙) ≥ 1 − 1 − 𝛼1
4
>&

&
P OPT	

𝑖 = 0

initial solution 00…0

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item 𝑣̀ ∈ 𝑉 ∖ 𝑋 such that

𝑓 00…0 = 0
𝑐(00…0) = 0

a subset

𝑓(𝑋 ∪ { X𝑣}) − 𝑓(𝑋) ≥ 𝛼6
𝑐 𝑋 ∪ X𝑣 − 𝑐(𝑋)

𝐵
(OPT − 𝑓(𝑋))

𝑓(𝒙 ∪ X𝑣) ≥ 1 − 𝑒DG"] OPT

𝑓 𝒙 ∪ X𝑣 ≤ (𝑓 𝒙 + 𝑓 X𝑣)/𝛼6

𝑚𝑎𝑥{𝑓 𝒙 , 𝑓(X𝑣)} ≥
𝛼6
2

1 −
1
𝑒G"

] OPT

the desired
approximation
guarantee

？ 𝑖 + 𝑐 𝒙 ∪ X𝑣 − 𝑐(𝒙) ≥ 𝐵

Proof

Main idea:

• consider a solution 𝒙 with 𝑐 𝒙 ≤ 𝑖 ∈ [0, 𝐵) and 𝑓(𝒙) ≥ 1 − 1 − 𝛼1
4
>&

&
P OPT

• in each iteration of POMC:

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item 𝑣̀ ∈ 𝑉 ∖ 𝑋 such that

a subset

𝑓(𝑋 ∪ { X𝑣}) − 𝑓(𝑋) ≥ 𝛼6
𝑐 𝑋 ∪ X𝑣 − 𝑐(𝑋)

𝐵
(OPT − 𝑓(𝑋))

Ø select 𝒙 from the population 𝑃

Ø flip one specific 0-bit of 𝒙 to 1-bit

𝑐 𝒙H ≤ 𝑖 + 𝑐 𝒙H − 𝑐(𝒙) and 𝑓(𝒙′) ≥ 1 − 1 − 𝛼6
?@A 𝒙# DA(𝒙)

>(/@!)

/@!
] OPT

(i.e., add the specific item 𝑣̀ in Lemma 1)

Proof

𝑓 𝒙H − 𝑓(𝒙) ≥ 𝛼6
𝑐 𝒙H − 𝑐(𝒙)

𝐵
] OPT − 𝑓 𝒙

𝑓(𝒙) ≥ 1 − 1 − 𝛼6
𝑖
𝐵𝑘

/

] OPT

𝑓 𝒙H ≥ 1 − 𝛼6
𝑐 𝒙H − 𝑐(𝒙)

𝐵
𝑓 𝒙 + 𝛼6

𝑐 𝒙H − 𝑐(𝒙)
𝐵

] OPT

𝑓 𝒙" ≥ 1 − 1 − 𝛼#
𝑖
𝐵𝑘

$

1 − 𝛼#
𝑐 𝒙" − 𝑐(𝒙)

𝐵 4 OPT

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item 𝑣̀ ∈ 𝑉 ∖ 𝑋 such that

𝑓(𝑋 ∪ { X𝑣}) − 𝑓(𝑋) ≥ 𝛼6
𝑐 𝑋 ∪ X𝑣 − 𝑐(𝑋)

𝐵
(OPT − 𝑓(𝑋))

≥ 1 − 1 − 𝛼#
𝑖 + 𝑐 𝒙" − 𝑐(𝒙)

𝐵(𝑘 + 1)

$%&

4 OPT

AM-GM inequality

Proof

Main idea:

• consider a solution 𝒙 with 𝑐 𝒙 ≤ 𝑖 ∈ [0, 𝐵) and 𝑓(𝒙) ≥ 1 − 1 − 𝛼1
4
>&

&
P OPT

• in each iteration of POMC:

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item 𝑣̀ ∈ 𝑉 ∖ 𝑋 such that

a subset

𝑓(𝑋 ∪ { X𝑣}) − 𝑓(𝑋) ≥ 𝛼6
𝑐 𝑋 ∪ X𝑣 − 𝑐(𝑋)

𝐵
(OPT − 𝑓(𝑋))

Ø select 𝒙 from the population 𝑃

Ø flip one specific 0-bit of 𝒙 to 1-bit

𝑐 𝒙H ≤ 𝑖 + 𝑐 𝒙H − 𝑐(𝒙) and 𝑓(𝒙′) ≥ 1 − 1 − 𝛼6
?@A 𝒙# DA(𝒙)

>(/@!)

/@!
] OPT

(i.e., add the specific item 𝑣̀ in Lemma 1)

the probability: !
I

the probability: 7
5
1 − 7

5

567
≥ 7

?5

𝑖 𝑖 + 𝑐 𝒙@ − 𝑐 𝒙 ≥ 𝑖 + 𝛿< the probability: 7
A
P 7
?5

𝑚𝑖𝑛 𝑐 𝒙 ∪ {𝑣} − 𝑐 𝒙 	 𝑣 ∉ 𝒙}

Proof

Main idea:

• consider a solution 𝒙 with 𝑐 𝒙 ≤ 𝑖 ∈ [0, 𝐵) and 𝑓(𝒙) ≥ 1 − 1 − 𝛼1
4
>&

&
P OPT

• in each iteration of POMC:

Lemma 1. For any 𝑋 ⊆ 𝑉, there exists one item 𝑣̀ ∈ 𝑉 ∖ 𝑋 such that

a subset

𝑓(𝑋 ∪ { X𝑣}) − 𝑓(𝑋) ≥ 𝛼6
𝑐 𝑋 ∪ X𝑣 − 𝑐(𝑋)

𝐵
(OPT − 𝑓(𝑋))

𝑖 𝑖 + 𝛿A the probability: !
I
] !
J"

𝑃 ≤ 𝑃KLM

𝑖 𝑖 + 𝛿A the expected number of iterations: 𝑒𝑃9:;𝑛

𝑖 = 0 𝑖 + 𝑐 𝒙 ∪ X𝑣 − 𝑐(𝒙) ≥ 𝐵

the expected number of iterations:
<
=B
$ 𝑒𝑃9:;𝑛

1
𝑒𝑃KLM𝑛

Theoretical analysis

Theorem 3. [Qian, Shi, Yu and Tang, IJCAI’17] For monotone approximately submodular
maximization with a general cost constraint, POMC using E 𝑇 ≤ 𝑒𝑛𝐵𝑃3:;/𝛿< finds a
solution 𝒙 with 𝑐(𝒙) ≤ 𝐵 and

𝑓 𝒙 ≥
𝛼1
2

1 −
1
𝑒=!

P OPT

POMC can achieve the best-known approximation guarantee,
previously obtained by the generalized greedy algorithm

the best-known polynomial-time approximation ratio [Zhang & Vorobeychik, AAAI’16]

Theorem 4. [Bian, Feng, Qian and Yu, AAAI’20] For monotone approximately submodular
maximization with a general cost constraint, EAMC using E 𝑇 ≤ 2𝑒𝑛$(𝑛 + 1) finds a
solution 𝒙 with 𝑐(𝒙) ≤ 𝐵 and

𝑓 𝒙 ≥
𝛼1
2

1 −
1
𝑒=!

P OPT

By limiting the largest population size 𝑃9:;, we get the EAMC
algorithm whose running time is polynomial

Experiments – sensor placement

• Sensor placement [Krause et al., JMLR’08]: select a subset of locations to
install sensors such that the entropy is maximized

• For POMC on each data set with each 𝐵 value, the run is repeated
for 10 runs independently, and the average results are reported

• Data sets: Berkeley (𝑛 = 55), Beijing (𝑛 = 36)

• Compare POMC with the generalized greedy algorithm

• Constraints: cardinality 𝑋 ≤ 𝐵 ∈ {5, … , 10} and routing 𝑐 𝑋 ≤
𝐵 ∈ {0.5, … , 1}

the shortest walk to visit each node in 𝑋 at least once

Formally stated: given 𝑛 locations 𝑉 = {𝑣!, … , 𝑣"} and a budget 𝐵, let 𝑜N
denote the observation variable by installing a sensor at 𝑣N , and then

𝑚𝑎𝑥#⊆% 	 𝐻 {𝑜N 	|	𝑣N ∈ 𝑋} 	 𝑠. 𝑡. 	 𝑐(𝑋) ≤ 𝐵

Experiments – sensor placement

On data set Berkeley

On data set Beijing

POMC is better in most
cases, and never worse

Experiments – influence maximization

• Influence maximization [Kempe et al., KDD’03]: select a subset of users
from a social network such that the influence spread is maximized

Formally stated: given a directed graph 𝐺 = (𝑉, 𝐸)	with 𝑉 = 𝑛, edge
probabilities 𝑝O,) ((𝑢, 𝑣) ∈ 𝐸)	and a budget 𝐵, then

𝑚𝑎𝑥#⊆% 	 𝑓 𝑋 	 𝑠. 𝑡. 	 𝑐(𝑋) ≤ 𝐵

The expected number of nodes activated by propagating from 𝑋	

Influential users

Experiments – influence maximization

• Influence maximization [Kempe et al., KDD’03]: select a subset of users
from a social network such that the influence spread is maximized

Formally stated: given a directed graph 𝐺 = (𝑉, 𝐸)	with 𝑉 = 𝑛, edge
probabilities 𝑝O,) ((𝑢, 𝑣) ∈ 𝐸)	and a budget 𝐵, then

𝑚𝑎𝑥#⊆% 	 𝑓 𝑋 	 𝑠. 𝑡. 	 𝑐(𝑋) ≤ 𝐵

The expected number of nodes activated by propagating from 𝑋	

POMC is always be7er

Pareto optimization vs. Greedy algorithm

(Generalized) Greedy algorithm:
• Generate a new solution by adding a single item
 (i.e., single-bit forward search: 0 → 1)
• Keep only one solution

Pareto optimization:
• Generate a new solution by flipping each bit with prob. 1/𝑛

Ø single-bit forward search : 0 → 1
Ø backward search : 1 → 0
Ø multi-bit search : 00 → 11

• Keep a set of non-dominated solutions due to bi-objective optimization

Pareto optimization may have a better ability of
escaping from local optima

Problems with Dynamic Constraints

[V. Roostapour, A Neumann, F. Neumann, T. Friedrich: Pareto Optimization
for Subset Selection with Dynamic Cost Constraints, AAAI'19]

Dynamic Constraints
• Many real world optimization problems are dynamic and/or

stochastic.
• Often the goal function to be optimized is fixed (reduce cost /

maximize profit).
• Resources to achieve these goal are usually changing.

• Example:
Ø Trucks/trains may break down and/or be repaired.
Ø Algorithms have to react to such changes that effect

the constraints of the given problem.

Now:
• Study of (adaptive) greedy algorithms and Pareto optimization

approaches for problems with dynamic constraints.

Definitions

Given a monotone objective function f : 2V ! R+, the monotone cost function
c : 2V ! R+ and budget B, the aim is to find X such that

X = arg max
Y✓V

f(Y) s.t. c(Y)  B.
<latexit sha1_base64="WO0xplOf5wdLPUfyqqZ8UwrxWM8=">AAAC6nicbVJNj9MwEHXC11K+unDkMqJBWgSq2l5ASEircoDjgmi3q6ZbOc4kNZvYwZ4sW0X5CVw4gBBXfhE3/g1OW4ndLiNZenrPzx6/cVRk0lKv98fzr1y9dv3Gzs3Wrdt37t5r794fW10agSOhM20mEbeYSYUjkpThpDDI8yjDw+jkdaMfnqKxUqsPtCxwlvNUyUQKTo6a73osVFqqGBW13shTVMAh10qTVgg6+oiCHAtJqURjgCB5OTgeh0amC+LG6M8Q5pwWUVS9r4+fBs+AFvjvAKEtnfOKLe8FK3AVQ1TGKRIEw81JXOYgLZCGxDUJwSQAW4qF0zi1gmACryDkJm2aOJtXR6EtI4uEn2BcJ3tHTyAkPKMKbJe6UINwVJg5dbjmuzUEwbzd6XV7q4LLoL8BHbapg3n7dxhrUeYuMpFxa6f9XkGzihuSIsO6FZYWCy5OeIpTBxXP0c6q1ahqeOyYGBJt3FIEK/a8o+K5tcs8cjubcOy21pD/06YlJS9mlVRFSajE+qKkzJromrlDLI2bZbZ0gAsjXa8gFtxwQe53tFwI/e0nXwbjQbfv8LtBZ3+4iWOHPWSP2B7rs+dsn71lB2zEhJd6X7xv3nc/87/6P/yf662+t/E8YBfK//UXRpblmQ==</latexit><latexit sha1_base64="WO0xplOf5wdLPUfyqqZ8UwrxWM8=">AAAC6nicbVJNj9MwEHXC11K+unDkMqJBWgSq2l5ASEircoDjgmi3q6ZbOc4kNZvYwZ4sW0X5CVw4gBBXfhE3/g1OW4ndLiNZenrPzx6/cVRk0lKv98fzr1y9dv3Gzs3Wrdt37t5r794fW10agSOhM20mEbeYSYUjkpThpDDI8yjDw+jkdaMfnqKxUqsPtCxwlvNUyUQKTo6a73osVFqqGBW13shTVMAh10qTVgg6+oiCHAtJqURjgCB5OTgeh0amC+LG6M8Q5pwWUVS9r4+fBs+AFvjvAKEtnfOKLe8FK3AVQ1TGKRIEw81JXOYgLZCGxDUJwSQAW4qF0zi1gmACryDkJm2aOJtXR6EtI4uEn2BcJ3tHTyAkPKMKbJe6UINwVJg5dbjmuzUEwbzd6XV7q4LLoL8BHbapg3n7dxhrUeYuMpFxa6f9XkGzihuSIsO6FZYWCy5OeIpTBxXP0c6q1ahqeOyYGBJt3FIEK/a8o+K5tcs8cjubcOy21pD/06YlJS9mlVRFSajE+qKkzJromrlDLI2bZbZ0gAsjXa8gFtxwQe53tFwI/e0nXwbjQbfv8LtBZ3+4iWOHPWSP2B7rs+dsn71lB2zEhJd6X7xv3nc/87/6P/yf662+t/E8YBfK//UXRpblmQ==</latexit><latexit sha1_base64="WO0xplOf5wdLPUfyqqZ8UwrxWM8=">AAAC6nicbVJNj9MwEHXC11K+unDkMqJBWgSq2l5ASEircoDjgmi3q6ZbOc4kNZvYwZ4sW0X5CVw4gBBXfhE3/g1OW4ndLiNZenrPzx6/cVRk0lKv98fzr1y9dv3Gzs3Wrdt37t5r794fW10agSOhM20mEbeYSYUjkpThpDDI8yjDw+jkdaMfnqKxUqsPtCxwlvNUyUQKTo6a73osVFqqGBW13shTVMAh10qTVgg6+oiCHAtJqURjgCB5OTgeh0amC+LG6M8Q5pwWUVS9r4+fBs+AFvjvAKEtnfOKLe8FK3AVQ1TGKRIEw81JXOYgLZCGxDUJwSQAW4qF0zi1gmACryDkJm2aOJtXR6EtI4uEn2BcJ3tHTyAkPKMKbJe6UINwVJg5dbjmuzUEwbzd6XV7q4LLoL8BHbapg3n7dxhrUeYuMpFxa6f9XkGzihuSIsO6FZYWCy5OeIpTBxXP0c6q1ahqeOyYGBJt3FIEK/a8o+K5tcs8cjubcOy21pD/06YlJS9mlVRFSajE+qKkzJromrlDLI2bZbZ0gAsjXa8gFtxwQe53tFwI/e0nXwbjQbfv8LtBZ3+4iWOHPWSP2B7rs+dsn71lB2zEhJd6X7xv3nc/87/6P/yf662+t/E8YBfK//UXRpblmQ==</latexit><latexit sha1_base64="WO0xplOf5wdLPUfyqqZ8UwrxWM8=">AAAC6nicbVJNj9MwEHXC11K+unDkMqJBWgSq2l5ASEircoDjgmi3q6ZbOc4kNZvYwZ4sW0X5CVw4gBBXfhE3/g1OW4ndLiNZenrPzx6/cVRk0lKv98fzr1y9dv3Gzs3Wrdt37t5r794fW10agSOhM20mEbeYSYUjkpThpDDI8yjDw+jkdaMfnqKxUqsPtCxwlvNUyUQKTo6a73osVFqqGBW13shTVMAh10qTVgg6+oiCHAtJqURjgCB5OTgeh0amC+LG6M8Q5pwWUVS9r4+fBs+AFvjvAKEtnfOKLe8FK3AVQ1TGKRIEw81JXOYgLZCGxDUJwSQAW4qF0zi1gmACryDkJm2aOJtXR6EtI4uEn2BcJ3tHTyAkPKMKbJe6UINwVJg5dbjmuzUEwbzd6XV7q4LLoL8BHbapg3n7dxhrUeYuMpFxa6f9XkGzihuSIsO6FZYWCy5OeIpTBxXP0c6q1ahqeOyYGBJt3FIEK/a8o+K5tcs8cjubcOy21pD/06YlJS9mlVRFSajE+qKkzJromrlDLI2bZbZ0gAsjXa8gFtxwQe53tFwI/e0nXwbjQbfv8LtBZ3+4iWOHPWSP2B7rs+dsn71lB2zEhJd6X7xv3nc/87/6P/yf662+t/E8YBfK//UXRpblmQ==</latexit>

Let X be a �-approximation for the static problem. The dynamic problem is
given by a sequence of changes where in each change the current budget B
changes to B⇤ = B + d, d 2 R��B . The goal is to compute a �-approximation
X 0 for each newly given budget B⇤.

