Tutorial: Evolutionary
Submodular Optimisation %

Presenters:
Aneta Neumann', Frank Neumann', Chao Qian?

1 Optimisation and Logistics, The University of Adelaide, Australia.
2 School of Artificial Intelligence, Nanjing University, China.

Our task:

Given a function f: X = R
and D C X “set of feasible solutions”

Find arg max,cp f(x)

General purpose algorithms that can be applied without problem
knowledge

Why General Purpose Algorithms?

« Algorithms are the heart of every nontrivial computer
application.

* For many problems we know good or optimal
algorithms
— Sorting
— Shortest paths
— Minimum spanning trees

 What about a new or complex problems?
« Often there are no good problem specific algorithms.

Points that may rule out problem specific algorithms
* Problems that are rarely understood.
» Quality of solutions is determined by simulations.
* Problem falls into the black box scenario.
x a - f(x)
* Not enough resources such as time, money,
knowledge.

General purpose algorithms are often a good
choice.

General purpose algorithms for
optimizing a function f: X — R

1. Choose a representation for the elements in
X.

2. Fix a function to evaluate the quality.
(might be different from f)

3. Define operators that produce new
elements.

Evolutionary algorithms (EAS)

Evolutionary algorithms are general purpose
algorithmes.

follow Darwin's principle (survival of the fittest).
work with a set of solutions called population.

parent population produces offspring population by
variation operators (mutation, crossover).

select individuals from the parents and children to
create new parent population.

lterate the process untila “good solution” has
been found.

EAs are adaptive and often yield good solutions for
complex, dynamic and/or stochastic problems

Moftivation

« Want to understand a wide class of

problems that evolutionary algorithms can
solve or approximate well.

» Consider submodular functions which
allow to model a wide range of important
optimisation problems.

« Submodular functions can be considered
as the discrete counterpart of convexity in
the continuous domain (Lovasz, 1983).

Submodular Functions

o Let X={xy,, X,} be a ground set

e Submodular functions: A function f is submodular iff f(AUB)+ f(ANB) <
f(A)+ f(B) for all A,B C X.

 Alternative definition of submodularity:
ACBCXandze X\ B, f(BU{z})— f(B) < f(AU{z})— f(A).

Maximizing submodular functions is NP-hard and
also NP-hard to approximate.

Important subclasses:
e Monotone functions: A function is monotone iff f(A4) < f(B) for all A C B.

We call f symmetric iff f(A) = f(X \ A) for all A C X.

Example: Sensor placement

Cover the largest possible area by selecting
K sensors:

Example: Sensor placement

Cover the largest possible area by selecting
K sensors:

Example Max Cut

« Given an undirected graph G=(V, E), find a
partitioning of the vertices such that the
number of edges crossing the two partitions
IS maximal.

* Ais a set of hodes chosen for the first
partition. Function f(A) counts the number of
edges between A and V \ A.

 fis symmetric, submodular, but not
monotone.

Matroids

A matroid is a pair (X, 1) composed of a ground set X and a non-empty
collection I of subsets of X satisfying (1) If A € [and B C A then B € I and
(2) If A,B €I and |A| > |B| then B+ x € I for some © € A\ B. The sets
in I are called independent, the rank of a matroid is the size of any maximal
independent set.

Example:

* For given graph G=(V,E), M=(E, F) where F is the set of
all forests (subset of edges not containing cycles) is a
matroid. Maximal independent sets are spanning trees
(rank n-1).

« Given X all subsets of cardinality at most k build the
uniform matroid.

Some Examples of Submodular
Functions

e Linear functions: All linear functions f: 2% — R with f(A4) =), , w; for
some weights w: X — R are submodular. If w; > 0 for all ¢+ € X, then f is
also monotone.

e (ut: Given a graph G = (V, E') with nonnegative edge weights w: £ — R>g.
Let 6(S) be the set of all edges that contain both a vertex in S and V' \ S.
The cut function w(d(S)) is symmetric and submodular but not monotone.

e Coverage: Let the ground set be X = {1,2,...,n}. Given a universe U with
n subsets A; C U for ¢ € X, and a non-negative weight function w: U —
R>o. The coverage function f: 2% — R with f(S) = |U,;cq Al and the
weighted coverage function f’ with f'(S) = w(lJ,cq 4i) = ZUGUies 4, w(u)
are monotone submodular.

e Rank of a matroid: The rank function r(A) = max{|S|: S C A,S € I} of a
matroid (X,Z) is monotone submodular.

Submodular Optimisation

Research in this area can be characterized by
the type of

* Functions to be optimized
— Submodular / close to submodular

— monotone / non-monotone
— Additional function characteristics

* Types of constraints
— Uniform, linear constraints
— General cost constraints
— Matroid / partition constraints.
— Other types of constraints

Bi-objective approach / Pareto
Function value O ptl m |Sat|0_n

t Bi-objective approach
using multi-objective
EAs enables greedy

’ behavior, local search

' and benefit of
' interactions between
trade-offs solutions

‘ Theory: Greedy Practice: Benefit of

behavior allows to evolution leads to

obtain approximation high performance in
results practice

»
>

B Cost value

Constraint bound

GSEMO

. Given submodular function f, solutions are encoded as bitstrings
of length n.

Algorithm 1: GSEMO Algorithm

1
2
3
4
5
6
7
8
9

10

11

choose x € {0,1}" uniformly at random

determine g(x)

P« {z}

repeat

choose x € P uniformly at random

create ' by flipping each bit x; of x with probability 1/n

determine g(z")

if 2’ is not strictly dominated by any other search point in P then
include z’ into P

L delete all other solutions z € P with g(z) < g(z') from P

until stop

. Maximize bi-objective function g(x)=(z(x), |X|o), where z(x)=f(x) iff x
is feasible and z(x)=-1 otherwise

. Analyze expected time (humber of fithess evaluations) to
obtain good approximations

Monotone submodular functions
under uniform constraint

A solution x is feasible iff its has at most k elements (1-
bits), i.e.
F={zx|ze XANl|z|y <k}

IS the set of feasible solutions.

Result (Friedrich, Neumann (ECJ 2015)):

GSEMO achieves a (1-1/e)-approximation in expected time
O(n?(k + log n)).

Proof Idea

GSEMO obtains empty set in expected time O(n?log n).

Afterwards mimics greedy approach (Nemhauser et al
1978) and obtains for each j, 0 < j < k, a solution X;

f(X;5) = (1 - <1 - %)) - f(OPT),

where f(OPT) is value of feasible optimal solution.

Key induction argument:

— Assume that we already have f(X;) > (1-(1-$)’)-f(OPT),0<j <.
Let 0,11 be the increase in f that we obtain when choosing the solution x € P
with |z|; = ¢ for mutation and inserting the element corresponding to the largest
possible increase.

Due to monotonicity and submodularity, we have f(OPT) < f(X; UOPT) <
f(Xi) + kd;11 which implies §;11 > ¢ - (f(OPT) — f(Xy)).

Gives X; 41 with f(Xip1) > f(X:)+1 (F(OPT) — f(X:)) > (1 —(1- %)”1). f(OPT).

X, is (1-1/e)-approximation and obtained after O(n?k) steps.

Non-monotone symmetric
under Matroid Constraints

Given k matroids My, ..., M, together with their independent
systems |4, ..., |, we consider the problem

k
max{f(x) zeF =", I;;}-
We assume that f is symmetric, submodular and non-negative,
but not necessarily monotone.

« For this setting, a local search capability is beneficial to
obtain good approximations.

* |n particular, dependent on the number of matroids, a local
improvement in a neighborhood dependent on k can be
obtained if the current solution is not of sufficient quality (Lee
et al, STOC 2009).

Non-monotone symmetric
under Matroid Constraints

Result (Friedrich, Neumann (ECJ 2015)):
GSEMO achieves a (i)-approximation in expected time o (%nk%logn) .
Proof idea:

* In expected time O(n?log n), GSEMO produces the search point 0".

* Introducing the element with the largest gain gives a solution of
quality at least OPT/n.