<latexit sha1_base64="XHuxxluYoA4jdKpeQLwTLakUw0c=">AAADIHicdVJNb9NAEF2brxI+msKRy4gYCRUaJT0AF6QqXDhwKKhpI8VptF5P7FXtXXd33RJZ+Slc+CtcOIAQ3ODXMHZSPlqY09s3M7tv3mxUZNK6Xu+751+6fOXqtbXrrRs3b91eb2/c2be6NAKHQmfajCJuMZMKh066DEeFQZ5HGR5ERy/q/MEJGiu12nPzAic5T5ScScEdUdMN70motFQxKtd6hQ6CUQARAocgLFIZbPGiMPqtzJtymGkDLkWwjs4CKEXv5F3YIy6eK57/JkFaSOQJKojmdJ3F4xKVQNAzEClXCVo4TdEgSAXIRbpim+tFaQwJgqiMk1rTIPjV4zQdDzefDx7FwWMIYgipPyR5aRRVbxbTKkzwGLZgsAiWshLNs1oLNQqdF6X773DB6DAsjMwxaOZsRCk8zeZnc5ypOdwMutN2p9ftNQEXQX8FOmwVu9P2tzDWosxpLpFxa8f9XuEmFTdkZIaLVlhaLLg44gmOCZKXaCdVs+AFPCAmblTNNPnSsH92VDy3dp5HVFlbYc/navJfuXHpZs8mlVS1L0osH5qVWe1W/VsglgaFIwtiyYWR9dJpE4YLR3+qRSb0z498Eexvd/uEX293dgYrO9bYPXafPWR99pTtsJdslw2Z8N55H7xP3mf/vf/R/+J/XZb63qrnLvsr/B8/AcIZ+RA=</latexit><latexit sha1_base64="XHuxxluYoA4jdKpeQLwTLakUw0c=">AAADIHicdVJNb9NAEF2brxI+msKRy4gYCRUaJT0AF6QqXDhwKKhpI8VptF5P7FXtXXd33RJZ+Slc+CtcOIAQ3ODXMHZSPlqY09s3M7tv3mxUZNK6Xu+751+6fOXqtbXrrRs3b91eb2/c2be6NAKHQmfajCJuMZMKh066DEeFQZ5HGR5ERy/q/MEJGiu12nPzAic5T5ScScEdUdMN70motFQxKtd6hQ6CUQARAocgLFIZbPGiMPqtzJtymGkDLkWwjs4CKEXv5F3YIy6eK57/JkFaSOQJKojmdJ3F4xKVQNAzEClXCVo4TdEgSAXIRbpim+tFaQwJgqiMk1rTIPjV4zQdDzefDx7FwWMIYgipPyR5aRRVbxbTKkzwGLZgsAiWshLNs1oLNQqdF6X773DB6DAsjMwxaOZsRCk8zeZnc5ypOdwMutN2p9ftNQEXQX8FOmwVu9P2tzDWosxpLpFxa8f9XuEmFTdkZIaLVlhaLLg44gmOCZKXaCdVs+AFPCAmblTNNPnSsH92VDy3dp5HVFlbYc/navJfuXHpZs8mlVS1L0osH5qVWe1W/VsglgaFIwtiyYWR9dJpE4YLR3+qRSb0z498Eexvd/uEX293dgYrO9bYPXafPWR99pTtsJdslw2Z8N55H7xP3mf/vf/R/+J/XZb63qrnLvsr/B8/AcIZ+RA=</latexit><latexit sha1_base64="XHuxxluYoA4jdKpeQLwTLakUw0c=">AAADIHicdVJNb9NAEF2brxI+msKRy4gYCRUaJT0AF6QqXDhwKKhpI8VptF5P7FXtXXd33RJZ+Slc+CtcOIAQ3ODXMHZSPlqY09s3M7tv3mxUZNK6Xu+751+6fOXqtbXrrRs3b91eb2/c2be6NAKHQmfajCJuMZMKh066DEeFQZ5HGR5ERy/q/MEJGiu12nPzAic5T5ScScEdUdMN70motFQxKtd6hQ6CUQARAocgLFIZbPGiMPqtzJtymGkDLkWwjs4CKEXv5F3YIy6eK57/JkFaSOQJKojmdJ3F4xKVQNAzEClXCVo4TdEgSAXIRbpim+tFaQwJgqiMk1rTIPjV4zQdDzefDx7FwWMIYgipPyR5aRRVbxbTKkzwGLZgsAiWshLNs1oLNQqdF6X773DB6DAsjMwxaOZsRCk8zeZnc5ypOdwMutN2p9ftNQEXQX8FOmwVu9P2tzDWosxpLpFxa8f9XuEmFTdkZIaLVlhaLLg44gmOCZKXaCdVs+AFPCAmblTNNPnSsH92VDy3dp5HVFlbYc/navJfuXHpZs8mlVS1L0osH5qVWe1W/VsglgaFIwtiyYWR9dJpE4YLR3+qRSb0z498Eexvd/uEX293dgYrO9bYPXafPWR99pTtsJdslw2Z8N55H7xP3mf/vf/R/+J/XZb63qrnLvsr/B8/AcIZ+RA=</latexit><latexit sha1_base64="XHuxxluYoA4jdKpeQLwTLakUw0c=">AAADIHicdVJNb9NAEF2brxI+msKRy4gYCRUaJT0AF6QqXDhwKKhpI8VptF5P7FXtXXd33RJZ+Slc+CtcOIAQ3ODXMHZSPlqY09s3M7tv3mxUZNK6Xu+751+6fOXqtbXrrRs3b91eb2/c2be6NAKHQmfajCJuMZMKh066DEeFQZ5HGR5ERy/q/MEJGiu12nPzAic5T5ScScEdUdMN70motFQxKtd6hQ6CUQARAocgLFIZbPGiMPqtzJtymGkDLkWwjs4CKEXv5F3YIy6eK57/JkFaSOQJKojmdJ3F4xKVQNAzEClXCVo4TdEgSAXIRbpim+tFaQwJgqiMk1rTIPjV4zQdDzefDx7FwWMIYgipPyR5aRRVbxbTKkzwGLZgsAiWshLNs1oLNQqdF6X773DB6DAsjMwxaOZsRCk8zeZnc5ypOdwMutN2p9ftNQEXQX8FOmwVu9P2tzDWosxpLpFxa8f9XuEmFTdkZIaLVlhaLLg44gmOCZKXaCdVs+AFPCAmblTNNPnSsH92VDy3dp5HVFlbYc/navJfuXHpZs8mlVS1L0osH5qVWe1W/VsglgaFIwtiyYWR9dJpE4YLR3+qRSb0z498Eexvd/uEX293dgYrO9bYPXafPWR99pTtsJdslw2Z8N55H7xP3mf/vf/R/+J/XZb63qrnLvsr/B8/AcIZ+RA=</latexit>

[C. Qian, J. Shi, Y. Yu, K. Tang, IJCAI'17]

The Dynamic Problem

The Static Problem

 - approximation

[V. Roostapour, A. Neumann, F. Neumann, T. Friedrich, AAAI'19]

Greedy Algorithms

Algorithm 1: Generalized Greedy Algorithm
input: Initial budget constraint B.

1 X ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) ;

5 if ĉ(X [v
⇤)  B then

6 X X [v
⇤;

7 V
0 V

0 \ {v⇤};
8 until V

0 ;;
9 v

⇤ argmaxv2V ;ĉ(v)B f(v);
10 return argmaxS2{X,v⇤} f(S);

Algorithm 2: Adaptive Generalized Greedy Algorithm
input: Initial solution X , Budget constraint B, New

budget constraint B⇤.
1 if B

⇤
< B then

2 while ĉ(X) > B
⇤

do

3 v
⇤ argminv2X

f(X)�f(X\{v})
ĉ(X)�ĉ(X\{v}) ;

4 X X \ {v⇤} ;

5 else if B
⇤
> B then

6 V
0 V \X;

7 repeat

8 v
⇤ argmaxv2V 0

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) ;

9 if ĉ(X [v
⇤)  B

⇤
then

10 X X [v
⇤;

11 V
0 V

0 \ {v⇤};
12 until V

0 ;;
13 v

⇤ argmaxv2V ;ĉ(v)B⇤ f(v) ;
14 return argmaxS2{X,v⇤} f(S);

tima (Qian et al. 2017b). We reformulate the problem to a
bi-objective problem in order to use POMC as follows:

argmaxX 2 {0, 1}n(f1(X), f2(X)),

where f1(X) =

⇢
�1, ĉ(X) > B + 1
f(X), otherwise

, f2(X) = �ĉ(X).

This algorithm optimizes the cost function and the objec-
tive function simultaneously. To this aim, it uses the concept
of dominance to compare two solutions. Solution X1 dom-
inates X2, denoted by X1 ⌫ X2, if f1(X1) � f1(X2) ^
f2(X1) � f2(X2). The dominance is strict,�, when at least
one of the inequalities are strict. POMC produces a popula-
tion of non-dominated solutions and optimizes them during
the optimization process. In each iteration, it chooses solu-
tion X randomly from the population and flips each bit of
the solution with the probability of 1/n. It adds the mutated
solution X

0 to the population only if there is no solution in
the population that dominates X

0. All the solutions which
are dominated by X

0 will be deleted from the population
afterward.

Algorithm 3: POMC Algorithm
input: Initial budget constraint B, time T

1 X {0}n;
2 Compute (f1(X), f2(X));
3 P {x};
4 t 0;
5 while t < T do

6 Select X from P uniformly at random;
7 X

0 flip each bit of X with probability 1
n ;

8 Compute (f1(X 0), f2(X 0));
9 if @Z 2 P such that Z � X

0
then

10 P (P \ {Z 2 P | X 0 ⌫ Z}) [{X 0};
11 t = t+ 1;
12 return argmaxX2P :ĉ(X)B f(x)

Note, that we only compute the objective vector
(f1(X), f2(X)) when the solution X is created. This im-
plies that the objective vector is not updated after changes to
the constraint bound B. As a consequence solutions whose
constraint exceeds the value of B + 1 for a newly given
bound are kept in the population. However, newly produced
individuals exceeding B + 1 for the current bound B are
not included in the population as they are dominated by the
initial search point 0n. We are using the value B + 1 in-
stead of B in the definition of f1 as this gives the algorithm
some look ahead for larger constraint bounds. However, ev-
ery value of at least B would work for our theoretical anal-
yses. The only drawback would be a potentially larger pop-
ulation size which influences the value Pmax in our runtime
bounds.

Adaptive Generalized Greedy Algorithm

In this section we analyze the performance of the adaptive
generalized greedy algorithm. This algorithm is a modified
version of the generalized greedy using the same principle in
adding and deleting the items. However, in this section we
prove that the adaptive generalized greedy algorithm is not
able to deal with the dynamic change, i.e the approximation
obtained can become arbitrarily bad during a sequence of
dynamic changes.

In order to show that the adaptive generalized greedy al-
gorithm can not deal with dynamic increases of the con-
straint bound, we consider a special instance of the classical
knapsack problem. Note that the knapsack problem is spe-
cial submodular problem where both the objective and the
cost function are linear.

Given n + 1 items ei = (ci, fi) with cost ci and value
fi independently of the choice of the other items. Assume
there are items ei = (1, 1

n), 1  i  n/2, ei = (2, 1),
n/2 + 1  i  n, and a special items en+1 = (1, 3). We
have finc(X) =

P
ei2X fi and cinc(X) =

P
ei2X ci as the

linear objective and constraint functions, respectively.
Theorem 3. Given the dynamic knapsack problem
(finc, cinc). Starting with B = 1 and increasing the bound
n/2 times by 1, the adaptive generalized greedy algorithm

Algorithm 1: Generalized Greedy Algorithm
input: Initial budget constraint B.

1 X ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) ;

5 if ĉ(X [v
⇤)  B then

6 X X [v
⇤;

7 V
0 V

0 \ {v⇤};
8 until V

0 ;;
9 v

⇤ argmaxv2V ;ĉ(v)B f(v);
10 return argmaxS2{X,v⇤} f(S);

Algorithm 2: Adaptive Generalized Greedy Algorithm
input: Initial solution X , Budget constraint B, New

budget constraint B⇤.
1 if B

⇤
< B then

2 while ĉ(X) > B
⇤

do

3 v
⇤ argminv2X

f(X)�f(X\{v})
ĉ(X)�ĉ(X\{v}) ;

4 X X \ {v⇤} ;

5 else if B
⇤
> B then

6 V
0 V \X;

7 repeat

8 v
⇤ argmaxv2V 0

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) ;

9 if ĉ(X [v
⇤)  B

⇤
then

10 X X [v
⇤;

11 V
0 V

0 \ {v⇤};
12 until V

0 ;;
13 v

⇤ argmaxv2V ;ĉ(v)B⇤ f(v) ;
14 return argmaxS2{X,v⇤} f(S);

tima (Qian et al. 2017b). We reformulate the problem to a
bi-objective problem in order to use POMC as follows:

argmaxX 2 {0, 1}n(f1(X), f2(X)),

where f1(X) =

⇢
�1, ĉ(X) > B + 1
f(X), otherwise

, f2(X) = �ĉ(X).

This algorithm optimizes the cost function and the objec-
tive function simultaneously. To this aim, it uses the concept
of dominance to compare two solutions. Solution X1 dom-
inates X2, denoted by X1 ⌫ X2, if f1(X1) � f1(X2) ^
f2(X1) � f2(X2). The dominance is strict,�, when at least
one of the inequalities are strict. POMC produces a popula-
tion of non-dominated solutions and optimizes them during
the optimization process. In each iteration, it chooses solu-
tion X randomly from the population and flips each bit of
the solution with the probability of 1/n. It adds the mutated
solution X

0 to the population only if there is no solution in
the population that dominates X

0. All the solutions which
are dominated by X

0 will be deleted from the population
afterward.