« Afterwards from the currently best feasible solution x, in expected
time O(nk+2) a solution y with f(y) = (1 + €/n*) - f(x) can be produced if
stated approximation guarantee has not yet been obtained.

« Total number of such local improvements required to obtain
approximation is at most

OPT __
log(1+ne_4) OP_T/n —O(%n‘llogn)

Remark: k=1 gives (1/(3(1+¢€))-approximation for Max-Cut

Approximately Submodular Functions

Approximately submodular application

4 \\
/ Sparse regression [Tropp, TIT'04]: given observation variables V = {vy, ..., v},

- S S S e e S e e .y

-

a predictor variable z and a budget B, to find a subset X € V such that :
!
Var(z) — MSE, !
max Ry = : X|<B !
XCV z,X Var(Z) | | :
!
Var(z): variance of z MSE, x: mean squared error of predicting z :
by using observation variables in X l
|
RZ y: squared multiple correlation, which is approximately submodular)
~ 7/

observation variables a subset X of observation variables

predictor

l _—" variable z R o—— ey

Cor. Dis. IR = = AC BIC]RF. qoomf D 4 LR B - | - fAC (o LR
4 0z o046 1 | - - 0z o063k 1) < jozeioge 1§ | - joz2hosl 1y
2 Toa10ss [o6a | = T - Toss ossl 1 2 joa1l 059y 064y - | - 1058 josol 1
X3 011 002 053 - - 043 001l 11 TR Y : P N I ke B y
X3 1011 011064} = | - 10731092 1 : ® :067 05 1 0'33: w | Voss :oiaslom'
X5 0021015 033 = & 05610361076 % Toss) 0021001 1 o - §oao |0'O?=O'??I
X6 036 002 001 - = 032 0021022 o on Vo Vo o Vot looalon]
7 02 02 021 - - 021 oo2loiy Ty 02 02 1021 120 020
¥ 01 003 032 - - 033 05110441 B 1010051032 e 1033 051 0l
X 032 01 02 -~ - 006 066} 0l 2 1032 014 02 g 006085y O g
X0 024 0 002 - - 06 0031033 x10 1024y 0 :0'07: R P
i o1z 0as [oae | T = TosiTodst 2 x11 1012y 045 1 0.4 1 054 foesi 1
az 03 [0se [012]| — | — [ors[oselost] 2 10361 058§ 012 | - - 073 bossloery
502 002 [o2a T =T~ To3a]onzlosel x13 §02 1002 y024 g - - 1034 boozlogsl

1 |
x14 024 092 033 - - 024 093,056l x14 0245 092 033) w224 093,056

Submodular ratio

Submodular [Nemhauser et al., MP'78] :
|I—— === vXcYcV,veY: fXu{v) —f(X)=f(Yu{v) —f);
or VX S Y S V: f(¥) = f(X) < Tperx XU} = F(X) -~~~ :
Submodular ratio [Das & Kempe, ICML'11; Zhang & Vorobeychi, AAAI'16] :

fX Uy - fX)

---------- T T B FY U) -)
i | SeerfXUD - FX)
Yur(f) = X<U, Y:[Y [k, XY =0 fXuy)—f(X)

Characterize to what extent a set function f satisfies the submodular property,
i.e., the degree of approximate submodularity

For example, when f is monotone,
* ar € [0,1], the larger, more close to submodular

* fissubmodular if and only if af = 1

Submodular ratio

Submodular [Nemhauser et al., MP'78] :
|I—=— === vXcYcV,veY: fXu{v) —f(X)=f(Yu{v) —f);
or VX S Y S V: f(¥) = f(X) < Tperx XU} = F(X) -~~~ :
Submodular ratio [Das & Kempe, ICML'11; Zhang & Vorobeychi, AAAI'16] :

fX Uy - fX)

---------- T T B FY U) -)
i | SeerfXUD - FX)
Yur(f) = X<U, Y:[Y [k, XY =0 fXuy)—f(X)

Characterize to what extent a set function f satisfies the submodular property,
i.e., the degree of approximate submodularity

For example, when f is monotone,
* VYU k:yyr(f) €[0,1], the larger, more close to submodular
* fissubmodularif and only if VU, k:yy . (f) = 1

Submodular ratio

Submodular ratio [Das & Kempe, ICML'11; Zhang & Vorobeychi, AAAI'16] : characterize
to what extent a general set function satisfies the submodular property
v e JEVWY —fX)
I xevper F(Y U {v}) — F(Y)

i Ywerf(X U {v}) — f(X)
xcu,vilv|skxny=¢ f(XUY)— f(X)

Yui(f) =

Lower bounds on submodular ratio for some concrete applications

* Sparse regression: yy x (f) = Amin(C, |U| + k) [Das & Kempe, ICML'11]
« Sparse support selection: yy x (f) = m/M [Elenberg et al., Annals of Statistics'18]
* Bayesian experimental design [Bian et al,, ICML/17]:

vue(f) = B2/(IIVIF(B% + a2 |IV[ID))
 Determinantal function maximization [Qian et al., [JCAI'18]:

& 2 (A (A) = D/ (4 (A) - DI 2,(8))

Pareto optimization for approximately submodular f

The POSS algorithm [Qian, Yu and Zhou, NIPS'15]

Mmaxyeoyn f(x) s.t. |x|<B original
Transformation: 4
MiNyegoyn (—f(X), |x]) bi-objective

Algorithm 1 POSS

Input: all variables V' = {X;,...,. X, }. a given objective f PRPRT n
and an integer parameter k € [1,n] ¥n1t1al1zat10n. pUt the SpeCIal solution {0}
Parameter: the number of iterations 7' into the populatlon P
Output: a subset of V' with at most & variables
Process:

I: Let s = {0}" and P = {s}. Reproduction: pick a solution x randomly
> Li‘,feji — from P, and flip each bit of x with prob.
3: while 0 .

4: Select s from P uniformly at random. , / 1 / n to pI'OdU.CQ a new solution

5. Generate s’ by flipping each bit of s with prob. L.

6: Evaluate fi(s8") and f(s).

7 if 3= e P such that 2 L 3)/ then Updating: if the new solution x’ is not
A ({Ef QP) IUQ; i,}z}- _— dominated by any solution in P, put it
0: = : s’} . .
ho: endif o into P and delete those solutions weakly
Il g =1+ 1 dominated by x’

2. _end while
|l3: return arg mingep)<k f1(8)

. Output: select the best feasible solution

Theoretical analysis

POSS can achieve the optimal approximation guarantee,
previously obtained by the greedy algorithm

Theorem 1. For monotone approximately submodular maximization with a size
constraint, POSS using E[T] < 2eB*n finds a solution x with |x| < B and

f(x)=(1—e7")-OPT

e

the optimal polynomial-time approximation ratio
[Das & Kempe, ICML'11; Harshaw et al., ICML'19]

POSS can do better than the greedy algorithm in cases

/[Das & Kempe, STOC 08]

Theorem 2. For [the Exponential Decay subclass| of sparse regression, POSS using
E[T] = 0(B%(n — B)nlogn) finds an optimal solution} while the greedy algorithm
cannot

Experiments — sparse regression

the size constraint: B = 8

the number of iterations of POSS: 2eB?*n

exhaustive search greedy algorithms relaxation methods
\ %

Data set | OPT | POSS | FR FoBa OMP RFE | 1CP |

housing 74374+.0297 | J7437+£.0297 | .74294+.0300e .7423+.0301le .74154+.0300e .7388+.0304e | .7354+.0297 e
eunite2001 848440132 | .84824+.0132 | .83484+.0143e 84424+ .0144e .83494.0150e .84244-.0153e | .8320+.0150e
svmguide3 .27054.0255 | .2701x.0257 | .2615+.0260e .2601+.0279e .2557+.0270e .21364.0325e | .23974+.0237 e
ionosphere .59954.0326 | .5990+.0329 | .59204.0352e .5929+4.0346e .5921+.0353e¢ .5832+.0415e | .5740+.0348e
sonar — 536540410 | 51710440 5138+.0432¢ .51124.0425e¢ .43214.0636e | .44964.0482e
triazines - A301£.0603 | 415040592 4107+£.0600e .40731.0591e .36154.0712e¢ | .37931+.0584e
c0112000 - 06270076 | 062440076 .0619+.0075¢ .06194.0075e¢ .03631.014le | .0570L.0075e
mushrooms - 991240020 | .99094.0021e .9909+.0022¢ .99094.0022e .68131.1294e | .8652+.0474e
cleanl - A3684+.0300 | .41694.0299e¢ . 41454+.0309¢ 413240315 .15964.0562e | .3563+.0364e
wSa - .33764.0267 | .3319+.0247e .33414.0258¢ .33134.0246e .33424-.0276e | .26944-.0385e
gisette - 726540098 | .7001F£.0116e .6747+.0145¢ .67313.0134e .53604.0318e | .5709+.0123e
farm-ads - A217+£.0100 | .41963+.010le . 41704+.0113¢ .41701+.0113e = J3771+.0110e