Algorithm 3: POMC Algorithm
input: Initial budget constraint B, time T

1 X {0}n;
2 Compute (f1(X), f2(X));
3 P {x};
4 t 0;
5 while t < T do

6 Select X from P uniformly at random;
7 X

0 flip each bit of X with probability 1
n ;

8 Compute (f1(X 0), f2(X 0));
9 if @Z 2 P such that Z � X

0
then

10 P (P \ {Z 2 P | X 0 ⌫ Z}) [{X 0};
11 t = t+ 1;
12 return argmaxX2P :ĉ(X)B f(x)

Note, that we only compute the objective vector
(f1(X), f2(X)) when the solution X is created. This im-
plies that the objective vector is not updated after changes to
the constraint bound B. As a consequence solutions whose
constraint exceeds the value of B + 1 for a newly given
bound are kept in the population. However, newly produced
individuals exceeding B + 1 for the current bound B are
not included in the population as they are dominated by the
initial search point 0n. We are using the value B + 1 in-
stead of B in the definition of f1 as this gives the algorithm
some look ahead for larger constraint bounds. However, ev-
ery value of at least B would work for our theoretical anal-
yses. The only drawback would be a potentially larger pop-
ulation size which influences the value Pmax in our runtime
bounds.

Adaptive Generalized Greedy Algorithm

In this section we analyze the performance of the adaptive
generalized greedy algorithm. This algorithm is a modified
version of the generalized greedy using the same principle in
adding and deleting the items. However, in this section we
prove that the adaptive generalized greedy algorithm is not
able to deal with the dynamic change, i.e the approximation
obtained can become arbitrarily bad during a sequence of
dynamic changes.

In order to show that the adaptive generalized greedy al-
gorithm can not deal with dynamic increases of the con-
straint bound, we consider a special instance of the classical
knapsack problem. Note that the knapsack problem is spe-
cial submodular problem where both the objective and the
cost function are linear.

Given n + 1 items ei = (ci, fi) with cost ci and value
fi independently of the choice of the other items. Assume
there are items ei = (1, 1

n), 1  i  n/2, ei = (2, 1),
n/2 + 1  i  n, and a special items en+1 = (1, 3). We
have finc(X) =

P
ei2X fi and cinc(X) =

P
ei2X ci as the

linear objective and constraint functions, respectively.
Theorem 3. Given the dynamic knapsack problem
(finc, cinc). Starting with B = 1 and increasing the bound
n/2 times by 1, the adaptive generalized greedy algorithm

[Zhang and Vorobeychik, AAAI' 16]

The adaptive generalized greedy algorithm
can not deal with dynamic increases of the
constraint bound.

[V. Roostapour, A Neumann, F. Neumann, T.
Friedrich, AAAI'19]

Approximation Adaptive Greedy

Consider n items
• Low profit items:
• High profit items:
• Special item:

Linear objective and constraint function:

Consider the following dynamic schedule:
• Start with B = 1 and increase B by 1 in each of n/2 steps.

Approximation Adaptive Greedy

Proof idea:
• For B=1, the special item is included.
• During n/2 steps increasing the budget by 1, all low profit

items are included.
• For the obtained set S, we have

• Optimal set S* consists of special item and n/4 high profit
items and we have

• Approximation ratio

Algorithm 1: Generalized Greedy Algorithm
input: Initial Budget constraint B.

1 V
0 V ;

2 repeat

3 v
⇤ argmaxv/2V 0

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) ;

4 if ĉ(X [v
⇤)  B

⇤
then

5 X X [v
⇤;

6 V
0 V

0 \ {v⇤};
7 until V

0 ;;
8 v

⇤ argmaxv2V ;ĉ(v)B⇤ f(v);
9 return argmaxS2{X,v⇤} f(S);

Algorithm 2: Adaptive Greedy Algorithm
input: Initial solution X , Budget constraint B, New

budget constraint B⇤.
1 if B

⇤
< B then

2 while ĉ(X) > B
⇤

do

3 v
⇤ argminv2X

f(X)�f(X\{v})
ĉ(X)�ĉ(X\{v}) ;

4 X X \ {v⇤} ;

5 else if B
⇤
> B then

6 V
0 V \X;

7 repeat

8 v
⇤ argmaxv/2V 0

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) ;

9 if ĉ(X [v
⇤)  B

⇤
then

10 X X [v
⇤;

11 V
0 V

0 \ {v⇤};
12 until V

0 ;;
13 v

⇤ argmaxv2V ;ĉ(v)B⇤ f(v) ;
14 return argmaxS2{X,v⇤} f(S);

tima (Qian et al. 2017b). We reformulate the problem to a
bi-objective problem in order to use POMC as follows:

argmaxx 2 {0, 1}n(f1(x), f2(x)),

where f1(x) =

⇢
�1, ĉ(x) > B + 1
f(x), otherwise

, f2(x) = �ĉ(x).

This algorithm optimize the cost function and the objec-
tive function simultaneously. To this aim, it uses the con-
cept of dominance to compare two solutions. Solution x1

dominates x2, denoted by x1 ⌫ x2, if f1(x1) � f1(x2) ^
f2(x1) � f2(x2). The dominance is strict, �, when at least
one of the inequalities are strict. POMC produces a popula-
tion of non-dominated solutions and optimize them during
the optimization process. In each iteration, it choose solu-
tion x randomly from the population and flip each bit of the
solution with the probability of 1/n. It adds the mutated so-
lution x

0 to the population only if there is no solution in the
population that dominates x

0. All the solutions which are
dominated by x

0 will be deleted from the population after-
ward.

Note, that we only compute the objective vector
(f1(x), f2(x)) when the solution x is created. This implies

Algorithm 3: POMC Algorithm
input: Initial Budget constraint B, Time T

1 x 0n;
2 Compute (f1(x), f2(x));
3 P {x};
4 t 0;
5 while t < T do

6 Select x from P uniformly at random;
7 x

0 flip each bit of x with probability 1
n ;

8 Compute (f1(x0), f2(x0));
9 if @z 2 P such that x � x

0
then

10 P (P \ {z 2 P | x0 ⌫ z}) [{x0};
11 t = t+ 1;
12 return argmaxx2P :ĉ(x)B f(x)

that the objective vector is not updated after changes to the
constraint bound B. As a consequence solutions whose con-
straint exceeds the value of B + 1 for a newly given bound
are kept in the population. However, newly produced indi-
viduals exceeding B +1 for the current bound B are not in-
cluded in the population as they are dominated by the initial
search point 0n. We are using the value B + 1 instead of B
in the definition of f1 as this gives the algorithm some look
ahead for larger constraint bounds. However, every value
of at least B would work for our theoretical analyses. The
only drawback would be a potentially larger population size
which influences the value Pmax in our runtime bounds.

Adaptive Greedy Algorithm

In this section we analyze the performance of the adaptive
greedy algorithm. This algorithm is a modified version of the
generalized greedy using the same principle in adding and
deleting the items. However, in this section we prove that
the adaptive greedy algorithm is not able to deal with the
dynamic change, i.e the approximation obtain can become
arbitrarily bad during a sequence of dynamic changes.

In order to show that the adaptive greedy algorithm can
not deal with dynamic increases of the constraint bound, we
consider a special instance of the classical knapsack prob-
lem. Note that the knapsack problem is special submodular
problem where both the objective and the cost function are
linear.

Given n + 1 items ei = (ci, fi) with cost ci and value
fi independently of the choice of the other items. Assume
there are items ei = (1, 1

n), 1  i  n/2, ei = (2, 1),
n/2 + 1  i  n, and a special items en+1 = (1, 3). We
have finc(X) =

P
ei2X fi and cinc(X) =

P
ei2X ci as the

linear objective and constraint functions, respectively.
Theorem 3. Given the dynamic knapsack problem
(finc, cinc). Starting with B = 1 and increasing the bound
n/2 times by 1, the adaptive greedy algorithm computes a
solution that has approximation ratio O(1/n).

Proof. For the constraint B = 1 the optimal solution is
{en+1}. Now let there be n/2 dynamic changes where each

[V. Roostapour, A. Neumann, F. Neumann, T. Friedrich, AAAI'19]

Pareto Optimization

Algorithm 1: Generalized Greedy Algorithm
input: Initial budget constraint B.

1 X ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) ;

5 if ĉ(X [v
⇤)  B then

6 X X [v
⇤;

7 V
0 V

0 \ {v⇤};
8 until V

0 ;;
9 v

⇤ argmaxv2V ;ĉ(v)B f(v);
10 return argmaxS2{X,v⇤} f(S);

Algorithm 2: Adaptive Generalized Greedy Algorithm
input: Initial solution X , Budget constraint B, New

budget constraint B⇤.
1 if B

⇤
< B then

2 while ĉ(X) > B
⇤

do

3 v
⇤ argminv2X

f(X)�f(X\{v})
ĉ(X)�ĉ(X\{v}) ;

4 X X \ {v⇤} ;

5 else if B
⇤
> B then

6 V
0 V \X;

7 repeat

8 v
⇤ argmaxv2V 0

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) ;

9 if ĉ(X [v
⇤)  B

⇤
then

10 X X [v
⇤;

11 V
0 V

0 \ {v⇤};
12 until V

0 ;;
13 v

⇤ argmaxv2V ;ĉ(v)B⇤ f(v) ;
14 return argmaxS2{X,v⇤} f(S);

tima (Qian et al. 2017b). We reformulate the problem to a
bi-objective problem in order to use POMC as follows:

argmaxX 2 {0, 1}n(f1(X), f2(X)),

where f1(X) =

⇢
�1, ĉ(X) > B + 1
f(X), otherwise

, f2(X) = �ĉ(X).

This algorithm optimizes the cost function and the objec-
tive function simultaneously. To this aim, it uses the concept
of dominance to compare two solutions. Solution X1 dom-
inates X2, denoted by X1 ⌫ X2, if f1(X1) � f1(X2) ^
f2(X1) � f2(X2). The dominance is strict,�, when at least
one of the inequalities are strict. POMC produces a popula-
tion of non-dominated solutions and optimizes them during
the optimization process. In each iteration, it chooses solu-
tion X randomly from the population and flips each bit of
the solution with the probability of 1/n. It adds the mutated
solution X

0 to the population only if there is no solution in
the population that dominates X

0. All the solutions which
are dominated by X

0 will be deleted from the population
afterward.

Algorithm 3: POMC Algorithm
input: Initial budget constraint B, time T

1 X {0}n;
2 Compute (f1(X), f2(X));
3 P {x};
4 t 0;
5 while t < T do

6 Select X from P uniformly at random;
7 X

0 flip each bit of X with probability 1
n ;

8 Compute (f1(X 0), f2(X 0));
9 if @Z 2 P such that Z � X

0
then

10 P (P \ {Z 2 P | X 0 ⌫ Z}) [{X 0};
11 t = t+ 1;
12 return argmaxX2P :ĉ(X)B f(x)

Note, that we only compute the objective vector
(f1(X), f2(X)) when the solution X is created. This im-
plies that the objective vector is not updated after changes to
the constraint bound B. As a consequence solutions whose
constraint exceeds the value of B + 1 for a newly given
bound are kept in the population. However, newly produced
individuals exceeding B + 1 for the current bound B are
not included in the population as they are dominated by the
initial search point 0n. We are using the value B + 1 in-
stead of B in the definition of f1 as this gives the algorithm
some look ahead for larger constraint bounds. However, ev-
ery value of at least B would work for our theoretical anal-
yses. The only drawback would be a potentially larger pop-
ulation size which influences the value Pmax in our runtime
bounds.

Adaptive Generalized Greedy Algorithm

In this section we analyze the performance of the adaptive
generalized greedy algorithm. This algorithm is a modified
version of the generalized greedy using the same principle in
adding and deleting the items. However, in this section we
prove that the adaptive generalized greedy algorithm is not
able to deal with the dynamic change, i.e the approximation
obtained can become arbitrarily bad during a sequence of
dynamic changes.

In order to show that the adaptive generalized greedy al-
gorithm can not deal with dynamic increases of the con-
straint bound, we consider a special instance of the classical
knapsack problem. Note that the knapsack problem is spe-
cial submodular problem where both the objective and the
cost function are linear.

Given n + 1 items ei = (ci, fi) with cost ci and value
fi independently of the choice of the other items. Assume
there are items ei = (1, 1

n), 1  i  n/2, ei = (2, 1),
n/2 + 1  i  n, and a special items en+1 = (1, 3). We
have finc(X) =

P
ei2X fi and cinc(X) =

P
ei2X ci as the

linear objective and constraint functions, respectively.
Theorem 3. Given the dynamic knapsack problem
(finc, cinc). Starting with B = 1 and increasing the bound
n/2 times by 1, the adaptive generalized greedy algorithm

Algorithm 1: Generalized Greedy Algorithm
input: Initial budget constraint B.

1 X ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) ;

5 if ĉ(X [v
⇤)  B then

6 X X [v
⇤;

7 V
0 V

0 \ {v⇤};
8 until V

0 ;;
9 v

⇤ argmaxv2V ;ĉ(v)B f(v);
10 return argmaxS2{X,v⇤} f(S);

Algorithm 2: Adaptive Generalized Greedy Algorithm
input: Initial solution X , Budget constraint B, New

budget constraint B⇤.
1 if B

⇤
< B then

2 while ĉ(X) > B
⇤

do

3 v
⇤ argminv2X

f(X)�f(X\{v})
ĉ(X)�ĉ(X\{v}) ;

4 X X \ {v⇤} ;

5 else if B
⇤
> B then

6 V
0 V \X;

7 repeat

8 v
⇤ argmaxv2V 0

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) ;

9 if ĉ(X [v
⇤)  B

⇤
then

10 X X [v
⇤;

11 V
0 V

0 \ {v⇤};
12 until V

0 ;;
13 v

⇤ argmaxv2V ;ĉ(v)B⇤ f(v) ;
14 return argmaxS2{X,v⇤} f(S);

tima (Qian et al. 2017b). We reformulate the problem to a
bi-objective problem in order to use POMC as follows:

argmaxX 2 {0, 1}n(f1(X), f2(X)),

where f1(X) =

⇢
�1, ĉ(X) > B + 1
f(X), otherwise

, f2(X) = �ĉ(X).

This algorithm optimizes the cost function and the objec-
tive function simultaneously. To this aim, it uses the concept
of dominance to compare two solutions. Solution X1 dom-
inates X2, denoted by X1 ⌫ X2, if f1(X1) � f1(X2) ^
f2(X1) � f2(X2). The dominance is strict,�, when at least
one of the inequalities are strict. POMC produces a popula-
tion of non-dominated solutions and optimizes them during
the optimization process. In each iteration, it chooses solu-
tion X randomly from the population and flips each bit of
the solution with the probability of 1/n. It adds the mutated
solution X

0 to the population only if there is no solution in
the population that dominates X

0. All the solutions which
are dominated by X

0 will be deleted from the population
afterward.

Algorithm 3: POMC Algorithm
input: Initial budget constraint B, time T

1 X {0}n;
2 Compute (f1(X), f2(X));
3 P {x};
4 t 0;
5 while t < T do

6 Select X from P uniformly at random;
7 X

0 flip each bit of X with probability 1
n ;

8 Compute (f1(X 0), f2(X 0));
9 if @Z 2 P such that Z � X

0
then

10 P (P \ {Z 2 P | X 0 ⌫ Z}) [{X 0};
11 t = t+ 1;
12 return argmaxX2P :ĉ(X)B f(x)

Note, that we only compute the objective vector
(f1(X), f2(X)) when the solution X is created. This im-
plies that the objective vector is not updated after changes to
the constraint bound B. As a consequence solutions whose
constraint exceeds the value of B + 1 for a newly given
bound are kept in the population. However, newly produced
individuals exceeding B + 1 for the current bound B are
not included in the population as they are dominated by the
initial search point 0n. We are using the value B + 1 in-
stead of B in the definition of f1 as this gives the algorithm
some look ahead for larger constraint bounds. However, ev-
ery value of at least B would work for our theoretical anal-
yses. The only drawback would be a potentially larger pop-
ulation size which influences the value Pmax in our runtime
bounds.

Adaptive Generalized Greedy Algorithm

In this section we analyze the performance of the adaptive
generalized greedy algorithm. This algorithm is a modified
version of the generalized greedy using the same principle in
adding and deleting the items. However, in this section we
prove that the adaptive generalized greedy algorithm is not
able to deal with the dynamic change, i.e the approximation
obtained can become arbitrarily bad during a sequence of
dynamic changes.

In order to show that the adaptive generalized greedy al-
gorithm can not deal with dynamic increases of the con-
straint bound, we consider a special instance of the classical
knapsack problem. Note that the knapsack problem is spe-
cial submodular problem where both the objective and the
cost function are linear.

Given n + 1 items ei = (ci, fi) with cost ci and value
fi independently of the choice of the other items. Assume
there are items ei = (1, 1

n), 1  i  n/2, ei = (2, 1),
n/2 + 1  i  n, and a special items en+1 = (1, 3). We
have finc(X) =

P
ei2X fi and cinc(X) =

P
ei2X ci as the

linear objective and constraint functions, respectively.
Theorem 3. Given the dynamic knapsack problem
(finc, cinc). Starting with B = 1 and increasing the bound
n/2 times by 1, the adaptive generalized greedy algorithm

Theoretical Results POMC

⋯

⋯

"#$ "%$

&#$ &%$ &%'(%$&)$&*$ &%' (*$

"'$"*$

⋯ ⋯

Figure 1: Single subgraph Gi of G = (U, V,E)

computes a solution that has approximation ratio O(1/n).

Proof. For the constraint B = 1 the optimal solution is
{en+1}. Now let there be n/2 dynamic changes where each
of them increases B by 1. In each change, the algorithm
can only pick an item from {e1, · · · , en/2}, otherwise it vi-
olates the budget constraint. After n/2 changes, the bud-
get constraint is 1 + n/2 and the result of the algorithm is
S = {en+1, e1, · · · , en/2} with f(S) = 3+(n/2)·(1/n) =
7/2 and c(S) = 1 + n/2. However, an optimal solution
for budget 1 + n/2 is S

⇤ = {en+1, en/2+1, . . . , e 3n
4
} with

f(S⇤) = 3 + n
4 . Hence, the approximation ratio in this ex-

ample is (7/2)/(3 + n/4) = O(1/n)

Now, we consider the case where the constraint bound
decreases over time and show that the adaptive general-
ized greedy algorithm may also encounter situations where
the approximation ratio becomes arbitrary bad over time.
We consider the following Graph Coverage Problem. Let
G = (U, V,E) be a bipartite graph with bipartition U and
V of vertices with |U | = n and |V | = m. The goal is to
select a subset S ✓ U with |S|  B such that the number of
neighbors of S in V is maximized. Note that the objective
function f(S) measuring the number of neighbors of S in V

is monotone and submodular.
We consider the graph G = (U, V,E) which consists of k

disjoint subgraphs

Gi = (Ui = {ui
1, · · · , ui

l}, Vi = {vi1, · · · , vi2l�2}, Ei)

(see Figure 1). Node u
i
1 is connected to nodes v

i
2j�1, 1 

j  l� 1. Moreover, each vertex u
i
j , 2  j  l is connected

to two vertices v
i
2j�3 and v

i
2j�2. We assume that k =

p
n

and l = n/k =
p
n.

Theorem 4. Starting with the optimal set S = U and bud-
get B = n, there is a specific sequence of dynamic bud-
get reductions such that the solution obtained by the adap-
tive generalized greedy algorithm has approximation ratio
O(1/

p
n).

Proof. Let the adaptive generalized greedy algorithm is ini-
tialized with X = U and B = n = kl. We assume that
the budget decrease from n to k where each single decrease
reduces the budget by 1. In the first k steps, to change the
cost of solution from n to n� k, the algorithm removes the
nodes u

i
1, 1  i  k, as they have a marginal contribution

of 0. Following these steps, all the remaining nodes have the

same marginal contribution of 2. The solution X of size k

obtained by the removal steps of the adaptive generalized
greedy algorithm contains k vertices which are connected to
2k nodes of V , thus f(X) = 2k = 2

p
n. Such a solution

is returned by the algorithm for B = k as the most valuable
single node has at most (l� 1) = (

p
n� 1) neighbors in V .

For B = k, the optimal solution X
⇤ = {ui

1 | 1  i  k}
has f(X⇤) = k(l � 1) = n �

p
n. Therefore, the approx-

imation ratio achieved by the adaptive generalized greedy
algorithm is upper bounded by

(2
p
n)/(n�

p
n) = O(1/

p
n).

Pareto Optimization

In this section we analyze the behavior of POMC fac-
ing a dynamic change. According to Lemma 3 in (Qian
et al. 2017b), we have for any X ✓ V and v

⇤ =
argmaxv/2X

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) :

f(X[v⇤)�f(X) � ↵f
ĉ(X [v

⇤)� ĉ(X)

B
·(f(X̃)�f(X)).

We denote by �ĉ = min{ĉ(X [v)� ĉ(X) | X ✓ V, v /2
X} the smallest contribution of an element to the cost of a
solution for the given problem. Moreover, let Pmax be the
maximum size of POMC’s population during the optimiza-
tion process.

The following theorem considers the static case and
shows that POMC computes for every budget b 2 [0, B]
a �-approximation efficiently.
Theorem 5. Starting from {0}n, POMC computes for any
budget b 2 [0, B] a � = (↵f/2)(1 � 1/e↵f)-approximate
solution after T = cnPmax · B

�ĉ
iterations with the constant

probability, where c � 8e+1 is a sufficiently large arbitrary
constant.

Proof. We first consider the number of iterations to find
a (↵f/2)

�
1� (1� ↵f

k)k
�
-approximate solution for budget

b 2 [0, B] and some k. This part of the proof is by and induc-
tion on k. In each step, it shows that adding v

⇤ to the current
solution has desired contribution to achieve a �-approximate
solution. Let X ✓ V and v

⇤ = argmaxv/2X
f(X[v)�f(X)
ĉ(X[v)�ĉ(X) .

Assume that

f(X) �

1�

✓
1� ↵f

i

bk

◆k
!

· f(X̃b)

holds for some ĉ(X)  i < b and k. Then adding v
⇤ leads

to

f(X [v
⇤) �

1�

✓
1� ↵f

i+ ĉ(X [v
⇤)� ĉ(X)

b(k + 1)

◆k+1
!

· f(X̃b).

This process only depends on the quality of X and is inde-
pendent from its structure. Starting from {0}n, if the algo-
rithm carries out such steps at least b/�ĉ times, it reaches a

solution X such that

f(X [v
⇤) �

1�

✓
1� ↵f

b

bk⇤

◆k⇤!
· f(X̃b)

�
✓
1� 1

e↵f

◆
· f(X̃b).

Considering item z = argmaxv2V :ĉ(v)b f(v), by submod-
ularity and ↵ 2 [0, 1] we have

f(X [v
⇤)  (f(X) + f(z))/↵f .

This implies that

max{f(X), f(z)} � (↵f/2) · (1�
1

e↵f
) · f(X̃b).

Let the algorithm runs for T iterations. We analyze suc-
cess probability within T steps. To have a successful mu-
tation step where v

⇤ is added to the currently best approxi-
mate solution, the algorithm has to choose the right individ-
ual in the population, which happens with probability at least
1/Pmax. Furthermore, the single bit corresponding to v

⇤ has
to be flipped which has the probability at least 1/(en). we
call such a step a success. Let random variable Yj = 1 when
there is a success in step j of the algorithm and Yj = 0,
otherwise. Thus, we have Pr(Yj = 1) � 1

en · 1
Pmax

. On
the other hand, let Y ⇤

i , i 2 [1..T], be mutually independent
random binary variable such that Pr[Y ⇤

i = 1] = 1
enPmax

and Pr[Y ⇤
i = 0] = 1 � 1

enPmax
. For the expected value of

random variable Y
⇤ =

PT
j=1 Y

⇤
j we have:

E

2

4Y ⇤ =
TX

j=1

Y
⇤
j

3

5 =
T

enPmax
=

cB

e�ĉ
.

Here, we can use Lemma 1 in (Doerr, Happ, and Klein 2011)
for moderately correlated variables which allows to make
use of the following Chernoff bound

Pr (Y < (1� �)E[Y])  Pr (Y ⇤
< (1� �)E[Y ⇤])

 e
�E[Y ⇤]�2/2. (2)

Using Equation 2 with � = (1 � e
c), we bound the

probability of not finding a �-approximation of X̃b in time
T = cnPmaxB/�ĉ by

Pr(Y  b

�ĉ
)  e

� (c�e)2B
2ce�ĉ  e

� (c/2)2B
2ce�ĉ

 e
� cB

8e�ĉ  e
� B

�ĉ .

Using the union bound and taking into account that there are
at most B/�ĉ different values for b to consider, the probabil-
ity that there is a b 2 [0, B] for which no �-approximation
has been obtained is upper bound by B

�ĉ
· e�

B
�ĉ .

This implies that POMC finds for each b 2 [0, B] a
(↵f/2)(1 � 1

e↵f)-approximate solution with probability at

least 1� B
�ĉ

· e�
B
�ĉ .

Note that if we have B/�ĉ � log n then the probabil-
ity of achieving a �-approximation for every b 2 [0, B] is
1 � o(1). In order to achieve a probability of 1 � o(1) for
any possible change, we can run the algorithm for T

0 =
cnPmax ·max{log n, B

�ĉ
}, c � 8e+ 1, iterations.

Now we consider the performance of POMC in the dy-
namic version of the problem. In this version, it is assumed
that POMC has achieved a population which includes a �-
approximation for all budgets b 2 [0, B]. Reducing the bud-
get from B to B

⇤ implies that a �-approximation for the
newly given budget B⇤ is already contained in the popula-
tion.

It remains to consider the case where the budget increases.
Assume that the budget changes from B to B

⇤ = B + d

where d > 0. We analyze the time until POMC has updated
its population such that it contains for any b 2 [0, B⇤] a �-
approximate solution.

We define
Imax(b, b

0) = max{i 2 [0, b] | 9X 2 P, ĉ(X)  i

^ f(X) �

1�

✓
1� ↵f

i

bk

◆k
!

· f(X̃b)

^ f(X) �

1�

✓
1� ↵f

i

b0k0

◆k0!
· f(X̃b0)}

for some k and k
0. The notion of Imax(b, b0) allows to cor-

relate the progress in terms of obtaining a �-approximation
for budgets b and b

0.
Theorem 6. Let POMC has population P such that for ev-
ery budget b 2 [0, B], there is a �-approximation in P .
After changing the budget to B

⇤
> B, POMC has com-

puted within T = cnPmax
d
�ĉ

steps for every b 2 [0, B⇤] a
�-approximation with probability ⌦(1).

Proof. Let P denote the current population of
POMC in which for any budget b  B there is a�
1� (1� ↵f

k)k
�
-approximate solution for some k. Let

X be the solution corresponding to Imax(B,B
⇤). Let

v
⇤ = argmaxv/2X

f(X[v)�f(X)
ĉ(X[v)�ĉ(X) is the item with the

highest marginal contribution which could be added to X

and X
0 = X [v

⇤. According to Lemma 3 and Theorem 2
in (Qian et al. 2017b) and the definition of Imax(B,B

⇤),
we have

f(X 0) �
✓
1� (1� ↵f

Imax + ĉ(X 0)� ĉ(X)

Bk
)k
◆
· f(X̃B)

and

f(X 0) �
✓
1� (1� ↵f

Imax + ĉ(X 0)� ĉ(X)

B⇤k0
)k

0
◆
· f(X̃B⇤).

This implies that adding v
⇤ to X violates the budget con-

straint B, otherwise, we had a greater value for Imax.
If Imax + ĉ(X 0) � ĉ(X) � B

⇤, then similar to the proof
of Theorem 5, we have

max{f(X), f(z)} � (↵f/2) ·
✓
1� 1

e↵f

◆
· f(X̃B⇤).

[V. Roostapour, A. Neumann, F. Neumann, T. Friedrich, AAAI'19]

Experiments

We consider the influence maximization problem in social
networks. [Zhang & Vorobeychik, AAAI'16]

Two types of constraints:
• Routing constraint on routing

cost for selected users
• Cardinality constraint on number

of selected users

For both problems, we vary the constraint bound B over time.
• POMC has τ = 1000, 5000, 10000 iterations after every change

to recompute good solution.

Table 2: Results for influence maximization with dynamic cardinality constraints

Changes GGA AGGA POMC1000 POMC5000 POMC10000 POMCWP
1000 POMCWP

5000 POMCWP
10000

mean st mean st mean st mean st mean st mean st mean st mean st
1-25 130.9410 14.71 130.6550 14.36 84.8898 24.32 114.8272 23.09 121.1330 19.72 125.2047 10.75 128.6376 13.52 129.3003 15.72

26-50 145.6766 20.70 145.0774 20.11 133.2130 14.69 155.4231 13.98 158.0245 14.34 149.1073 10.62 157.2572 13.28 159.3071 13.40
51-75 160.2780 26.86 159.6331 26.50 164.9157 3.84 184.3274 3.45 187.1952 3.68 171.8898 3.46 187.0476 3.99 187.8508 4.26

76-100 167.9512 26.84 167.3365 26.60 171.5600 1.89 189.4834 2.74 189.6107 2.78 176.1166 1.92 190.3793 3.29 191.5821 3.06
101-125 172.1483 25.45 171.6884 25.35 174.3528 2.11 188.2120 2.32 188.7572 2.46 176.9912 2.47 188.6362 2.63 190.1389 2.35
126-150 174.0582 23.77 173.6528 23.72 174.0404 5.88 183.0188 6.65 183.8033 6.47 175.6150 5.17 183.3861 6.82 184.6115 7.09
151-175 175.1998 22.23 174.8330 22.21 174.5846 4.03 181.3669 4.01 188.4192 3.60 175.6140 3.37 181.7484 3.82 182.9550 4.25
176-200 175.1023 20.94 174.7836 20.92 168.8791 8.05 173.8794 7.28 175.2773 7.23 169.8283 6.73 174.5172 7.19 175.1586 7.39

Figure 2: Budget over time for dynamic problems

randomly in the plane and the edge costs are given by Eu-
clidean distances. Furthermore, each chosen node has a cost
of 0.1.

We compare the final results for the generalized greedy
and adaptive generalized greedy algorithms with our new
POMC approach based on the uniform distribution with all
the weights being one. Table 1 shows the results of influence
spread for the generalized greedy (GGA), adaptive general-
ized greedy (AGGA), POMC⌧ for ⌧ = 1000, 5000, 10000,
and POMCWP

⌧ for ⌧ = 1000, 5000, 10000 and with a warm-
up phase (WP) where we run the algorithm for 10000 gen-
eration as the initial setting prior to the dynamic process.

Table 1 shows that the generalized greedy algorithm has
a better performance than the adaptive one during the dy-
namic changes. Particularly, after the first 75 changes, the
generalized greedy algorithm shows a significantly better
performance than the adaptive generalized greedy algorithm
which shows that adapting the greedy solutions significantly
reduces performance compared to running the greedy algo-
rithm for the newly given budget from scratch.

Comparing POMC⌧ to the greedy approaches we can see
that POMC⌧ for ⌧ = 1000, 5000 performs worse than the
generalized greedy algorithm during the first 25 changes.
However, POMC⌧ is able to improve its performance over
time and outperforms the generalized greedy algorithm after
the first 25 changes have occurred. Considering POMCWP

⌧
it can be observed that the warm-up phase leads to higher
performing results than running the generalized greedy al-
gorithm for any interval of changes.

Comparing the different parameter settings used for
POMC⌧ , it can be observed that POMC⌧ for ⌧ = 10000
always performs better as POMC⌧ for ⌧ = 1000, 5000 until
125 iteration for dynamic routing constraints. Particularly,
during the changes 126 � 175, POMC⌧ with ⌧ = 5000
achieves better solutions.