POSS: win/tie/loss - 12/¢0 12/0/0 12/(¢0 11/0/0 12/0¢0

e denotes that POSS is significantly better by the

t-test with confidence level 0.05

POSS is significantly better than all the
compared algorithms on all data sets

Experiments — sparse regression

different size constraints: B =3 — 8

P
POSS FR= = = o8 = = m QNP RFE = = = MCP SCAD X Lasso

O oPT

(a) on svmguide3 (b) on sonar

POSS tightly follows OPT, and has a
clear advantage over the rest algorithms

Experiments — sparse regression

Running time comparison

OPT: n®/B" greedy algorithms (FR): Bn POSS: 2eB*n
0.42 :

0.72] ;
0.7'--'------------------:._I 041_ =
,¢"'\\ é_ : ’—-\\\ :

S fN: LT STEY
{'2682?? HE 1 \ | 2¢B°n | :

0.66! ‘\3438;?,'5 i 04r é\\IO.B??/I \\f438?}l ; |

/—Poss---FR\é

10 20 30 40
Running time in Bn

(a) on gisefte

0.39—

\-—

/=

POSS = ==F

N

10

20

30

40

Running time in Bn

(b) on farm-ads

POSS can be more efficient in practice

theoretical
running time

General cost constraints

Original problem

maxycy f(X) s.t.

maxycy f(X) s.t.

|1 X| <B

— size constraints

@ extension

c(X) <B—

general cost
constraints

f (X): a monotone approximately submodular objective function

c(X): a monotone approximately submodular cost function

Pareto optimization for general cost constraints

The POMC algorithm [Qian, Shi, Yu and Tang, JCAI'17]

Maxyeoym f(x) s.t. c(x) <B original
Transformation: @

MiNyeqo,1yn (—f (%), c(x)) bi-objective

Algorithm 2 POMC Algorithm

Input: a monotone objective function f, a monotone approx-

imate cost function ¢, and a budget B
Parameter: the number 7" of iterations
Output: a solution € {0, 1}" with é(x) < B
Process:

Initialization: put the special solution {0}"
into the population P

I: Letx = {0}" and P = {x}.
(2 Lett =0.

/ Reproduction: pick a solution x randomly
from P, and flip each bit of x with prob.

3 _while 7 < T do.

/ 1/n to produce a new solution

4: Select z from P uniformly at random.

5. Generate x’ by flipping each bit of & with prob. 1/n.
6: if 3z € P such that z = x’ then

7: P=(P\{zeP|a2' =z} ula'}

8: _endif

9. t=t+1

Updating: if the new solution x’ is not
| » dominated by any solution in P, put it

into P and delete those solutions weakly

10: end while

dominated by x’

11: return arg max,ep.a(x)<s f ()

™~ Output: select the best feasible solution

Theoretical analysis

POMC can achieve the best-known approximation guarantee,
previously obtained by the generalized greedy algorithm

Theorem 3. For monotone approximately submodular maximization with a general
cost constraint, POMC using E[T] <|enBPy,4y/6 Finds a solution x with c(x) < B and

fx) = %(1 - e%) . OPT

/

the best-known polynomial-time approximation ratio
[Zhang & Vorobeychik, AAAI'16]

Proof

Lemma 1. For any X € V, there exists one element ¥ € V \ X such that

XU} —c(X
FO U o)) - F0) 2fag D=)<0PT\—f(X>)

submodularity ratio the optimal function value

Roughly speaking, the improvement on f by adding a specific item
is proportional to the current distance to the optimum

Proof

Lemma 1. For any(X)E V, there exists one item ¥ € V \ X such that

XUt} —c(X
FOUon - £ 0 = a, DD opr _ py

Main idea: a subset

N
e consider a solutio%with c(x)<i€e[0,B)and f(x) = (1 — (1 — afB—lk)) - OPT

i=20 i+c(xu{d}) —c(x) =B
initial solution 00 ...0 -~ _ _, He@uv))—c(x) k+1) .
f(xu {v}) = (1 (1 A pea)) OPT
c(00..0) =0 .
= (x) (1—(1—a 5)+1>-OPT
f(00..0)=0 o = f Bt D)

> (1 —e %):0PT

Proof

Lemma 1. For any(X)E V, there exists one item ¥ € V \ X such that

XUt} —c(X
FOUon - £ 0 = a, DD opr _ py

Main idea: a subset

N
e consider a solutio%with c(x)<i€e[0,B)and f(x) = (1 — (1 — afB—lk)) - OPT

(?
i=0 - » i+c(xu{d}) —c(x) =B
initial solution 00 ... 0 f(xu{t}) =1 —e %) -0PT the des%redt.
approximation
¢(00..0) =0 fxu{E) < (F) +f{#h)/ay suarantee

£(00...0) = 0
max{f (x), f {?})}

Proof

Lemma 1. For any(X)E V, there exists one item ¥ € V \ X such that

c(XU{P}) —c(X)

f&XU}) - f(X) 2 o B (OPT — £ (X))

Main idea: a subset

N
e consider a solutio%with c(x)<i€e[0,B)and f(x) = (1 — (1 — afB—lk)) - OPT —
® in each iteration of POMC:

> select x from the population P

> flip one specific 0-bit of x to 1-bit

(i.e., add the specifigitem ¥ in Lemma 1)

, . , , i+c(x")—c(x) fet1
cx')<i+c(x')—c(x)and|f(x) = 1—(1—0zf B D)) - OPT [~

Proof

Lemma 1. For any X € V, there exists one item ¥ € V \ X such that

X vY) —c(X
FXU@]) = 0 > ap KON =€) (pr o5y

a4 B
|L> fix)—f(x)= fc(x) - (OPT — f(x))
b f(x) = (1 — g S - C(x)> £ + ap S - ‘@) opr

f(x) = (1 = (1—afBL',{)k)-OPT j

.k N . N k+1
f(x’)2<1—(1—afBLk) (1—afC(x)B qx)))-DPT@(l—(1—afl+;((7€)_l_1;(x)> >-OPT

AM-GM inequality

Proof

Lemma 1. For any(X)E V, there exists one item ¥ € V \ X such that

XUt} —c(X
FOUon - £ 0 = a, DD opr _ py

Main idea: a subset

N
e consider a solutio%with c(x)<i€e[0,B)and f(x) = (1 — (1 — afB—lk)) - OPT
® in each iteration of POMC:

> select x from the population P the probability: I%I
n-1
> flip one specific 0-bit of x to 1-bit the probability: % (1 - l) >—

n en
(i.e., add the specific item ¥ in Lemma 1)

, . , , i+c(x")—c(x) fet1
cx')<i+cx')—c(x)and f(x) = 1—(1—cxf B D)) - OPT

i — i+cx')—clx) =i the probability: L1

m en
min{c(x U {v}) —c(x) | v € x}

Proof

Lemma 1. For any(X)E V, there exists one item ¥ € V \ X such that

XUV} —c(X
FOUon - £ 0 = a, DD opr _ py

Main idea: a subset

N
e consider a solutio%with c(x)<i€e[0,B)and f(x) = (1 — (1 — afB—lk)) - OPT
® in each iteration of POMC:

1 1 |P|SPmax‘ 1

|P| _en P qxM

[— [+ §, the probability:

i — i+ 96, theexpected number of iterations: € Py, 4,

i=0——i+c(xu{t}) —c(x) =B

B
the expected number of iterations: 5 ePy g
C

Theoretical analysis

POMC can achieve the best-known approximation guarantee,
previously obtained by the generalized greedy algorithm

Theorem 3. [Qian, Shi, Yu and Tang, IJCAI'17] For monotone approximately submodular

maximization with a general cost constraint, POMC using E[T] <

solution x with c¢(x) < B and

enB P,y /0,

finds a

flx) = %(1 —e%) . OPT

the best-known polynomial-time approximation ratio [Zhang & Vorobeychik, AAAI'16]

By limiting the largest population size P,,,,, we get the EAMC
algorithm whose running time is polynomial
Theorem 4. [Bian, Feng, Qian and Yu, AAAI'20] For monotone approximately submodular

maximization with a general cost constraint, EAMC using E[T] <

solution x with c¢(x) < B and

2en?(n+ 1)

finds a

fx) = %(1 —e%) . OPT

Experiments — sensor placement

* Sensor placement [Krause etal, IMLR08]: select a subset of locations to
install sensors such that the entropy is maximized

__

’Formally stated: given n locations V = {v, ..., v,} and a budget B, let 0; \.
' denote the observation variable by installing a sensor at v;, and then |
: maxycy H({oj |v; € X}) s.t. ¢c(X)<B /:

" O S I S D D DS D DS D D B D B D D B B B B B B B B S B D B B B B B B B B B D B D B B e s e

* Constraints: cardinality |X| < B € {5, ..., 10} and routing c(X) <
B €{05,..,1} —

the shortest walk to visit each node in X at least once
* Data sets: Berkeley (n = 55), Beijing (n = 36)

* For POMC on each data set with each B value, the run is repeated
for 10 runs independently, and the average results are reported

* Compare POMC with the generalized greedy algorithm

Experiments — sensor placement

g || POMC . L°
-B - Greedy e 7| & -Greed -7
> x 7 m- Y X
}\8.5' ’X/‘ (E". ;;.}6.5' ,’]
9 - . 'E— o‘, ,EJ
;E 8)(afﬂ E G |)(’f’ 1
5 Ry o e B----O0
75t | 3 g
X ” e ~ - El
7L-7 o e
o ITI ---8"
1 1 L 45 1 1 1 1
5 6 7 8 9 10 05 06 07 08 09 1
Budget B Budget B
(a) (Berkeley, cardinality) (b) (Berkeley, routing)
On data set Beijing
102 : : —g 95 : -
O OPT '&'-'—" —-* -POMC)= - X
10.1 {7 ‘POMC e’ 97|-= -Greedy - '
) - - P -
- Greedy e’ 85} x- == =% -k
S 10 4 & . g-- "
E ,' E 8t # f
:1 F, E /x I!
~ a9l |, M5t ¢
/’ x .’
’ 7T B---8
9.8?;’ 7
: : : : 65T : : : :
5 6 7 8 9 10 05 06 07 08 09 1
Budget B Budget B

On data set Berkeley

(c) (Betjing, cardinality)

=»%-POMC

(d) (Beijing, routing)

POMC is better in most
cases, and never worse

Experiments — influence maximization

* Influence maximization [Kempe et al, KDD'03]: Select a subset of users
from a social network such that the influence spread is maximized

‘ Formally stated: given a directed graph G = (V,E) with |V| =n, edge
| probab1ht1es Puv ((u,v) € E) and a budget B, then

l maxycy [f(X) s.t. c(X)<B

-_—een e = ==

@ D n .
el g.@"&« Influential users
B8
¢ L
; ®_ 5
;1 gf” @:s, m
P n® g
28e & . cljchilichea GosS
n B = n b £l
g B8 Byn I
e B & B @
LY S R
Y Yo s 20, 7y
'545;!!~:3 &% e -
Yef L By % gse o Hanes
egay o 2 A m
s B.= =

TouchGraph

Experiments — influence maximization

Influence maximization [Kempe et al, KDD'03]: select a subset of users
from a social network such that the influence spread is maximized

‘ Formally stated: given a directed graph G = (V,E) with |V| =n, edge
| probab1ht1es Puv ((u,v) € E) and a budget B, then

]

Influence Sprea

f(X) s.t.

The expected number of nodes activated by propagating from X

180

—x-POMC

=)

160 [|—3 - Greedy w7
.
140 . -
. -
120 -
x .
100 |
800
5 10 15 20 25
Budget B

(a) (Digg. cardinality)

Ll
=]

Influence Spread

oo
L]

-
=]

o
L]

o
L]

e
L)

- -Greedy

—%-POMC L

(8]
[= I

7 8 9
Budget B
(b) (Synthetic, routing)

10

POMC is always better

-_—een e = ==

Pareto optimization vs. Greedy algorithm

(Generalized) Greedy algorithm:
* Generate a new solution by adding a single item

(i.e., single-bit forward search: 0 — 1)
* Keep only one solution

Pareto optimization:

* Generate a new solution by flipping each bit with prob. 1/n
> single-bit forward search: 0 - 1
» backward search:1 - 0
» multi-bit search : 00 —» 11

* Keep a set of non-dominated solutions due to bi-objective optimization

Pareto optimization may have a better ability of
escaping from local optima

Problems with Dynamic Constraints

[V. Roostapour, A Neumann, F. Neumann, T. Friedrich: Pareto Optimization
for Subset Selection with Dynamic Cost Constraints, AAAI'19]

Dynamic Constraints

* Many real world optimization problems are dynamic and/or
stochastic.

 Often the goal function to be optimized is fixed (reduce cost /
maximize profit).

* Resources to achieve these goal are usually changing.

< Example: 0
> Trucks/trains may break down and/or be repaired. :
> Algorithms have to react to such changes that effect !
l\ the constraints of the given problem. ;'
Now:

« Study of (adaptive) greedy algorithms and|Pareto optimization

approaches for problems with dynamic constraints.

Definitions

The Static Problem [C. Qian,J. Shi, Y. Yu, K. Tang, [JCAI'17]

Given a monotone objective function f : 2V — R*, the monotone cost function
c:2Y — Rt and budget B, the aim is to find X such that

X = arg max f(Y)st. ¢(Y) <B.

¢|= (s /2)(1 = z=7)

The Dynamic Problem ¢ - approximation
[V. Roostapour, A. Neumann, F. Neumann, T. Friedrich, AAAI'19]

Let X be a ¢-approximation for the static problem. The dynamic problem is
given by a sequence of changes where in each change the current budget B

changes to B* = B +d, d € R>_p. The goal is to compute a ¢-approximation
X' for each newly given budget B*.

Greedy Algorithms

Algorithm 1: Generalized Greedy Algorithm Algorithm 2: Adaptive Generalized Greedy Algorithm
input: Initial solution X, Budget constraint B, New
budget constraint B*.

input: Initial budget constraint B.

! 5,“%. 1 if B* < B then
; rep;t > 2 | while &(X) > B* do
* : FXO—F(X\{v}]).
4 v* < arg max J(XUv)—f(X), 3 UT S argnil, e x éEXg—é((X \{{v}}))’
g MaAXy ey &KX Uv)—é(X) 4 X« X\ {v],
e s
2 if c()){(ivX) U_zf then 5 else if B* > B then
L ’ 6 | Ve V\X;
7 Vi V' {v*} 7 | repeat
a1/ . * S(XUv)—f(X).
8 u*ntll V' 0 . 8 V¥ 4= arg max, ey WM,
9 V" 4= argmax,cya(py<p f(V); 9 ife(X Uv) < B then
10 return arg maxgey 3 f(5); 10 | X« X UvY
1 V'« V' {v*};
2 | until V'« (;
13 V" ¢ argmax,cy.swy<p- f (V)3
[Zhang and Vorobeychik, AAATI' 16] 14 return arg maxgex -y f(9);

K, = max{|X| : ¢(X) < B}
) [V. Roostapour, A Neumann, F. Neumann, T.

Xp = argmax{f(X) | ¢(X) < acB“*“?(@c[;j)“‘“c)”} Friedrich, AAAI'19]

(1/2)(1— %)-approximate solution The adaptive generalized greedy algorithm
can not deal with dynamic increases of the
constraint bound.

Approximation Adaptive Greedy

Consider n items = (e, fi), 1 i s n+1
* Low profit items: =(1,3),1<i<n/2

* High profititems: e =(2,1),n/2+1<i<n

* Special item: eni1 = (1,3)

Linear objective and constraint function:

fznc(X) — Zez'EX fz Cz’nc(X) — ZeiEX G

Consider the following dynamic schedule:
« Start with B =1 and increase B by 1 in each of n/2 steps.

Approximation Adaptive Greedy

Theorem 3. Given the dynamic knapsack problem
(fine, Cine)- Starting with B = 1 and increasing the bound
n/2 times by 1, the adaptive greedy algorithm computes a

solution that has approximation ratio O(1/n).
[V. Roostapour, A. Neumann, F. Neumann, T. Friedrich, AAAI'19]

Proof idea:

* For B=1, the special item| e,+1 = (1,3) |is included.

* During n/2 steps increasing the budget by 1, all low profit
items are included.

 For the obtained set S, we have
f(S)=3+(n/2)-(1/n)=7/2 and ¢(S) =1+ n/2

* Optimal set S* consists of special item and n/4 high profit
items and we have | f(5*) =3+ 2

* Approximation ratio [(7/2)/(3 + n/4) = O(1/n)

Pareto Optimization

Algorithm 3: POMC Algorithm

input: Initial budget constraint B, time I’
X + {0}

Compute (f1(X), fo(X)):

P« {z};

t « 0;

while ¢ < T do

Select X from P uniformly at random;

X' < flip each bit of X with probability %;

Compute (f1(X'), f2(X"));
if AZ € P such that Z = X' then
L P+ (P\{ZeP | X =Z})U{X'};

11 _t:t+1;

12 return arg max x ¢ p.o(x)<p f ()

o R N NN B W N

ik
<

argmax X € {0,1}"(f1(X), fo(X))

—00, ¢(X)>B+1

f(X), otherwise ,J2(X) = —¢(X).

where f1(X) = {

Theoretical Results POMC

Theorem 5. Starting from {0}", POMC computes for any
budget b € [0,B] a ¢ = (ays/2)(1 — 1/e“f)-approximate

solution after I' = cnPyqz - % iterations with the constant

probability, where ¢ > 8e+ 1 is a sufficiently large arbitrary
constant.

Theorem 6. Let POMC has population P such that for ev-
ery budget b € |0, B|, there is a ¢-approximation in P.
After changing the budget to B* > B, POMC has com-
puted within 1" = cnPf,m,Js,;(Silé steps for every b € |0, B*] a
¢-approximation with probability)(1).

[V. Roostapour, A. Neumann, F. Neumann, T. Friedrich, AAAI'19]

Experiments

We consider the influence maximization problem in social
networks. [Zhang & Vorobeychik, AAAI'16]

W\

Two types of constraints:

* Routing constraint on routing

cost for selected users

* Cardinality constraint on number

of selected users

5 1 1 1 1 1 1 1
0 25 50 75 100 125 150 175 200
\ Time

Budget over time for dynamic problems

For both problems, we vary the constraint bound B over time.

 POMC has t=1000, 5000, 10000 iterations after every change

|
|
|
I
|
' to recompute good solution.

Experimental results

N

s TE Emm mm Em Em Em o -y

om m Em o = -y

Dynamic routing constraints

~
Changes GGA AGGA POMC 1000 POMC5 000 POMC 10000
mean st mean st mean st mean st mean st
1-25 85.0349 12.88 81.5734 14.07 66.3992 17.95 77.8569 18.76 86.1057 17.22
26-50 100.7344 22.16 96.1386 23.99 104.9102 15.50 117.6439 16.71 122.5604 15.54
51-75 118.1568 30.82 110.4893 29.50 141.8249 5.64 155.2126 5.08 158.7228 5.20
76-100 127.3422 31.14 115.2978 27.66 149.0259 3.36 159.9100 3.28 162.7353 3.65
101-125 132.3502 29.62 116.9768 25.45 150.3415 3.17 160.1367 2.81 161.2852 2.68
126-150 134.5256 27.69 118.6962 24.19 147.8998 7.36 154.7319 8.77 154.1470 7.43
151-175 135.7651 25.89 119.4982 22.85 147.2478 4.68 153.1417 5.32 151.2966 3.17
176-200 135.5133 24.41 119.1491 22.04 139.5072 8.08 143.6928 9.16 143.9832 8.67
Dynamic cardinality constraints
Changes GGA AGGA POMC1000 POMC5000 POMC10000
mean st mean st mean st mean st mean st
1-25 130.9410 14.71 130.6550 14.36 84.8898 24.32 114.8272 23.09 121.1330 19.72
26-50 145.6766 20.70 145.0774 20.11 133.2130 14.69 155.4231 13.98 158.0245 14.34
51-75 160.2780 26.86 159.6331 26.50 164.9157 3.84 184.3274 3.45 187.1952 3.68
76-100 167.9512 26.84 167.3365 26.60 171.5600 1.89 189.4834 2.74 189.6107 2.78
101-125 172.1483 25.45 171.6884 25.35 174.3528 2.11 188.2120 2.32 188.7572 2.46
126-150 174.0582 23.77 173.6528 23.72 174.0404 5.88 183.0188 6.65 183.8033 6.47
151-175 175.1998 22.23 174.8330 22.21 174.5846 4.03 181.3669 4.01 188.4192 3.60
176-200 175.1023 20.94 174.7836 20.92 168.8791 8.05 173.8794 7.28 175.2773 7.23

- . . e e e .

—_—een e o e e = P

Summary

Dynamic problems play a key role in the area of optimization.

We have shown that an adaptive version of the generalized
greedy algorithm only achieves arbitrary bad performance for
simple submodular problems.

The POMC Pareto optimization approach caters for dynamic
changes by having for each possible budget b <B a good
approximation.

POMC can recompute good approximations for all new
possible budgets in the case of budget b € [B, B*] increase from
B to B* efficiently.

Experiments on influence maximization in social networks
show the advantage of POMC over greedy approaches.

Problems with Chance Constraints

[B. Doer, C. Doerr, A. Neumann, F. Neumann, A. M. Sutton:
Optimization of Chance-Constrained Submodular Functions, AAAI'20]

Chance Constraints - Motivation

* Often problems involve stochastic components and
constraints that can only be violated with a small probability.

* We investigate submodular problems with chance constraints
and show that the adaptation of simple greedy algorithms
asymptotically only looses a factor of|1-0(1) [in terms of the
worst case approximation obtained.

Chance Constraints

Let S be a potential solution to a given submodular problem, W(S)
be its random weight and B be a given weight bound.
We consider chance constraints of the form:

small, e.g. 0.001
Pr(W(S) > B < a. «—

Weight bound can only be violated with a small probability.

Setting for Random Weights

* We consider two settings for random weights of a given set of
items.

* Both settings assume that the weights of the items are chosen
independent of each other.

Uniform independent and identically distributed (IID) weights:

W(s) € [a—10d,a+ 4] (0 < a)

Uniform Weights with same dispersion

W(s) € [a(s) — 8, a(s) + 0]

Chance Constraints

* One of the difficulties lies in evaluating whether a given
solution fulfills the chance constraint.

* Use surrogate functions such as Chernoff bounds and
Chebyshev’s inequality to determine whether a solution is
feasible. [Chebyshev, MPA'67; Chernoff, AMS'52]

* These bounds don’t allow for a precise calculation for the
probability of a constraint violation.

* However, the give an upper bound and a solution is accepted
if its upper bound is at most ¢y .

* For our settings, we establish conditions based on the
difference in expected weight and constraint B that show
when a given solution is feasible.