We see that POMC⌧ with warm-up for ⌧ = 1000, 5000

outperforms POMC⌧ without warm-up within the first 25
iterations. In the other cases, there are no clear difference
between running POMC⌧ with or without warm-up when
considering the same value of ⌧ . This depicts that the al-
gorithm adapts quite quickly to the problem and shows that
the warm-up is only necessary for the first 25 changes if the
value of ⌧ is quite small.

Influence Maximization with Dynamic Cardinality

Constraints

To consider the cardinality constraint, we use the social
news data which is collected from the social news aggre-
gator Digg. Digg dataset contains stories submitted to the
platform over a period of a month, and users id who voted
on the popular stories. The data consist of two tables that
describe friendship links between users and the anonymized
user votes on news stories (Hogg and Lerman 2012). As
in (Qian et al. 2017b), we use the preprocessed data with
3523 nodes and 90244 edges, and estimated edge probabil-
ities from the user votes based on the method in (Barbieri,
Bonchi, and Manco 2012).

The experimental results are shown in Table 2. In contrast
to the routing constraint, we see that the generalized greedy
does not have a major advantage over the adaptive general-
ized greedy when considering the problem with the cardinal-
ity constraint. Although the generalized greedy achieves bet-
ter results in all of the intervals, the performance of the adap-
tive generalized greedy is highly comparable. In most of the
intervals, they achieve almost the same results. The reason
for this might be that the change in cost when adding or re-
moving an item is always 1 which makes it less likely for
the adaptive generalized greedy algorithm to run into situa-
tions where it obtains solutions of low quality. We consider
POMC⌧ for ⌧ = 1000, 5000, 10000 with and without warm-
up phase. Comparing POMC⌧ to the greedy approaches for
the problem with the cardinality constraint, we get a similar
picture as for the routing constraint. Apart from some ex-
ceptions POMC⌧ achieves better solutions than the greedy
approaches.

POMC⌧ with warm-up phase also clearly outperforms
POMC⌧ without warm-up for early changes. Overall,
POMC⌧ with warm-up achieves improvements in terms of
objective value in most cases over POMC⌧ without warm-
up, the generalized greedy approach and the adaptive gener-
alized greedy approach.

Budget over time for dynamic problems

Experimental results

Table 2: Results for influence maximization with dynamic cardinality constraints

Changes GGA AGGA POMC1000 POMC5000 POMC10000 POMCWP
1000 POMCWP

5000 POMCWP
10000

mean st mean st mean st mean st mean st mean st mean st mean st
1-25 130.9410 14.71 130.6550 14.36 84.8898 24.32 114.8272 23.09 121.1330 19.72 125.2047 10.75 128.6376 13.52 129.3003 15.72

26-50 145.6766 20.70 145.0774 20.11 133.2130 14.69 155.4231 13.98 158.0245 14.34 149.1073 10.62 157.2572 13.28 159.3071 13.40
51-75 160.2780 26.86 159.6331 26.50 164.9157 3.84 184.3274 3.45 187.1952 3.68 171.8898 3.46 187.0476 3.99 187.8508 4.26

76-100 167.9512 26.84 167.3365 26.60 171.5600 1.89 189.4834 2.74 189.6107 2.78 176.1166 1.92 190.3793 3.29 191.5821 3.06
101-125 172.1483 25.45 171.6884 25.35 174.3528 2.11 188.2120 2.32 188.7572 2.46 176.9912 2.47 188.6362 2.63 190.1389 2.35
126-150 174.0582 23.77 173.6528 23.72 174.0404 5.88 183.0188 6.65 183.8033 6.47 175.6150 5.17 183.3861 6.82 184.6115 7.09
151-175 175.1998 22.23 174.8330 22.21 174.5846 4.03 181.3669 4.01 188.4192 3.60 175.6140 3.37 181.7484 3.82 182.9550 4.25
176-200 175.1023 20.94 174.7836 20.92 168.8791 8.05 173.8794 7.28 175.2773 7.23 169.8283 6.73 174.5172 7.19 175.1586 7.39

Figure 2: Budget over time for dynamic problems

randomly in the plane and the edge costs are given by Eu-
clidean distances. Furthermore, each chosen node has a cost
of 0.1.

We compare the final results for the generalized greedy
and adaptive generalized greedy algorithms with our new
POMC approach based on the uniform distribution with all
the weights being one. Table 1 shows the results of influence
spread for the generalized greedy (GGA), adaptive general-
ized greedy (AGGA), POMC⌧ for ⌧ = 1000, 5000, 10000,
and POMCWP

⌧ for ⌧ = 1000, 5000, 10000 and with a warm-
up phase (WP) where we run the algorithm for 10000 gen-
eration as the initial setting prior to the dynamic process.

Table 1 shows that the generalized greedy algorithm has
a better performance than the adaptive one during the dy-
namic changes. Particularly, after the first 75 changes, the
generalized greedy algorithm shows a significantly better
performance than the adaptive generalized greedy algorithm
which shows that adapting the greedy solutions significantly
reduces performance compared to running the greedy algo-
rithm for the newly given budget from scratch.

Comparing POMC⌧ to the greedy approaches we can see
that POMC⌧ for ⌧ = 1000, 5000 performs worse than the
generalized greedy algorithm during the first 25 changes.
However, POMC⌧ is able to improve its performance over
time and outperforms the generalized greedy algorithm after
the first 25 changes have occurred. Considering POMCWP

⌧
it can be observed that the warm-up phase leads to higher
performing results than running the generalized greedy al-
gorithm for any interval of changes.

Comparing the different parameter settings used for
POMC⌧ , it can be observed that POMC⌧ for ⌧ = 10000
always performs better as POMC⌧ for ⌧ = 1000, 5000 until
125 iteration for dynamic routing constraints. Particularly,
during the changes 126 � 175, POMC⌧ with ⌧ = 5000
achieves better solutions.

We see that POMC⌧ with warm-up for ⌧ = 1000, 5000

outperforms POMC⌧ without warm-up within the first 25
iterations. In the other cases, there are no clear difference
between running POMC⌧ with or without warm-up when
considering the same value of ⌧ . This depicts that the al-
gorithm adapts quite quickly to the problem and shows that
the warm-up is only necessary for the first 25 changes if the
value of ⌧ is quite small.

Influence Maximization with Dynamic Cardinality

Constraints

To consider the cardinality constraint, we use the social
news data which is collected from the social news aggre-
gator Digg. Digg dataset contains stories submitted to the
platform over a period of a month, and users id who voted
on the popular stories. The data consist of two tables that
describe friendship links between users and the anonymized
user votes on news stories (Hogg and Lerman 2012). As
in (Qian et al. 2017b), we use the preprocessed data with
3523 nodes and 90244 edges, and estimated edge probabil-
ities from the user votes based on the method in (Barbieri,
Bonchi, and Manco 2012).

The experimental results are shown in Table 2. In contrast
to the routing constraint, we see that the generalized greedy
does not have a major advantage over the adaptive general-
ized greedy when considering the problem with the cardinal-
ity constraint. Although the generalized greedy achieves bet-
ter results in all of the intervals, the performance of the adap-
tive generalized greedy is highly comparable. In most of the
intervals, they achieve almost the same results. The reason
for this might be that the change in cost when adding or re-
moving an item is always 1 which makes it less likely for
the adaptive generalized greedy algorithm to run into situa-
tions where it obtains solutions of low quality. We consider
POMC⌧ for ⌧ = 1000, 5000, 10000 with and without warm-
up phase. Comparing POMC⌧ to the greedy approaches for
the problem with the cardinality constraint, we get a similar
picture as for the routing constraint. Apart from some ex-
ceptions POMC⌧ achieves better solutions than the greedy
approaches.

POMC⌧ with warm-up phase also clearly outperforms
POMC⌧ without warm-up for early changes. Overall,
POMC⌧ with warm-up achieves improvements in terms of
objective value in most cases over POMC⌧ without warm-
up, the generalized greedy approach and the adaptive gener-
alized greedy approach.

Table 1: Results for influence maximization with dynamic routing constraints

Changes GGA AGGA POMC1000 POMC5000 POMC10000 POMCWP
1000 POMCWP

5000 POMCWP
10000

mean st mean st mean st mean st mean st mean st mean st mean st
1-25 85.0349 12.88 81.5734 14.07 66.3992 17.95 77.8569 18.76 86.1057 17.22 86.3846 10.76 86.9270 12.86 85.8794 14.69

26-50 100.7344 22.16 96.1386 23.99 104.9102 15.50 117.6439 16.71 122.5604 15.54 110.4279 11.08 115.6766 14.21 120.8651 14.97
51-75 118.1568 30.82 110.4893 29.50 141.8249 5.64 155.2126 5.08 158.7228 5.20 140.7838 5.02 149.7658 5.49 157.6169 5.54

76-100 127.3422 31.14 115.2978 27.66 149.0259 3.36 159.9100 3.28 162.7353 3.65 148.3012 3.47 155.1943 4.04 163.1958 3.74
101-125 132.3502 29.62 116.9768 25.45 150.3415 3.17 160.1367 2.81 161.2852 2.68 148.5254 2.67 155.1104 3.05 162.3770 2.81
126-150 134.5256 27.69 118.6962 24.19 147.8998 7.36 154.7319 8.77 154.1470 7.43 143.4908 7.96 150.7567 7.82 156.0363 8.12
151-175 135.7651 25.89 119.4982 22.85 147.2478 4.68 153.1417 5.32 151.2966 3.17 143.2959 4.79 149.5447 4.87 153.2526 3.85
176-200 135.5133 24.41 119.1491 22.04 139.5072 8.08 143.6928 9.16 143.9832 8.67 134.7968 8.72 140.5930 8.61 144.4088 8.08

Otherwise, we have

f(X 0) �
✓
1� (1� ↵f

B

B⇤k0
)k

0
◆
· f(X̃B⇤).

From this point, the argument in the proof of Theorem 5
holds i.e. POMC obtains for each value b 2 [B,B

⇤] a �-
approximation after d

�ĉ
successes.

Hence, after T = cnPmaxd/�ĉ iterations, for all b 2
[B,B

⇤] with probability 1 � d
�ĉ

· e�
d
�ĉ , we have a � =

(↵f/2)(1� 1
e↵f)-approximation in the population.

Note that if the dynamic change sufficiently large such
that d

�ĉ
� log n, then the probability of having obtained for

every budget b 2 [0, B⇤] a �-approximation increases to 1�
o(1). A success probability of 1 � o(1) can be obtained for
magnitude of changes by giving the algorithm time T

0 =
cnPmax max{log n, d

�ĉ
}, c � 8e+ 1.

A special class of studied problems is the maximization
of a function with a cardinality constraint. In this case, the
constraint value can take on at most n + 1 different values
and we have Pmax  n + 1. Furthermore, we have � = 1
which leads to the following two corollaries.
Corollary 7. Consider the static problem with cardinality
constraint bound B. POMC computes for every budget b 2
[0, B] a �-approximation within T = cn

2 ·max{B, log n},
c � 8e+ 1, iterations with probability 1� o(1).
Corollary 8. Consider the dynamic problem with a car-
dinality constraint B. Assume that P contains for every
b 2 [0, B] a �-approximation. Then after increasing the bud-
get to B

⇤, POMC computes for every budget b 2 [0, B⇤] a
�-approximation in time T = cn

2 max{d, log n}, c � 8e+1
and d = |B⇤ �B|, with probability 1� o(1).

Experimental Investigations

We compare the generalized greedy algorithm (GGA) and
adaptive generalized greedy algorithm (AGGA) with the
POMC algorithm on the submodular influence maximiza-
tion problem (Zhang and Vorobeychik 2016; Qian et al.
2017b). We consider dynamic variants of the problems
where the constraint bound changes over time.

The Influence Maximization Problem

The influence maximization problem aims to identify a set
of most influential users in a social network. Given a di-
rected graph G = (V,E) where each node represents a
user. Each edge (u, v) 2 E has assigned an edge proba-
bility pu,v((u, v) 2 E). The probability pu,v corresponds to

the strengths of influence from user u to user v. The goal is
to find a subset X ✓ V such that the expected number of ac-
tivated nodes IC(X) of X is maximized. Given a cost func-
tion c and a budget B the submodular optimization problem
is formulated as

argmax
X✓V

E[|IC(X)|] s.t. c(X)  B.

We consider two types of cost functions. The routing
constraint takes into account the costs of visiting nodes
whereas the cardinality constraint counts the number of cho-
sen nodes. For both cost functions, the constraint is met if the
cost is at most B.

For more detailed descriptions of the influence maximiza-
tion problem through a social network we refer the reader to
(Kempe, Kleinberg, and Tardos 2015; Zhang and Vorobey-
chik 2016; Qian et al. 2017b).

For our dynamic constraint bound changes, we follow the
approach taken in (Roostapour, Neumann, and Neumann
2018). We assume that the initial constraint bound is B = 10
and stays within the interval [5, 30]. We consider a sequence
of 200 constraint bounds obtained by randomly increasing
or decreasing B by a value of 1. The values of B over time
used in our studies are shown in Figure 2. For the exper-
imental investigations of POMC, we consider a parameter
⌧ which determines the number of generations that the al-
gorithm is able to spend between constraint changes. Fur-
thermore, we consider the option of POMC having a warm-
up phase where there are no dynamic changes for the first
10000 iterations. This allows POMC to do some computa-
tion for the initial bound. It should be noted that the number
of iterations in the warm-up phase and our choices of ⌧ are
relatively small compared to the choice of 10eBn

2 used in
(Qian et al. 2017b) for optimizing the static problem with a
given fixed bound B. The results are shown in Tables 1 and
2 and we report for each batch of 25 consecutive constraint
bounds the average solution quality and standard deviation.

Influence Maximization with Dynamic Routing

Constraints

We investigate the influence maximization for routing con-
straints based on simulated networks as done for the static
case in (Qian et al. 2017b). We consider a social network
with 400 nodes that are build on popular Barabasi-Albert
(BA) model (Albert and Barabási 2002) with edge proba-
bility p = 0.1. The routing network is based on the Erdos-
Renyi (ER) model (Erdős and Rényi 1959) where each edge
is presented with probability p = 0.02. Nodes are placed

Dynamic routing constraints

Dynamic cardinality constraints

Summary

• Dynamic problems play a key role in the area of optimization.

• We have shown that an adaptive version of the generalized
greedy algorithm only achieves arbitrary bad performance for
simple submodular problems.

• The POMC Pareto optimization approach caters for dynamic
changes by having for each possible budget b ≤ B a good
approximation.

• POMC can recompute good approximations for all new
possible budgets in the case of budget b ∈ [B, B∗] increase from
B to B∗ efficiently.

• Experiments on influence maximization in social networks
show the advantage of POMC over greedy approaches.

Problems with Chance Constraints

[B. Doer, C. Doerr, A. Neumann, F. Neumann, A. M. Sutton:
Optimization of Chance-Constrained Submodular Functions, AAAI'20]

Chance Constraints - Motivation

• Often problems involve stochastic components and
constraints that can only be violated with a small probability.

• We investigate submodular problems with chance constraints
and show that the adaptation of simple greedy algorithms
asymptotically only looses a factor of 1-o(1) in terms of the
worst case approximation obtained.

Chance Constraints

Let S be a potential solution to a given submodular problem, W(S)
be its random weight and B be a given weight bound.
We consider chance constraints of the form:

possible approximation ratio in polynomial time, unless
P=NP (NWF78). (FGN+19) recently showed that greedy
approaches are also successful when dealing with non-
monotone submodular functions. Furthermore, Pareto opti-
mization approaches can achieve the same worst-case per-
formance guarantees while performing better than greedy
approaches in practice if the user allows for a sufficiently
large time budget (QSYT17; QYZ15; QSY+17). (RNNF19)
showed that the adaptation of greedy approaches to mono-
tone submodular problems with dynamic constraints might
lead arbitrarily bad approximation behavior, whereas a
Pareto optimization approach can effectively deal with dy-
namic changes. Evolutionary algorithms for the chance-
constrained knapsack problem, which constitutes a sub-
class of the chance-constrained submodular problems exam-
ined in this paper, have been experimentally investigated by
(XHA+19).