Greedy Algorithms

value

How large is this gap?

Not too big!!!

Chance constraint case stops earlier.

v

weight

Chance Constraint Conditions

Chernoff:

Lemma 1. Let W (s) € |a(s)—9, a(s)+0] be independently
chosen uniformly at random. If

(B~ EIW(X))) > \/36kTn(1/a),
where k = | X|, then Pr[W(X) > B] < a.

Chebyshev:

Lemma 2. Let X be a solution with expected weight
E\W (X)| and variance Var|W (X)|. If

B EW(X) \/(1 —) Var[W(X)]

E :
then Pr[W(X) > B] < a.

Uniform IID Weights

Greedy Algorithm

Algorithm 1: Greedy Algorithm (GA)
input: Set of elements V', budget constraint B, failure

probability .
1 S « 0;
2 VIV,
3 repeat
4 | vt argmaxvew((SU{v}) = f(5));
5 | #Pr[W(SU{v*}) > B] < ofhen
6 S — SU{v™],
7 L Vi V'\ {v*};
s until V' « 0;
9 return S;

Theorem: If B = w(1) then GA gives a (1-0(1))(1-1/e)- approximation
for each monotone submodular function when using Chernott or
Chebyshev for the chance constraint evaluation.

Experiments

We consider the influence maximization problem in social

networks. [Zhang & Vorobeychik, AAA'16; Leskovec et al., SIGKDD'07; Kempe et al., SIGKDD03;
Kempe et al., TC'15]

* Given a graph G = (V,E) where nodes are users and and edge
(u,v) have probability weights which determines how likely user
u influences user v.

* Expected influence score is computed by propagation from the
set of selected users. This is done through a simulation.

* In addition there is a constraint on the cost of selecting users.

 Goal: select a set of users that maximizes influence under the
given constraint.

« Chance constraint settings: expected weights of 1 for IID case.

Experimental Results — Cost values

20 Chebyshev's inequality Budget = 20 Chebyshev's inequality ~ Budget = 50
' ' ' ! ! ! g_ T T T T T T 100 _Chebyshev's inequality _ Budget =100 150 _Chebyshev's inequality _Budget = 150
45
40
3
3%
25
Oxn
15
10
5
01 02 03 04 05 06 07 08 08 10 0 01 02 03 04 05 06 07 08 09 10
L, Delta 01 02 03 04 05 06 07 08 09 10 o1 02 03 04 05,08 07 08 09 10
o ¢l bound Budget =20 Chernoff bound Budget = 50 Delta elta
' ! ' ! ! ' ! ! ! 55 T T T T g T Chernoff bound __ Budget = 100 Chernoff bound __ Budget = 150
50 100 — 150 = T
45 1] 4
40
.| U)SS
3%
225
O
15
10
5
0
u ol
01 02 03 04 05 06 07 08 08 10 01 02 03 04 05 06 07 08 09 10
. . : 4 0. X) X X . 01 02 03 04 05 06 07 08 09 10
Delta Delta 01 02 03 04 0§ 06 07 08 09 10 Dol

[Ja=01 Bl =001 B =0.001 I - = 0.0001

Figure 2: Maximal cost values for budgets B = 20, 50, 100, 150 (from left to right) using] Chebyshev’s inequality (top)|and
Chernoff bound (bottom)|for a=0.1,0.01, 0.001, 0.0001 with uniform expected weights set to 1.

Experimental Results — Function values

Budget = 20 Budget = 50

Budget = 100

Chebyshev’s inequality

Budget = 150

Figure 1: Function value for budgets B = 20, 50, 100, 150 (from left to right) using Chebyshev’s inequality (top) and Chernoff

bound (bottom) for a = 0.1, 0.01, 0.001, 0.0001 with all the expected weights 1.

165 210
240
01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 08 10 0 03 08 04 S0E: 26 978 @3 08 io
Delta Delta Delta
155 220 230 340
—— o =0.0001
150B ——a=0.001 \
%) ——a =001 330 R
——a=0.
- - a=01
[} 320}
= 140
o 310F
el B 135
3 N
g s 300
Bl
E - 200
ch) 120 280 E
-4
4
U 15 v 270 1
%o,
110 L - L 160 + + L + . 260 i
01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 03 10 i1. ‘6%: 03 04 OE .08 .07 68 08 96
Delta Delta Delta Delta

Uniform Weights with same dispersion

Generalized Greedy Algorithm

Algorithm 2: Generalized Greedy Algorithm (GGA)
input: Set of elements V', budget constraint B, failure

probability c.
1S « (;
2 VIV,
3 repeat

. f(SU{v}h)—f(S .
4 VT < argmax, cyv Ejmﬁ(sj{g]?)—v(ﬂ)s) ’
if Pr[W (S U {v*}) > B] < athen

S SU{v};

VI V'\ {v*};
s until V' «— (;

9 v* arg max{vev;pr[w(v)>3]§a} f(?]),
10 Teturn arg maxy ¢ (g f,+}) f(Y);

Theorem: If B = w(1) then GGA gives a (1/2-0(1))(1-1/e)-
approximation for each monotone submodular function when using
Chernoff or Chebyshev for the chance constraint evaluation.

Experimental Results — Function values

6 _Chebyshev's inequality _ Budget = 100 - c bound Budget = 100 i Chebyshev's inequality Budget = 500 i ci bound Budget = 500
5 IZSr
| 120

15
\ X 110
\ ;“'\\,,_ A— o 1051
1\ X AN o
4 2 "\ /\ \ \ § 100
- A 21N b4 X/ il
7 \//4 *.f_ 7 7% ’r J P
Y XN) N / \ /)
\ \ \ { N\ { / A /
‘ \ /) %)\ g — —7 soff—\
i / Y— \ < v 7 \ / \
A / v 1 a5
\ e / \/
| —— L sof
4 - o —
75| 1 s
% i 5 . 1 4 s 70 R L L R .
01 02 03 04 05 06 07 08 09 10 0! 02 03 04 05 06 07 08 03 10 01 02 03 04 05 06 07 08 09 10 01 02 03 04 05 06 07 08 08 10

Delta Delta Deita Delta

Figure 3: Function values for budgets B = 100 (left) and B = 500 (right) using Chebyshev’s inequality and Chernoff bound
for « = 0.1, 0.01, 0.001, 0.0001 with degree dependent random weights.

100 ey Chebyshev's inequality _ Budget = 100 e Chebyshev's inequality _ Budget =500
3. 37

Expected weight 1+degree(v) e g | BRI T

for uniform with same I -l |

dispersion case. e

0
01 02 03 04 05 06 07 08 09 1.0 01 02 03 04 05 06 07 08 09 10
Delta Delta

| [CJa=01 [@Mo=001 [EMc=0001 [l =0.0001

Figure 4: Maximal cost values for budget B = 100 (left) and
B = 500 using Chebyshev’s inequality (top) and Chernoff
bound (bottom) for o = 0.1, 0.01, 0.001, 0.0001 with degree
dependent random weights.

Summary

Optimization problems often involve stochastic
components that effect the constraints of the problem.

We presented a (first) study on submodular functions with
chance constraints.

We showed that simple greedy algorithms popular for
dealing with monotone submodular functions can be
easily adapted to the chance constrained case.

In terms of approximation, we asymptotically only loose a
factor of 1-0(1).

Experimental results show the change in solution quality
dependent on the uncertainty of the weights and the
chance constraint violation probability.

Problems with Chance Constraints:
Evolutionary Multi-Objective Algorithms

[A. Neumann and F. Neumann: Optimising Monotone Chance-
Constrained Submodular Functions Using Evolutionary Multi-
Objective Algorithms, PPSN"20]

Problem Definition

We consider the performance of the Global Simple
Evolutionary Multi-Objective Optimizer (GSEMO) and Non-
dominated Sorting Genetic Algorithm (NSGA-II) for the

optimisation of chance constrained submodular functions.