The paper is structured as follows. Next, we introduce
the class of submodular optimization problems and the al-
gorithms that are subject to our investigations. Afterwards,
we establish conditions to meet the chance constraints based
on tail-bound inequalities. We present our theoretical results
for chance-constrained submodular optimization for differ-
ent classes of weights. Building on these foundations, we
present empirical results that illustrate the effect of different
settings of uncertainty on the considered greedy algorithms
for the influence maximization problem in social networks.
Finally, we finish with some concluding remarks.

Chance-Constrained Submodular Functions

Given a set V = {v1, . . . , vn}, we consider the optimization
of a monotone submodular function f : 2V ! R�0. A func-
tion is called monotone iff for every S, T ✓ V with S ✓ T ,
f(S)  f(T) holds. A function f is called submodular iff
for every S, T ✓ V with S ✓ T and x 62 T we have

f(S [{x})� f(S) � f(T [{x})� f(T).

We consider the optimization of such a monotone sub-
modular function f subject to a chance constraint where
each element s 2 V takes on a random weight W (s). Pre-
cisely, we are considering constraints of the type

Pr[W (S) > B]  ↵.

where W (S) =
P

s2S W (s) is the sum of the random
weights of the elements and B is the given constraint bound.
The parameter ↵ quantifies the probability of exceeding the
bound B that can be tolerated.

It should be noted that for the uniform distribution, the
exact joint distribution can, in principle, be computed as
convolution if the random variables are independent. There
is also an exact expression for the Irwin-Hall distribu-
tion (JKB95) which assumes that all random variables are
independent and uniformly distributed within [0, 1]. How-
ever, using these approaches may not be practical when the
number of chosen items is large.

Greedy Algorithms

We consider in this work the performance of greedy algo-
rithms for the optimization of chance constrained submod-

ular functions. Our first greedy algorithm (GA, see Algo-
rithm 1) starts with an empty set and subsequently adds in
each iteration an element with the largest marginal gain that
does not violate the chance constraint. It ends when no fur-
ther element can be added. Algorithm 1 was already investi-
gated by (NWF78) in the deterministic setting. Note that the
computation of the probability Pr[W (S) > B] can usually
not be computed exactly and we make use of a surrogate
cPr[W (S) > B]  ↵ on this value (see line 5 of Algo-
rithm 1). Since we use upper bounds for the constraint vi-
olation probability, we are guaranteed that the constraint is
met whenever our surrogate cPr is at most ↵.

Our second greedy algorithm is the generalized greedy
algorithm (GGA), and is listed in Algorithm 2. The GGA
extends the GA to the case in which the elements have dif-
ferent expected weights. It has previously been used in the
deterministic setting (KMN99; LKG+07). The algorithm
starts with the empty set. In each iteration, it adds an el-
ement whose ratio of the additional gain with respect to
the submodular function f and the expected weight increase
E[W (S [{v})�W (S)] of the constraint is maximal while
still satisfying the chance constraint. The algorithm termi-
nates if no further element can be added. At this point, it
compares this constructed greedy solution with each of the
n solutions consisting of a single element, and returns the
solution with the maximal f -value subject to the surrogate
function is at most ↵. Note that we are using the exact cal-
culation for Pr[W (v) > B] when considering a single el-
ement in line 9. Lines 9 and 10 of Algorithm 2 are needed
in cases where large items of high profit exist, see (KMN99;
LKG+07) for more details.

Concentration Bounds

We work with two different surrogates, which are con-
centration bounds of Chernoff and Chebyshev type. Such
bounds are frequently used in the analysis of randomized al-
gorithms (MR95). All bounds are well-known and can be
found, e.g., in (Doe18).
Theorem 1 (Multiplicative Chernoff bound). Let

X1, . . . , Xn be independent random variables taking

values in [0, 1]. Let X =
Pn

i=1 Xi. Let ✏ � 0. Then

Pr[X � (1 + ✏)E[X]] 
✓

e
✏

(1 + ✏)1+✏

◆E[X]

(1)

 exp

✓
� min{✏2, ✏}E[X]

3

◆
. (2)

For ✏  1, (2) simplifies to

Pr[X � (1 + ✏)E[X]]  exp

✓
� ✏

2
E[X]

3

◆
. (3)

For our experimental investigations, we work with equa-
tion (1), whereas equation (3) is used through our theoreti-
cal analysis. Note that equation (3) gives the weaker bound.
Therefore, our theoretical results showing approximation
guarantees also hold when working with equation (1). Cher-
noff bounds are very useful when requiring very small val-
ues of ↵. For larger values of ↵, e.g. ↵ = 0.1, we often get

Weight bound can only be violated with a small probability.

small, e.g. 0.001

Setting for Random Weights

• We consider two settings for random weights of a given set of
items.

• Both settings assume that the weights of the items are chosen
independent of each other.

Uniform independent and identically distributed (IID) weights:

Uniform Weights with same dispersion

Uniform IID Weights

We first study the case that all items have iid weights
W (s) 2 [a � �, a + �] (�  a). For this case we prove
that the greedy algorithm with the Chernoff bound surrogate
achieves a (1 � o(1))(1 � 1/e) approximation of the opti-
mal solution for the deterministic setting when B = !(1).
This extends the same bound for the deterministic setting by
(NWF78) to the chance-constrained case.

Theorem 3. Let a > 0 and 0  � < a. Let W (s) 2
[a � �, a + �] be chosen uniformly at random for all s. Let

✏(k) =
p

3�k ln(1/↵)

a and k
⇤

be the largest integer such that

k + ✏(k)  kopt := bB/ac.

Then the first k
⇤

items chosen by the greedy al-

gorithm satisfy the chance constraint and are a

1� (1/e) exp(1+✏(k)
k⇤+1+✏(k))-approximation. For B = !(1),

this is a (1� o(1))(1� 1/e)-approximation.

Proof. Let kopt = bB/ac be the number of elements that
are contained in an optimal solution OPT in the case that
the weights are deterministic and attain the value a.

Having produced a solution with k elements following the
greedy procedure, we have obtained a solution X where

f(X) � (1� (1� 1/kopt)
k) · f(OPT)

due to an inductive argument given by (NWF78).
We now give a lower bound on k using Chernoff bound

as a surrogate. Let X be a set of selected items containing
k = |X| elements and E[X] =

P
x2X a(x) be its expected

weight, � be the uncertainty common to all items.
Since all items have the same expected weight a, we have

E[W (X)] = ak. Using Lemma 1, the chance constraint is
met if (B � ak) �

p
3�k ln(1/↵). We have kopt = bB/ac

for the number of elements that could be added if the weights

were deterministic. So any k with k +
p

3�k ln(1/↵)

a  kopt

is feasible when using the Chernoff bound.
Let

k
⇤ = max

(
k

����� k +

p
3�k ln(1/↵)

a
 kopt

)
. (5)

Then

kopt < (k⇤ + 1) +

p
3�(k⇤ + 1) ln(1/↵)

a
=: �(k⇤).

Let X⇤ be a solution with k
⇤ elements constructed by the

greedy algorithm. Using the well-known estimate (1+x) 
e
x, we bound f(X⇤) from below by

(1�(1� 1/kopt)
k⇤
) · f(OPT)

�

1�

✓
1� 1

�(k⇤)

◆k⇤!
· f(OPT)

�
✓
1� exp

✓
� k

⇤

�(k⇤)

◆◆
· f(OPT)

=

✓
1� exp

✓
� k

⇤

k⇤ + 1 + ✏(k⇤ + 1)

◆◆
· f(OPT)

=

✓
1� 1

e
exp

✓
1 + ✏(k⇤ + 1)

k⇤ + 1 + ✏(k⇤ + 1)

◆◆
· f(OPT).

When k
⇤ = !(1), the exp(·) expression is (1+o(1)), yield-

ing the asymptotic part of the claim.

For comparison, we now determine what can be obtained
from using a surrogate based on Chebyshev’s inequality.
This bound is weaker for small values of ↵, but can be bet-
ter for larger values of ↵ (depending on the other constants
involved).

We observe that Var[W (X)] = |X| · �2/3. Defining

✏̃(k) =
p

(1�↵)k�2p
3↵a

and replacing equation (5) by

k
⇤ = max {k | k + ✏̃  kopt}

our proof above yields the following theorem.
Theorem 4. Let a > 0 and 0  � < a. Let W (s) 2 [a �
�, a+�] be chosen uniformly at random for all s. Let ✏̃(k) =p

(1�↵)k�2p
3↵a

and k
⇤

be the largest integer such that k+✏̃(k) 
kopt := bB/ac.

Then the first k
⇤

items chosen by the greedy al-

gorithm satisfy the chance constraint and are a

1� (1/e) exp(1+✏̃(k)
k⇤+1+✏̃(k))-approximation. For B = !(1),

this is a (1� o(1))(1� 1/e)-approximation.

Note that the main difference between the Chernoff bound
and Chebyshev’s inequality lies in the confidence level of
↵ that needs to be achieved as the equation using Chernoff
only increases logarithmically with 1/↵, whereas the one
based on Chebyshev’s inequality increases with the square
root of 1/↵.

We note that, in principle, Chebyshev’s inequality does
not require that the items are chosen independently. We can
use Chebyshev’s inequality and the approach above when-
ever we can compute the variance.

Uniform Weights with the Same Dispersion

We now consider the case that the items may have different
random weights W (s) 2 [a(s)� �, a(s) + �]. However, we
still assume the weights are chosen independently and uni-
formly at random. We also assume that the uncertainty � is
the same for all items.

Let amax = maxs2V a(s). We assume that amax+��B
2� 

↵ holds. This means that every single item fulfills the chance
constraint. Note that items that would not fulfill this condi-
tion could be filtered out in a preprocessing step as they can

Uniform IID Weights

We first study the case that all items have iid weights
W (s) 2 [a � �, a + �] (�  a). For this case we prove
that the greedy algorithm with the Chernoff bound surrogate
achieves a (1 � o(1))(1 � 1/e) approximation of the opti-
mal solution for the deterministic setting when B = !(1).
This extends the same bound for the deterministic setting by
(NWF78) to the chance-constrained case.

Theorem 3. Let a > 0 and 0  � < a. Let W (s) 2
[a � �, a + �] be chosen uniformly at random for all s. Let

✏(k) =
p

3�k ln(1/↵)

a and k
⇤

be the largest integer such that

k + ✏(k)  kopt := bB/ac.

Then the first k
⇤

items chosen by the greedy al-

gorithm satisfy the chance constraint and are a

1� (1/e) exp(1+✏(k)
k⇤+1+✏(k))-approximation. For B = !(1),

this is a (1� o(1))(1� 1/e)-approximation.

Proof. Let kopt = bB/ac be the number of elements that
are contained in an optimal solution OPT in the case that
the weights are deterministic and attain the value a.

Having produced a solution with k elements following the
greedy procedure, we have obtained a solution X where

f(X) � (1� (1� 1/kopt)
k) · f(OPT)

due to an inductive argument given by (NWF78).
We now give a lower bound on k using Chernoff bound

as a surrogate. Let X be a set of selected items containing
k = |X| elements and E[X] =

P
x2X a(x) be its expected

weight, � be the uncertainty common to all items.
Since all items have the same expected weight a, we have

E[W (X)] = ak. Using Lemma 1, the chance constraint is
met if (B � ak) �

p
3�k ln(1/↵). We have kopt = bB/ac

for the number of elements that could be added if the weights

were deterministic. So any k with k +
p

3�k ln(1/↵)

a  kopt

is feasible when using the Chernoff bound.
Let

k
⇤ = max

(
k

����� k +

p
3�k ln(1/↵)

a
 kopt

)
. (5)

Then

kopt < (k⇤ + 1) +

p
3�(k⇤ + 1) ln(1/↵)

a
=: �(k⇤).

Let X⇤ be a solution with k
⇤ elements constructed by the

greedy algorithm. Using the well-known estimate (1+x) 
e
x, we bound f(X⇤) from below by

(1�(1� 1/kopt)
k⇤
) · f(OPT)

�

1�

✓
1� 1

�(k⇤)

◆k⇤!
· f(OPT)

�
✓
1� exp

✓
� k

⇤

�(k⇤)

◆◆
· f(OPT)

=

✓
1� exp

✓
� k

⇤

k⇤ + 1 + ✏(k⇤ + 1)

◆◆
· f(OPT)

=

✓
1� 1

e
exp

✓
1 + ✏(k⇤ + 1)

k⇤ + 1 + ✏(k⇤ + 1)

◆◆
· f(OPT).

When k
⇤ = !(1), the exp(·) expression is (1+o(1)), yield-

ing the asymptotic part of the claim.

For comparison, we now determine what can be obtained
from using a surrogate based on Chebyshev’s inequality.
This bound is weaker for small values of ↵, but can be bet-
ter for larger values of ↵ (depending on the other constants
involved).

We observe that Var[W (X)] = |X| · �2/3. Defining

✏̃(k) =
p

(1�↵)k�2p
3↵a

and replacing equation (5) by

k
⇤ = max {k | k + ✏̃  kopt}

our proof above yields the following theorem.
Theorem 4. Let a > 0 and 0  � < a. Let W (s) 2 [a �
�, a+�] be chosen uniformly at random for all s. Let ✏̃(k) =p

(1�↵)k�2p
3↵a

and k
⇤

be the largest integer such that k+✏̃(k) 
kopt := bB/ac.

Then the first k
⇤

items chosen by the greedy al-

gorithm satisfy the chance constraint and are a

1� (1/e) exp(1+✏̃(k)
k⇤+1+✏̃(k))-approximation. For B = !(1),

this is a (1� o(1))(1� 1/e)-approximation.

Note that the main difference between the Chernoff bound
and Chebyshev’s inequality lies in the confidence level of
↵ that needs to be achieved as the equation using Chernoff
only increases logarithmically with 1/↵, whereas the one
based on Chebyshev’s inequality increases with the square
root of 1/↵.

We note that, in principle, Chebyshev’s inequality does
not require that the items are chosen independently. We can
use Chebyshev’s inequality and the approach above when-
ever we can compute the variance.

Uniform Weights with the Same Dispersion

We now consider the case that the items may have different
random weights W (s) 2 [a(s)� �, a(s) + �]. However, we
still assume the weights are chosen independently and uni-
formly at random. We also assume that the uncertainty � is
the same for all items.

Let amax = maxs2V a(s). We assume that amax+��B
2� 

↵ holds. This means that every single item fulfills the chance
constraint. Note that items that would not fulfill this condi-
tion could be filtered out in a preprocessing step as they can

Chance Constraints

• One of the difficulties lies in evaluating whether a given
solution fulfills the chance constraint.

• Use surrogate functions such as Chernoff bounds and
Chebyshev’s inequality to determine whether a solution is
feasible. [Chebyshev, MPA'67; Chernoff, AMS'52]

• These bounds don’t allow for a precise calculation for the
probability of a constraint violation.

• However, the give an upper bound and a solution is accepted
if its upper bound is at most .

• For our settings, we establish conditions based on the
difference in expected weight and constraint B that show
when a given solution is feasible.