[Doerr, B., Doerr, C., Neumann, A., Neumann, F., Sutton, A. M., AAAI'20; Xie, Neumann, A.,
Neumann, F., GECCO'20; Xie et al., GECCO 2019; Assimi et al., ECAI'20]

Use and evaluate Pr using Chernotf bounds or Chebyshev’s
inequality.

Pr(W(X) > B) < Pr(W(X) > B)

Uniform IID weights:

Wi(s) € [a—6d,a+ 6] (§ < a).

Uniform weights with same dispersion:

W(s) € la(s) — d,a(s) + 5]

Algorithm

Global Simple Evolutionary Multi-Objective Optimizer [Giel & Wegener, STACS'03]

Algorithm 1: Global SEMO

Choose z € {0,1}" uniformly at random;
P {z};
repeat
Choose x € P uniformly at random,;
Create y by flipping each bit z; of £ with probability %;
if Awe P :w > y then
'S (PU{yH\{z€ Ply» 2k

8 until stop;

O A W N

Multi-Objective Formulation

[Motwani & Raghavan,'95; Doerr & Neumann, NCS 20;
Xie, Harper, Assimi, Neumann, A., Neumann, F., GECCO'19]

Uniform IID Weights: 9(X) = (91(X),g2(X))
{bjw(X) -C i (C-Bw(X)/(-|X]) 21
91(X) = § Pr(W(X) > C) if (Bw(X) < C) A(C = Ew(X))/(1X| < 1)

fX)if g(X)<a
92(X) = {—1 if Pr(W(X) > C) > o

Uniform Weights with the Same Dispersion:

§(X) = (G1(X), g2(X)) §1(X) = Ew(X)

Theoretical Results

Uniform IID Weights:

Theorem: Let k = min{n + 1, |C/a|} and assume |C/a| =
w(1). Then the expected time until GSEMO has computed
a (1-o(1))(1-1/e)-approximation for a given monotone
submodular function under a chance constraint with
uniform iid weights is O(nk(k + log n)).

Uniform Weights with the Same Dispersion:

Theorem: If C/a ., = w(1) then GSEMO obtains a (1/2 -
o(1))(1 — 1/e)-approximation for a given monotone
submodular function under a chance constraint with
uniform weights having the same dispersion in expected
time O(Pmax) n(C/amin_'_ 108 n -+ log(amax/amin)))'

[A. Neumann and F. Neumann, PPSN'20]

Experimental Results

Results for Influence Maximization with uniform chance constraints.
[Kempe et al., SIGKDD '03]

GA (1) GSEMO (2) NSGA-II (3)

mean min max std stat mean min max std stat

0.1 0.5 51.51| 55.75 54.44 56.850.5571 1) 55.66 54.06 56.47 0.5661 1(1)
0.1 1.0 46.80| 50.65 49.53 51.68 0.5704 1(1) 50.54 49.61 52.01 0.6494 1(1)
0.1 0.5 90.55| 94.54 93.41 95.61 0.5390 1(1) 3(+)| 92.90 90.75 94.82 1.0445 1(+) 2(-)
0.1 1.0 85.71| 88.63 86.66 90.68 0.9010 1(P) 3(H)| 86.89 85.79 88.83 0.8479 1(1) 2(-)
0.1 0.5 144.16(147.28 145.94 149.33 0.8830 1{1) 3(+)|144.17 142.37 146.18 0.9902 2(7)

20

50

100
0.1 1.0 135.61]/140.02 138.65 142.52 0.7362 1(1) 3(+)]136.58 134.80 138.21 0.9813 2(7)
oo 0:0010.5 48.19| 50.64 49.10 51.74 0.6765 1) 50.33 49.16 51.250.5762 1(1)
0.001 1.0 39.50| 44.53 43.63 45.550.4687 1(}) 44.06 42.18 45.39 0.7846 1(H)
0.001 0.5 75.71| 80.65 78.92 82.190.7731 1(H) 80.58 79.29 81.63 0.6167 1(1)
0.001 1.0 64.49| 69.79 68.89 71.740.6063 1Y) [69.96 68.90 71.050.6192 1(})
100 0-001 0.5 116.05/130.19 128.59 131.51 0.7389 1), 3(H)[127.50 125.38 129.74 0.9257 1(H) 2()

0.001 1.0 96.18(108.95 107.26 109.93 0.6466 1) 3(+)|107.91 106.67 110.17 0.7928 1(+) 2(=)

Experimental Results

Results for Maximum Coverage with uniform chance constraints.
[Feige, ACM'98, Khuller et al., IPL'99]

c o 5GAM GSEMO (2) NSGA-II (3)

|mean min max std stat mean min max std stat

0.1 0.5 448.00 [458.80 451.00 461.00 3.3156 1(*) |457.97 449.00 461.00 4.1480 1}
0.1 1.0 376.00 |383.33 379.00 384.00 1.7555 1(*) [382.90 379.00 384.00 2.0060 1()
0.1 0.5 559.00 [559.33 555.00 562.00 2.0057 3(*) [557.23 551.00 561.00 2.4309 1(7), 2(~)
0.1 1.0 503.00 [507.80 503.00 509.00 1.1567 1(¥) |507.23 502.00 509.00 1.8323 1()
0.1 0.5 587.00 [587.20 585.00 589.00 1.2149 3(*) (583,90 580.00 588.00 1.9360 1(—),2(~)
0.1 1.0 569.00 [569.13 566.00 572.00 1.4559 3(*) [565.30 560.00 569.00 2.1520 1(~), 2(~)

10

15

20

o 0:001 0.5 413.00 |423.67 418.00 425.00 1.8815 1) [422.27 416.00 425.00 2.6121 1P
0.001 1.0 376.00 (383.70 379.00 384.00 1.1492 1(*) [381.73 377.00 384.00 2.6514 1(+)
5 0001 0.5 526.00 (527.97 525.00 532.00 2.1573 1) |527.30 520.00 532.00 2.7436
0.001 1.0 448.00 |458.87 453.00 461.00 2.9564 1(*) [457.10 449.00 461.00 4.1469 1P
0p 0:001 0.5 568.00 (568.87 565.00 572.00 1.5025 3(+) |564.60 560.00 570.00 2.7618 1() 2(-)
0.001 1.0 526.00 [528.03 525.00 530.00 1.8843 1(*) [527.07 522.00 530.00 2.2427

Summary

* We presented a first runtime analysis of evolutionary
algorithms for the optimisation of submodular functions with
chance constraints.

* We showed that GSEMO using a multi-objective formulation of
the problem based on tail inequalities is able to achieve the
same approximation guarantee as recently studied greedy
approaches.

* Experimental results show that GSEMO computes significantly
better solutions than the greedy approach and often
outperforms NSGA-II.

Summary

* Many real-world optimisation problems can be formulated in
terms of optimising a submodular function under a given set
of constraints.

« A wide range of state-of-the-art results for submodular
problems have been obtained through evolutionary
computing techniques.

* Bi-objective formulations of constrained submodular
optimisation problems in terms of Pareto optimisation enable
evolutionary algorithms to achieve

— best theoretical performance guarantees and
— state-of-the-art practical results
for a wide range of submodular optimisation problems.

* These approaches are also able to deal with dynamic and
stochastic constraints in a very efficient way.

References

L. Lovasz. Submodular functions and convexity. In: A Bachem et al. (Eds): Mathematical
Programming The State of the Art, 235-257, 1983.

G. L. Nemhauser, L. A. Wolsey and M. L. Fisher. An analysis of a;) roximations for
maximizing submodular set functions — I. Mathematical Programming, 1978, 14(1): 265-294.

J. Lee, V. S. Mirrokni, V. Nagarajan, and M. Sviridenko. Non-monotone submodular

maximization under matroid and knapsack constraints. In Forty-first Annual ACM
Symposium on Theory of Computing (STOC), pages 323-332, 2009.

T. Friedrich, F. Neumann: Maximizing Submodular functions under matroid vonstraints
by evolutionary algorithms. Evolutionary Computation 23(4), MIT Press, 543-558, 2015.

D. Kempe, J. Kleinberg and E. Tardos. Maximizing the spread of influence through a social
network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’03), pp. 137-146, Washington, DC, 2003.