↵

<latexit sha1_base64="1Nw4vaLSsvYdr+yofNIpdGgHo9Y=">AAACrHicdVFNa9tAEF2rX4n6lbTHXJaKQk9GMoH2UhraHHp0IHYMlgij1cjeerUrdkcBR/g/5Npe+2P6E0r/TVa2D/loBhYeb97sPN7ktZKO4vhfL3j0+MnTZzu74fMXL1+93tt/M3amsQJHwihjJzk4VFLjiCQpnNQWocoVnuWLb13/7AKtk0af0rLGrIKZlqUUQJ4ap6DqOZzvRXE/Xhe/D5ItiL78CT/Xv/+Gw/P93lVaGNFUqEkocG6axDVlLViSQuEqTBuHNYgFzHDqoYYKXdau7a74e88UvDTWP018zd6caKFyblnlXlkBzd3dXkf+t9cxZIxy3sAxemMWhyAtFsc+n0oS2jS30KYK9My7bFPro6GHxQskL15rvHYz9JB40n3tB6aD7OaCLYgSnhad1MlLTLsfeTRYhbdzovJT1kpdN4RabGIqG8XJ8O5yvPD7BKmlByCs9ElzMQcLwm93ob9hcvdi98F40E8O+4cnSXT0lW1qhx2wd+wDS9hHdsS+syEbMcF+sCv2k/0K+sFpMA2yjTTobWfeslsVlNdm/9rv</latexit>

Greedy Algorithms

B
weight

value

Chance constraint case stops earlier.

How large is this gap?

Not too big!!!

Chance Constraint Conditions

Algorithm 1: Greedy Algorithm (GA)
input: Set of elements V , budget constraint B, failure

probability ↵.
1 S ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0(f(S [{v})� f(S));

5 if cPr[W (S [{v⇤}) > B]  ↵ then

6 S S [{v⇤};
7 V

0 V
0 \ {v⇤};

8 until V
0 ;;

9 return S;

Algorithm 2: Generalized Greedy Algorithm (GGA)
input: Set of elements V , budget constraint B, failure

probability ↵.
1 S ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0

f(S[{v})�f(S)
E[W (S[{v})�W (S)] ;

5 if cPr[W (S [{v⇤}) > B]  ↵ then

6 S S [{v⇤};
7 V

0 V
0 \ {v⇤};

8 until V
0 ;;

9 v
⇤ argmax{v2V ;Pr[W (v)>B]↵} f(v);

10 return argmaxY 2{S,{v⇤}} f(Y);

better estimates when working with a variant of Chebyshev’s
inequality. As we are only interested in the probability of ex-
ceeding a given constraint bound, we consider a one-sided
Chebyshev inequality (also known as Cantelli’s inequality),
which estimates the probability of exceeding the expected
value taking into account the variance of the considered ran-
dom variable.
Theorem 2 ((One-sided) Chebyshev’s inequality). Let X be

a random variable with expected value E[X] and variance

Var[X] > 0. Then, for all � > 0,

Pr[X � E[X] + �]  Var[X]

Var[X] + �2
. (4)

Chance Constraint Conditions

We now establish conditions to meet the chance constraint.
We start by considering the Chernoff bound given in equa-
tion (3).
Lemma 1. Let W (s) 2 [a(s)��, a(s)+�] be independently

chosen uniformly at random. If

(B � E[W (X)]) �
p
3�k ln(1/↵),

where k = |X|, then Pr[W (X) > B]  ↵.

Proof. Every item has an uncertainty of �. Instead of con-
sidering W (s) 2 [a(s) � �, a(s) + �] chosen uniformly at

random, we can consider W 0(s) 2 [0, 2�] chosen uniformly
at random and have W (s) = a(s) � � + W

0(s). For a se-
lection X with |X| = k elements, we can therefore write
W (X) = E[W (X)]� �k +

P
x2X W

0(X).
We have E[W 0(X)] = �k. We consider the probability

for exceeding this expected value by ✏�k. We set ✏ = (B �
E[W (X)])/(�k) which implies ✏�k + E[W (X)] = B.

We investigate
Pr[W (X) > B] = Pr[W 0(X) > ✏�k + k�].

Note that if ✏ = (B � E[W (X)])/(�k) > 1 then
Pr[W (X) > B] = 0 as all weights being maximal within
their range would not exceed the bound B. For ✏  1, we
get

Pr[W (X) > B] = Pr[W 0(X) > ✏�k + k�]

 exp

✓
� ✏

2
k�

3

◆

using equation (3). In order to meet the chance constraint,
we require

exp

✓
� ✏

2
k�

3

◆
 ↵

() �✏
2
k�

3
 ln(↵)

() ✏
2
k� � 3 ln(1/↵)

() ✏
2 � (3 ln(1/↵))/(k�).

This implies that ✏ �
p

(3 ln(1/↵))/(k�) meets the
chance constraint condition according to the considered
Chernoff bound. Setting ✏ = (B � E[W (X)])/(�k) leads
to

(B � E[W (X)])/(�k) �
p
(3 ln(1/↵))/(k�)

() (B � E[W (X)]) �
p

3�k ln(1/↵),

which completes the proof.

Based on Chebyshev’s inequality, we can obtain the fol-
lowing condition for meeting the chance constraint.
Lemma 2. Let X be a solution with expected weight

E[W (X)] and variance Var[W (X)]. If

B � E[W (X)] �
r

(1� ↵)Var[W (X)]

↵

then Pr[W (X) > B]  ↵.

Proof. We have
Var[W (X)]

Var[W (X)] + (B � E[W (X)])2
 ↵

() Var[W (X)]  ↵(Var[W (X)] + (B � E[W (X)])2)

() (1� ↵)Var[W (X)]  ↵(B � E[W (X)])2

() (B � E[W (X)])2 � (1� ↵)Var[W (X)]

↵

This together with Lemma 2 implies that the chance con-
straint is met if

B � E[W (X)] �
r

(1� ↵)Var[W (X)]

↵

holds.

Algorithm 1: Greedy Algorithm (GA)
input: Set of elements V , budget constraint B, failure

probability ↵.
1 S ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0(f(S [{v})� f(S));

5 if cPr[W (S [{v⇤}) > B]  ↵ then

6 S S [{v⇤};
7 V

0 V
0 \ {v⇤};

8 until V
0 ;;

9 return S;

Algorithm 2: Generalized Greedy Algorithm (GGA)
input: Set of elements V , budget constraint B, failure

probability ↵.
1 S ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0

f(S[{v})�f(S)
E[W (S[{v})�W (S)] ;

5 if cPr[W (S [{v⇤}) > B]  ↵ then

6 S S [{v⇤};
7 V

0 V
0 \ {v⇤};

8 until V
0 ;;

9 v
⇤ argmax{v2V ;Pr[W (v)>B]↵} f(v);

10 return argmaxY 2{S,{v⇤}} f(Y);

better estimates when working with a variant of Chebyshev’s
inequality. As we are only interested in the probability of ex-
ceeding a given constraint bound, we consider a one-sided
Chebyshev inequality (also known as Cantelli’s inequality),
which estimates the probability of exceeding the expected
value taking into account the variance of the considered ran-
dom variable.
Theorem 2 ((One-sided) Chebyshev’s inequality). Let X be

a random variable with expected value E[X] and variance

Var[X] > 0. Then, for all � > 0,

Pr[X � E[X] + �]  Var[X]

Var[X] + �2
. (4)

Chance Constraint Conditions

We now establish conditions to meet the chance constraint.
We start by considering the Chernoff bound given in equa-
tion (3).
Lemma 1. Let W (s) 2 [a(s)��, a(s)+�] be independently

chosen uniformly at random. If

(B � E[W (X)]) �
p
3�k ln(1/↵),

where k = |X|, then Pr[W (X) > B]  ↵.

Proof. Every item has an uncertainty of �. Instead of con-
sidering W (s) 2 [a(s) � �, a(s) + �] chosen uniformly at

random, we can consider W 0(s) 2 [0, 2�] chosen uniformly
at random and have W (s) = a(s) � � + W

0(s). For a se-
lection X with |X| = k elements, we can therefore write
W (X) = E[W (X)]� �k +

P
x2X W

0(X).
We have E[W 0(X)] = �k. We consider the probability

for exceeding this expected value by ✏�k. We set ✏ = (B �
E[W (X)])/(�k) which implies ✏�k + E[W (X)] = B.

We investigate
Pr[W (X) > B] = Pr[W 0(X) > ✏�k + k�].

Note that if ✏ = (B � E[W (X)])/(�k) > 1 then
Pr[W (X) > B] = 0 as all weights being maximal within
their range would not exceed the bound B. For ✏  1, we
get

Pr[W (X) > B] = Pr[W 0(X) > ✏�k + k�]

 exp

✓
� ✏

2
k�

3

◆

using equation (3). In order to meet the chance constraint,
we require

exp

✓
� ✏

2
k�

3

◆
 ↵

() �✏
2
k�

3
 ln(↵)

() ✏
2
k� � 3 ln(1/↵)

() ✏
2 � (3 ln(1/↵))/(k�).

This implies that ✏ �
p

(3 ln(1/↵))/(k�) meets the
chance constraint condition according to the considered
Chernoff bound. Setting ✏ = (B � E[W (X)])/(�k) leads
to

(B � E[W (X)])/(�k) �
p
(3 ln(1/↵))/(k�)

() (B � E[W (X)]) �
p

3�k ln(1/↵),

which completes the proof.

Based on Chebyshev’s inequality, we can obtain the fol-
lowing condition for meeting the chance constraint.
Lemma 2. Let X be a solution with expected weight

E[W (X)] and variance Var[W (X)]. If

B � E[W (X)] �
r

(1� ↵)Var[W (X)]

↵

then Pr[W (X) > B]  ↵.

Proof. We have
Var[W (X)]

Var[W (X)] + (B � E[W (X)])2
 ↵

() Var[W (X)]  ↵(Var[W (X)] + (B � E[W (X)])2)

() (1� ↵)Var[W (X)]  ↵(B � E[W (X)])2

() (B � E[W (X)])2 � (1� ↵)Var[W (X)]

↵

This together with Lemma 2 implies that the chance con-
straint is met if

B � E[W (X)] �
r

(1� ↵)Var[W (X)]

↵

holds.

Chernoff:

Chebyshev:

Uniform IID Weights

Theorem: If B = ω(1) then GA gives a (1-o(1))(1-1/e)- approximation
for each monotone submodular function when using Chernoff or
Chebyshev for the chance constraint evaluation.

Greedy Algorithm

Algorithm 1: Greedy Algorithm (GA)
input: Set of elements V , budget constraint B, failure

probability ↵.
1 S ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0(f(S [{v})� f(S));

5 if cPr[W (S [{v⇤}) > B]  ↵ then

6 S S [{v⇤};
7 V

0 V
0 \ {v⇤};

8 until V
0 ;;

9 return S;

Algorithm 2: Generalized Greedy Algorithm (GGA)
input: Set of elements V , budget constraint B, failure

probability ↵.
1 S ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0

f(S[{v})�f(S)
E[W (S[{v})�W (S)] ;

5 if cPr[W (S [{v⇤}) > B]  ↵ then

6 S S [{v⇤};
7 V

0 V
0 \ {v⇤};

8 until V
0 ;;

9 v
⇤ argmax{v2V ;Pr[W (v)>B]↵} f(v);

10 return argmaxY 2{S,{v⇤}} f(Y);

better estimates when working with a variant of Chebyshev’s
inequality. As we are only interested in the probability of ex-
ceeding a given constraint bound, we consider a one-sided
Chebyshev inequality (also known as Cantelli’s inequality),
which estimates the probability of exceeding the expected
value taking into account the variance of the considered ran-
dom variable.
Theorem 2 ((One-sided) Chebyshev’s inequality). Let X be

a random variable with expected value E[X] and variance

Var[X] > 0. Then, for all � > 0,

Pr[X � E[X] + �]  Var[X]

Var[X] + �2
. (4)

Chance Constraint Conditions

We now establish conditions to meet the chance constraint.
We start by considering the Chernoff bound given in equa-
tion (3).
Lemma 1. Let W (s) 2 [a(s)��, a(s)+�] be independently

chosen uniformly at random. If

(B � E[W (X)]) �
p
3�k ln(1/↵),

where k = |X|, then Pr[W (X) > B]  ↵.

Proof. Every item has an uncertainty of �. Instead of con-
sidering W (s) 2 [a(s) � �, a(s) + �] chosen uniformly at

random, we can consider W 0(s) 2 [0, 2�] chosen uniformly
at random and have W (s) = a(s) � � + W

0(s). For a se-
lection X with |X| = k elements, we can therefore write
W (X) = E[W (X)]� �k +

P
x2X W

0(X).
We have E[W 0(X)] = �k. We consider the probability

for exceeding this expected value by ✏�k. We set ✏ = (B �
E[W (X)])/(�k) which implies ✏�k + E[W (X)] = B.

We investigate
Pr[W (X) > B] = Pr[W 0(X) > ✏�k + k�].

Note that if ✏ = (B � E[W (X)])/(�k) > 1 then
Pr[W (X) > B] = 0 as all weights being maximal within
their range would not exceed the bound B. For ✏  1, we
get

Pr[W (X) > B] = Pr[W 0(X) > ✏�k + k�]

 exp

✓
� ✏

2
k�

3

◆

using equation (3). In order to meet the chance constraint,
we require

exp

✓
� ✏

2
k�

3

◆
 ↵

() �✏
2
k�

3
 ln(↵)

() ✏
2
k� � 3 ln(1/↵)

() ✏
2 � (3 ln(1/↵))/(k�).

This implies that ✏ �
p

(3 ln(1/↵))/(k�) meets the
chance constraint condition according to the considered
Chernoff bound. Setting ✏ = (B � E[W (X)])/(�k) leads
to

(B � E[W (X)])/(�k) �
p
(3 ln(1/↵))/(k�)

() (B � E[W (X)]) �
p

3�k ln(1/↵),

which completes the proof.

Based on Chebyshev’s inequality, we can obtain the fol-
lowing condition for meeting the chance constraint.
Lemma 2. Let X be a solution with expected weight

E[W (X)] and variance Var[W (X)]. If

B � E[W (X)] �
r

(1� ↵)Var[W (X)]

↵

then Pr[W (X) > B]  ↵.

Proof. We have
Var[W (X)]

Var[W (X)] + (B � E[W (X)])2
 ↵

() Var[W (X)]  ↵(Var[W (X)] + (B � E[W (X)])2)

() (1� ↵)Var[W (X)]  ↵(B � E[W (X)])2

() (B � E[W (X)])2 � (1� ↵)Var[W (X)]

↵

This together with Lemma 2 implies that the chance con-
straint is met if

B � E[W (X)] �
r

(1� ↵)Var[W (X)]

↵

holds.

Experiments

We consider the influence maximization problem in social
networks. [Zhang & Vorobeychik, AAA'16; Leskovec et al., SIGKDD'07; Kempe et al., SIGKDD'03;
Kempe et al., TC'15]

• Given a graph G = (V,E) where nodes are users and and edge
(u,v) have probability weights which determines how likely user
u influences user v.

• Expected influence score is computed by propagation from the
set of selected users. This is done through a simulation.

• In addition there is a constraint on the cost of selecting users.

• Goal: select a set of users that maximizes influence under the
given constraint.

• Chance constraint settings: expected weights of 1 for IID case.

Experimental Results – Cost values

Experimental Results – Function values

Uniform Weights with same dispersion

Theorem: If B = ω(1) then GGA gives a (1/2-o(1))(1-1/e)-
approximation for each monotone submodular function when using
Chernoff or Chebyshev for the chance constraint evaluation.