J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions
on Information Theory, 2004, 50%10): 2231-2242.

A. Das and D. Kempe. Aljgorithms for subset selection in linear regression. In: Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC'08), pp. 45-54,
Victoria, Canada, 2008.

References

A. Krause, A. Singh and C. Guestrin. Near-optimal sensor placements in Gaussian

grocesses: Theory, efficient algorithms and empirical studies. Journal of Machine Learning
esearch, 2008, 9: 235-284.

A. Das and D. Kempe. Submodular meets spectral: Greedy algorithms for subset selection,

sparse approximation and dictionary selection. In: Proceedings of the 28th International
Conference on Machine Learning (ICML’11), pp. 1057-1064, Bellevue, WA, 2011.

C. Qian, Y. Yu and Z.-H. Zhou. Subset selection by Pareto optimization. In: Advances in
Neural Information Processing Systems 28 (NIPS'15), pp.1765-1773, Montreal, Canada, 2015.

H. Zhang and Y. Vorobeychik. Submodular optimization with routing constraints. In:
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI'16), pp. 819-826,
Phoenix, AZ, 2016.

C. Qian, J.-C. Shi, Y. Yu and K. Tang. On subset selection with general cost constraints. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI'17),
pp-2613-2619, Melbourne, Australia, 2017.

A. A. Bian, J. M. Buhmann, A. Krause and S. Tschiatschek. Guarantees for greedy
maximization of non-submodular functions with applications. In: Proceedings of the 34th
International Conference on Machine Learning (ICML’17), pp. 498-507, Sydney, Australia,
2017.

References

E. R. Elenberg, R. Khanna, A. G. Dimakis and S. Negahban. Restricted strong
convexity implies weak submodularity. Annals of Statistics, 2018, 46(6B): 3539-
3568.

C. Qian, Y. Yu and K. Tang. Approximation guarantees of stochastic greedy
algorithms for subset selection. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence (I[CAI'18), pp. 1478-1484, Stockholm, Sweden,
2018.

C. Qian, Y. Yu, K. Tang, X. Yao and Z.-H. Zhou. Maximizing submodular or
monotone approximately submodular functions by multi-objective evolutionary
algorithms. Artificial Intelligence, 2019, 275: 279-294.

C. Harshaw, M. Feldman, J. Ward and A. Karbasi. Submodular maximization
beyond non-negativity: Guarantees, fast algorithms, and applications. In:
Proceedings of the 36th International Conference on Machine Learning (ICML’19), pp.
2634-2643, Long Beach, CA, 2019.

C. Bian, C. Feng, C. Qian and Y. Yu. An efficient evolutionary algorithm for
subset selection with general cost constraints. In: Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI'20), pp.3267-3274, New York, NY, 2020.

References

C. Qian, Y. Yu and K. Tang. Approximation guarantees of stochastic greedy
algorithms for subset selection. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence (I[CAI'18), pp. 1478-1484, Stockholm, Sweden,
2018.

C. Qian, Y. Yu, K. Tang, X. Yao and Z.-H. Zhou. Maximizing submodular or
monotone approximately submodular functions by multi-objective evolutionary
algorithms. Artificial Intelligence, 2019, 275: 279-294.

C. Harshaw, M. Feldman, J. Ward and A. Karbasi. Submodular maximization
beyond non-negativity: Guarantees, fast algorithms, and applications. In:
Proceedings of the 36th International Conference on Machine Learning (ICML’19), pp.
2634-2643, Long Beach, CA, 2019.

C. Bian, C. Feng, C. Qian and Y. Yu. An efficient evolutionary algorithm for

subset selection with general cost constraints. In: Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI'20), pp.3267-3274, New York, NY, 2020.

References

* Roostapour, V., Neumann, A. Neumann, F. and Friedrich, T. 2019. Pareto
optimization for subset selection with dynamic cost constraints. The Thirty-Third
AAAI Conference on Artificial Intelligence 2019, pp. 2354-2361. AAAI Press.

« Albert, R, and Baraba’si, A.-L. 2002. Statistical mechanics of complex networks.
Reviews of modern physics, pp. 74(1):47.

* Barbieri, N., Bonchi, F., and Manco, G. 2012. Topic-aware social influence propagation
models. In IEEE Conference on Data Mining, pp. 81-90. IEEE Computer Society.

* Hogg, T., and Lerman, K. 2012. Social dynamics of Digg. EPJ] Data Science 1(1):5.

* Kempe, D., Kleinberg, J. M., and Tardos, E. 2015. Maximizing the spread of influence
through a social network. Theory of Computing, pp. 11:105-147.

 Krause, A., and Golovin, D. 2014. Submodular function maximization. In Bordeaux, L.;
Hamadi, Y.; and Kohli, P., eds., Tractability: Practical Approaches to Hard Problems.
Cambridge University Press, pp. 71-104.

References

* Lee, J., Sviridenko, M., and Vondra'k, J. 2010. Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res. 35(4):795-806.

* Friedrich, T.,, and Neumann, F. 2015. Maximizing submodular functions under matroid
constraints by evolutionary algorithms. Evolutionary Computation 23(4):543-558.

* Doerr, B., Doerr, C., Neumann, A., Neumann, F., Sutton, A.M. 2020. Optimization of

chance-constrained submodular functions. The Thirty-Fourth AAAI Conference on
Artificial Intelligence 2020, pp. 1460-1467. AAAI Press.

* Chebyshey, P. 1867. Des valeurs moyennes. Liouville’s] Math Pure Appl 12:177-184.

» Chernoff, H. 1952. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Statist. 23(4):493-507.

* Leskoveg, J., Krause, A., Guestrin, C., Faloutsos, C., Van- Briesen, J. M., and Glance, N. S.
2007. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining 2007, pp.
420-429. ACM.

References

Kempe, D., Kleinberg, J. M., and Tardos, E. 2003. Maximizing the spread of influence
through a social network. The Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 2003, pp. 137-146. ACM.

Neumann, A. and Neumann, F. 2020. Optimising monotone chance-constrained
submodular functions using evolutionary multi-objective algorithms. Parallel Problem
Solving from Nature - PPSN XVI - 16th International Conference, PPSN 2020. Lecture

Notes in Computer Science, pp. 404-417. Springer.
Motwani, R., Raghavan, P. 1995. Randomized algorithms. Cambridge University Press.

Doerr, B., Neumann, F. 2020. Theory of Evolutionary Computation — Recent
developments in discrete optimization. Natural Computing Series, Springer.

Assimi, H., Harper, O., Xie, Y., Neumann, A., Neumann, F. 2020. Evolutionary bi-
objective optimization for the dynamic chance-constrained knapsack problem based

on tail bound objectives. The 24th European Conference on Artificial Intelligence,
ECAI 2020, pp. 307 —314. IOS Press.

Xie, Y., Harper, O., Assimi, H., Neumann, A., Neumann, F. 2019. Evolutionary al-
gorithms for the chance-constrained knapsack problem. The Genetic and Evolutionary
Computation Conference, GECCO 2019, pp. 338-346. ACM.

References

Xie, Y., Neumann, A. Neumann, F. 2020. Specific single- and multi-objective

evolutionary algorithms for the chance-constrained knapsack problem. The Genetic
and Evolutionary Computation Conference, GECCO 2020, pp. 271-279, ACM.

Giel, O., Wegener, 1. 2003. Evolutionary algorithms and the maximum matching
problem. In: Proceedings of the 20th Annual Symposium on Theoretical Aspects of

Computer Science, STACS 2003. Lecture Notes in Computer Science, vol. 2607, pp.
415-426. Springer.

Doerr, B., Doerr, C., Neumann, A., Neumann, F., Sutton, A. M. 2020. Optimization of
chance-constrained submodular functions. The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, pp. 1460-1467. AAAI Press.

Feige, U. 1998. A threshold of In n for approximating set cover. J. ACM 45(4), pp. 634—
652.

Khuller, S., Moss, A., Naor, J. 1999. The budgeted maximum coverage problem.
Information Processing Letters 70(1), pp. 39—45.