Generalized Greedy Algorithm

Algorithm 1: Greedy Algorithm (GA)
input: Set of elements V , budget constraint B, failure

probability ↵.
1 S ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0(f(S [{v})� f(S));

5 if cPr[W (S [{v⇤}) > B]  ↵ then

6 S S [{v⇤};
7 V

0 V
0 \ {v⇤};

8 until V
0 ;;

9 return S;

Algorithm 2: Generalized Greedy Algorithm (GGA)
input: Set of elements V , budget constraint B, failure

probability ↵.
1 S ;;
2 V

0 V ;
3 repeat

4 v
⇤ argmaxv2V 0

f(S[{v})�f(S)
E[W (S[{v})�W (S)] ;

5 if cPr[W (S [{v⇤}) > B]  ↵ then

6 S S [{v⇤};
7 V

0 V
0 \ {v⇤};

8 until V
0 ;;

9 v
⇤ argmax{v2V ;Pr[W (v)>B]↵} f(v);

10 return argmaxY 2{S,{v⇤}} f(Y);

better estimates when working with a variant of Chebyshev’s
inequality. As we are only interested in the probability of ex-
ceeding a given constraint bound, we consider a one-sided
Chebyshev inequality (also known as Cantelli’s inequality),
which estimates the probability of exceeding the expected
value taking into account the variance of the considered ran-
dom variable.
Theorem 2 ((One-sided) Chebyshev’s inequality). Let X be

a random variable with expected value E[X] and variance

Var[X] > 0. Then, for all � > 0,

Pr[X � E[X] + �]  Var[X]

Var[X] + �2
. (4)

Chance Constraint Conditions

We now establish conditions to meet the chance constraint.
We start by considering the Chernoff bound given in equa-
tion (3).
Lemma 1. Let W (s) 2 [a(s)��, a(s)+�] be independently

chosen uniformly at random. If

(B � E[W (X)]) �
p
3�k ln(1/↵),

where k = |X|, then Pr[W (X) > B]  ↵.

Proof. Every item has an uncertainty of �. Instead of con-
sidering W (s) 2 [a(s) � �, a(s) + �] chosen uniformly at

random, we can consider W 0(s) 2 [0, 2�] chosen uniformly
at random and have W (s) = a(s) � � + W

0(s). For a se-
lection X with |X| = k elements, we can therefore write
W (X) = E[W (X)]� �k +

P
x2X W

0(X).
We have E[W 0(X)] = �k. We consider the probability

for exceeding this expected value by ✏�k. We set ✏ = (B �
E[W (X)])/(�k) which implies ✏�k + E[W (X)] = B.

We investigate
Pr[W (X) > B] = Pr[W 0(X) > ✏�k + k�].

Note that if ✏ = (B � E[W (X)])/(�k) > 1 then
Pr[W (X) > B] = 0 as all weights being maximal within
their range would not exceed the bound B. For ✏  1, we
get

Pr[W (X) > B] = Pr[W 0(X) > ✏�k + k�]

 exp

✓
� ✏

2
k�

3

◆

using equation (3). In order to meet the chance constraint,
we require

exp

✓
� ✏

2
k�

3

◆
 ↵

() �✏
2
k�

3
 ln(↵)

() ✏
2
k� � 3 ln(1/↵)

() ✏
2 � (3 ln(1/↵))/(k�).

This implies that ✏ �
p

(3 ln(1/↵))/(k�) meets the
chance constraint condition according to the considered
Chernoff bound. Setting ✏ = (B � E[W (X)])/(�k) leads
to

(B � E[W (X)])/(�k) �
p
(3 ln(1/↵))/(k�)

() (B � E[W (X)]) �
p

3�k ln(1/↵),

which completes the proof.

Based on Chebyshev’s inequality, we can obtain the fol-
lowing condition for meeting the chance constraint.
Lemma 2. Let X be a solution with expected weight

E[W (X)] and variance Var[W (X)]. If

B � E[W (X)] �
r

(1� ↵)Var[W (X)]

↵

then Pr[W (X) > B]  ↵.

Proof. We have
Var[W (X)]

Var[W (X)] + (B � E[W (X)])2
 ↵

() Var[W (X)]  ↵(Var[W (X)] + (B � E[W (X)])2)

() (1� ↵)Var[W (X)]  ↵(B � E[W (X)])2

() (B � E[W (X)])2 � (1� ↵)Var[W (X)]

↵

This together with Lemma 2 implies that the chance con-
straint is met if

B � E[W (X)] �
r

(1� ↵)Var[W (X)]

↵

holds.

Experimental Results – Function values

Expected weight 1+degree(v)
for uniform with same
dispersion case.

Summary

• Optimization problems often involve stochastic
components that effect the constraints of the problem.

• We presented a (first) study on submodular functions with
chance constraints.

• We showed that simple greedy algorithms popular for
dealing with monotone submodular functions can be
easily adapted to the chance constrained case.

• In terms of approximation, we asymptotically only loose a
factor of 1-o(1).

• Experimental results show the change in solution quality
dependent on the uncertainty of the weights and the
chance constraint violation probability.

 Problems with Chance Constraints:
Evolutionary Multi-Objective Algorithms

[A. Neumann and F. Neumann: Optimising Monotone Chance-
Constrained Submodular Functions Using Evolutionary Multi-
Objective Algorithms, PPSN'20]

• We consider the performance of the Global Simple
Evolutionary Multi-Objective Optimizer (GSEMO) and Non-
dominated Sorting Genetic Algorithm (NSGA-II) for the
optimisation of chance constrained submodular functions.

• Use and evaluate Pr using Chernoff bounds or Chebyshev’s
inequality.

• Uniform IID weights:

• Uniform weights with same dispersion:

Problem Definition

[Doerr, B., Doerr, C., Neumann, A., Neumann, F., Sutton, A. M., AAAI'20; Xie, Neumann, A.,
Neumann, F., GECCO'20; Xie et al., GECCO 2019; Assimi et al., ECAI'20]

Algorithm

Global Simple Evolutionary Multi-Objective Optimizer [Giel & Wegener, STACS'03]

Multi-Objective Formulation

Uniform IID Weights:

Uniform Weights with the Same Dispersion:

[Motwani & Raghavan,'95; Doerr & Neumann, NCS '20;
Xie, Harper, Assimi, Neumann, A., Neumann, F., GECCO'19]

Theoretical Results

Theorem: Let k = min{n + 1, ⌊C/a⌋} and assume ⌊C/a⌋ =
ω(1). Then the expected time until GSEMO has computed
a (1−o(1))(1−1/e)-approximation for a given monotone
submodular function under a chance constraint with
uniform iid weights is O(nk(k + log n)).

Theorem: If C/amax = ω(1) then GSEMO obtains a (1/2 −
o(1))(1 − 1/e)-approximation for a given monotone
submodular function under a chance constraint with
uniform weights having the same dispersion in expected
time O(Pmax · n(C/amin + log n + log(amax/amin))).

Uniform Weights with the Same Dispersion:

Uniform IID Weights:

[A. Neumann and F. Neumann, PPSN'20]

Experimental Results

Results for Influence Maximization with uniform chance constraints.
[Kempe et al., SIGKDD '03]

Experimental Results

Results for Maximum Coverage with uniform chance constraints.
[Feige, ACM'98, Khuller et al., IPL'99]

Summary

• We presented a first runtime analysis of evolutionary
algorithms for the optimisation of submodular functions with
chance constraints.

• We showed that GSEMO using a multi-objective formulation of
the problem based on tail inequalities is able to achieve the
same approximation guarantee as recently studied greedy
approaches.

• Experimental results show that GSEMO computes significantly
bener solutions than the greedy approach and often
outperforms NSGA-II.

Summary

• Many real-world optimisation problems can be formulated in
terms of optimising a submodular function under a given set
of constraints.

• A wide range of state-of-the-art results for submodular
problems have been obtained through evolutionary
computing techniques.

• Bi-objective formulations of constrained submodular
optimisation problems in terms of Pareto optimisation enable
evolutionary algorithms to achieve
– best theoretical performance guarantees and
– state-of-the-art practical results

for a wide range of submodular optimisation problems.
• These approaches are also able to deal with dynamic and

stochastic constraints in a very efficient way.

References

• L. Lovász. Submodular functions and convexity. In: A Bachem et al. (Eds): Mathematical
Programming The State of the Art, 235-257, 1983.

• G. L. Nemhauser, L. A. Wolsey and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions – I. Mathematical Programming, 1978, 14(1): 265–294.

• J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko. Non-monotone submodular
maximization under matroid and knapsack constraints. In Forty-first Annual ACM
Symposium on Theory of Computing (STOC), pages 323–332, 2009.

• T. Friedrich, F. Neumann: Maximizing Submodular functions under matroid vonstraints
by evolutionary algorithms. Evolutionary Computation 23(4), MIT Press, 543-558, 2015.

• D. Kempe, J. Kleinberg and E. Tardos. Maximizing the spread of influence through a social
network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’03), pp. 137–146, Washington, DC, 2003.

• J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions
on Information Theory, 2004, 50(10): 2231–2242.

• A. Das and D. Kempe. Algorithms for subset selection in linear regression. In: Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC’08), pp. 45–54,
Victoria, Canada, 2008.

References

• A. Krause, A. Singh and C. Guestrin. Near-optimal sensor placements in Gaussian
processes: Theory, efficient algorithms and empirical studies. Journal of Machine Learning
Research, 2008, 9: 235–284.

• A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection,
sparse approximation and dictionary selection. In: Proceedings of the 28th International
Conference on Machine Learning (ICML’11), pp. 1057–1064, Bellevue, WA, 2011.

• C. Qian, Y. Yu and Z.-H. Zhou. Subset selection by Pareto optimization. In: Advances in
Neural Information Processing Systems 28 (NIPS'15), pp.1765-1773, Montreal, Canada, 2015.

• H. Zhang and Y. Vorobeychik. Submodular optimization with routing constraints. In:
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI’16), pp. 819–826,
Phoenix, AZ, 2016.

• C. Qian, J.-C. Shi, Y. Yu and K. Tang. On subset selection with general cost constraints. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17),
pp.2613-2619, Melbourne, Australia, 2017.

• A. A. Bian, J. M. Buhmann, A. Krause and S. Tschiatschek. Guarantees for greedy
maximization of non-submodular functions with applications. In: Proceedings of the 34th
International Conference on Machine Learning (ICML’17), pp. 498–507, Sydney, Australia,
2017.

References

• E. R. Elenberg, R. Khanna, A. G. Dimakis and S. Negahban. Restricted strong
convexity implies weak submodularity. Annals of Statistics, 2018, 46(6B): 3539–
3568.

• C. Qian, Y. Yu and K. Tang. Approximation guarantees of stochastic greedy
algorithms for subset selection. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI’18), pp. 1478–1484, Stockholm, Sweden,
2018.

• C. Qian, Y. Yu, K. Tang, X. Yao and Z.-H. Zhou. Maximizing submodular or
monotone approximately submodular functions by multi-objective evolutionary
algorithms. Artificial Intelligence, 2019, 275: 279-294.

• C. Harshaw, M. Feldman, J. Ward and A. Karbasi. Submodular maximization
beyond non-negativity: Guarantees, fast algorithms, and applications. In:
Proceedings of the 36th International Conference on Machine Learning (ICML’19), pp.
2634–2643, Long Beach, CA, 2019.

• C. Bian, C. Feng, C. Qian and Y. Yu. An efficient evolutionary algorithm for
subset selection with general cost constraints. In: Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI'20), pp.3267-3274, New York, NY, 2020.

References

• C. Qian, Y. Yu and K. Tang. Approximation guarantees of stochastic greedy
algorithms for subset selection. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence (IJCAI’18), pp. 1478–1484, Stockholm, Sweden,
2018.

• C. Qian, Y. Yu, K. Tang, X. Yao and Z.-H. Zhou. Maximizing submodular or
monotone approximately submodular functions by multi-objective evolutionary
algorithms. Artificial Intelligence, 2019, 275: 279-294.

• C. Harshaw, M. Feldman, J. Ward and A. Karbasi. Submodular maximization
beyond non-negativity: Guarantees, fast algorithms, and applications. In:
Proceedings of the 36th International Conference on Machine Learning (ICML’19), pp.
2634–2643, Long Beach, CA, 2019.

• C. Bian, C. Feng, C. Qian and Y. Yu. An efficient evolutionary algorithm for
subset selection with general cost constraints. In: Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI'20), pp.3267-3274, New York, NY, 2020.

References

• Roostapour, V., Neumann, A., Neumann, F., and Friedrich, T. 2019. Pareto
optimization for subset selection with dynamic cost constraints. The Thirty-Third
AAAI Conference on Artificial Intelligence 2019, pp. 2354-2361. AAAI Press.

• Albert, R., and Baraba ́si, A.-L. 2002. Statistical mechanics of complex networks.
Reviews of modern physics, pp. 74(1):47.

• Barbieri, N., Bonchi, F., and Manco, G. 2012. Topic-aware social influence propagation
models. In IEEE Conference on Data Mining, pp. 81–90. IEEE Computer Society.

• Hogg, T., and Lerman, K. 2012. Social dynamics of Digg. EPJ Data Science 1(1):5.

• Kempe, D., Kleinberg, J. M., and Tardos, E. 2015. Maximizing the spread of influence
through a social network. Theory of Computing, pp. 11:105–147.

• Krause, A., and Golovin, D. 2014. Submodular function maximization. In Bordeaux, L.;
Hamadi, Y.; and Kohli, P., eds., Tractability: Practical Approaches to Hard Problems.
Cambridge University Press, pp. 71–104.

References

• Lee, J., Sviridenko, M., and Vondra'k, J. 2010. Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res. 35(4):795–806.

• Friedrich, T., and Neumann, F. 2015. Maximizing submodular functions under matroid
constraints by evolutionary algorithms. Evolutionary Computation 23(4):543–558.

• Doerr, B., Doerr, C., Neumann, A., Neumann, F., Sutton, A.M. 2020. Optimization of
chance-constrained submodular functions. The Thirty-Fourth AAAI Conference on
Artificial Intelligence 2020, pp. 1460–1467. AAAI Press.

• Chebyshev, P. 1867. Des valeurs moyennes. Liouville’s J Math Pure Appl 12:177–184.

• Chernoff, H. 1952. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Statist. 23(4):493–507.

• Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Van- Briesen, J. M., and Glance, N. S.
2007. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining 2007, pp.
420–429. ACM.

References

• Kempe, D., Kleinberg, J. M., and Tardos, E. 2003. Maximizing the spread of influence
through a social network. The Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 2003, pp. 137–146. ACM.

• Neumann, A. and Neumann, F. 2020. Optimising monotone chance-constrained
submodular functions using evolutionary multi-objective algorithms. Parallel Problem
Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020. Lecture
Notes in Computer Science, pp. 404-417. Springer.

• Motwani, R., Raghavan, P. 1995. Randomized algorithms. Cambridge University Press.

• Doerr, B., Neumann, F. 2020. Theory of Evolutionary Computation – Recent
developments in discrete optimization. Natural Computing Series, Springer.

• Assimi, H., Harper, O., Xie, Y., Neumann, A., Neumann, F. 2020. Evolutionary bi-
objective optimization for the dynamic chance-constrained knapsack problem based
on tail bound objectives. The 24th European Conference on Artificial Intelligence,
ECAI 2020, pp. 307—314. IOS Press.

• Xie, Y., Harper, O., Assimi, H., Neumann, A., Neumann, F. 2019. Evolutionary al-
gorithms for the chance-constrained knapsack problem. The Genetic and Evolutionary
Computation Conference, GECCO 2019, pp. 338–346. ACM.

References

• Xie, Y., Neumann, A., Neumann, F. 2020. Specific single- and multi-objective
evolutionary algorithms for the chance-constrained knapsack problem. The Genetic
and Evolutionary Computation Conference, GECCO 2020, pp. 271–279, ACM.

• Giel, O., Wegener, I. 2003. Evolutionary algorithms and the maximum matching
problem. In: Proceedings of the 20th Annual Symposium on Theoretical Aspects of
Computer Science, STACS 2003. Lecture Notes in Computer Science, vol. 2607, pp.
415–426. Springer.

• Doerr, B., Doerr, C., Neumann, A., Neumann, F., Sutton, A. M. 2020. Optimization of
chance-constrained submodular functions. The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, pp. 1460–1467. AAAI Press.

• Feige, U. 1998. A threshold of ln n for approximating set cover. J. ACM 45(4), pp. 634–
652.

• Khuller, S., Moss, A., Naor, J. 1999. The budgeted maximum coverage problem.
Information Processing Letters 70(1), pp. 39–45.

